pyoco 0.1.0__tar.gz → 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyoco-0.5.0/PKG-INFO +159 -0
- pyoco-0.5.0/README.md +147 -0
- pyoco-0.5.0/pyproject.toml +20 -0
- pyoco-0.5.0/src/pyoco/cli/main.py +396 -0
- pyoco-0.5.0/src/pyoco/client.py +89 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/core/context.py +100 -4
- pyoco-0.5.0/src/pyoco/core/engine.py +531 -0
- pyoco-0.5.0/src/pyoco/core/exceptions.py +15 -0
- pyoco-0.5.0/src/pyoco/core/models.py +286 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/discovery/loader.py +29 -3
- pyoco-0.5.0/src/pyoco/discovery/plugins.py +92 -0
- pyoco-0.5.0/src/pyoco/dsl/expressions.py +160 -0
- pyoco-0.5.0/src/pyoco/dsl/nodes.py +56 -0
- pyoco-0.5.0/src/pyoco/dsl/syntax.py +268 -0
- pyoco-0.5.0/src/pyoco/dsl/validator.py +104 -0
- pyoco-0.5.0/src/pyoco/server/api.py +112 -0
- pyoco-0.5.0/src/pyoco/server/metrics.py +113 -0
- pyoco-0.5.0/src/pyoco/server/models.py +30 -0
- pyoco-0.5.0/src/pyoco/server/store.py +219 -0
- pyoco-0.5.0/src/pyoco/server/webhook.py +108 -0
- pyoco-0.5.0/src/pyoco/socketless_reset.py +7 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/trace/backend.py +1 -1
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/trace/console.py +12 -4
- pyoco-0.5.0/src/pyoco/worker/__init__.py +0 -0
- pyoco-0.5.0/src/pyoco/worker/client.py +43 -0
- pyoco-0.5.0/src/pyoco/worker/runner.py +166 -0
- pyoco-0.5.0/src/pyoco.egg-info/PKG-INFO +159 -0
- pyoco-0.5.0/src/pyoco.egg-info/SOURCES.txt +45 -0
- pyoco-0.5.0/src/pyoco.egg-info/requires.txt +5 -0
- pyoco-0.5.0/tests/test_cancellation.py +82 -0
- pyoco-0.5.0/tests/test_cli_cancellation.py +101 -0
- pyoco-0.5.0/tests/test_e2e_socketless.py +79 -0
- pyoco-0.5.0/tests/test_engine_state.py +68 -0
- pyoco-0.5.0/tests/test_integration_v030.py +138 -0
- pyoco-0.5.0/tests/test_socketless_basic.py +29 -0
- pyoco-0.5.0/tests/test_state_models.py +43 -0
- pyoco-0.1.0/PKG-INFO +0 -7
- pyoco-0.1.0/pyproject.toml +0 -9
- pyoco-0.1.0/src/pyoco/cli/main.py +0 -177
- pyoco-0.1.0/src/pyoco/core/engine.py +0 -249
- pyoco-0.1.0/src/pyoco/core/models.py +0 -116
- pyoco-0.1.0/src/pyoco/dsl/syntax.py +0 -122
- pyoco-0.1.0/src/pyoco.egg-info/PKG-INFO +0 -7
- pyoco-0.1.0/src/pyoco.egg-info/SOURCES.txt +0 -22
- pyoco-0.1.0/src/pyoco.egg-info/requires.txt +0 -1
- {pyoco-0.1.0 → pyoco-0.5.0}/setup.cfg +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/__init__.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/cli/entry.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/core/base_task.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/dsl/__init__.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco/schemas/config.py +0 -0
- /pyoco-0.1.0/README.md → /pyoco-0.5.0/src/pyoco/server/__init__.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco.egg-info/dependency_links.txt +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/src/pyoco.egg-info/top_level.txt +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/tests/test_dsl.py +0 -0
- {pyoco-0.1.0 → pyoco-0.5.0}/tests/test_engine.py +0 -0
pyoco-0.5.0/PKG-INFO
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pyoco
|
|
3
|
+
Version: 0.5.0
|
|
4
|
+
Summary: A workflow engine with sugar syntax
|
|
5
|
+
Requires-Python: >=3.10
|
|
6
|
+
Description-Content-Type: text/markdown
|
|
7
|
+
Requires-Dist: pyyaml>=6.0.3
|
|
8
|
+
Requires-Dist: fastapi>=0.100.0
|
|
9
|
+
Requires-Dist: uvicorn>=0.20.0
|
|
10
|
+
Requires-Dist: httpx>=0.24.0
|
|
11
|
+
Requires-Dist: prometheus-client>=0.20.0
|
|
12
|
+
|
|
13
|
+
# 🐇 Pyoco
|
|
14
|
+
|
|
15
|
+
**pyoco is a minimal, pure-Python DAG engine for defining and running simple task-based workflows.**
|
|
16
|
+
|
|
17
|
+
## Overview
|
|
18
|
+
|
|
19
|
+
Pyoco is designed to be significantly smaller, lighter, and have fewer dependencies than full-scale workflow engines like Airflow. It is optimized for local development and single-machine execution.
|
|
20
|
+
|
|
21
|
+
You can define tasks and their dependencies entirely in Python code using decorators and a simple API. There is no need for complex configuration files or external databases.
|
|
22
|
+
|
|
23
|
+
It is ideal for small jobs, development environments, and personal projects where a full-stack workflow engine would be overkill.
|
|
24
|
+
|
|
25
|
+
## ✨ Features
|
|
26
|
+
|
|
27
|
+
- **Pure Python**: No external services or heavy dependencies required.
|
|
28
|
+
- **Minimal DAG model**: Tasks and dependencies are defined directly in code.
|
|
29
|
+
- **Task-oriented**: Focus on "small workflows" that should be easy to read and maintain.
|
|
30
|
+
- **Friendly trace logs**: Runs can be traced step by step from the terminal with cute (or plain) logs.
|
|
31
|
+
- **Parallel Execution**: Automatically runs independent tasks in parallel.
|
|
32
|
+
- **Artifact Management**: Easily save and manage task outputs and files.
|
|
33
|
+
- **Observability**: Track execution with unique Run IDs and detailed state transitions.
|
|
34
|
+
- **Control**: Cancel running workflows gracefully with `Ctrl+C`.
|
|
35
|
+
|
|
36
|
+
## 📦 Installation
|
|
37
|
+
|
|
38
|
+
```bash
|
|
39
|
+
pip install pyoco
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
## 🚀 Usage
|
|
43
|
+
|
|
44
|
+
Here is a minimal example of a pure-Python workflow.
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
from pyoco import task
|
|
48
|
+
from pyoco.core.models import Flow
|
|
49
|
+
from pyoco.core.engine import Engine
|
|
50
|
+
|
|
51
|
+
@task
|
|
52
|
+
def fetch_data(ctx):
|
|
53
|
+
print("🐰 Fetching data...")
|
|
54
|
+
return {"id": 1, "value": "carrot"}
|
|
55
|
+
|
|
56
|
+
@task
|
|
57
|
+
def process_data(ctx, data):
|
|
58
|
+
print(f"🥕 Processing: {data['value']}")
|
|
59
|
+
return data['value'].upper()
|
|
60
|
+
|
|
61
|
+
@task
|
|
62
|
+
def save_result(ctx, result):
|
|
63
|
+
print(f"✨ Saved: {result}")
|
|
64
|
+
|
|
65
|
+
# Define the flow
|
|
66
|
+
flow = Flow(name="hello_pyoco")
|
|
67
|
+
flow >> fetch_data >> process_data >> save_result
|
|
68
|
+
|
|
69
|
+
# Wire inputs (explicitly for this example)
|
|
70
|
+
process_data.task.inputs = {"data": "$node.fetch_data.output"}
|
|
71
|
+
save_result.task.inputs = {"result": "$node.process_data.output"}
|
|
72
|
+
|
|
73
|
+
if __name__ == "__main__":
|
|
74
|
+
engine = Engine()
|
|
75
|
+
engine.run(flow)
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
Run it:
|
|
79
|
+
|
|
80
|
+
```bash
|
|
81
|
+
python examples/hello_pyoco.py
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
Output:
|
|
85
|
+
|
|
86
|
+
```
|
|
87
|
+
🐇 pyoco > start flow=hello_pyoco
|
|
88
|
+
🏃 start node=fetch_data
|
|
89
|
+
🐰 Fetching data...
|
|
90
|
+
✅ done node=fetch_data (0.30 ms)
|
|
91
|
+
🏃 start node=process_data
|
|
92
|
+
🥕 Processing: carrot
|
|
93
|
+
✅ done node=process_data (0.23 ms)
|
|
94
|
+
🏃 start node=save_result
|
|
95
|
+
✨ Saved: CARROT
|
|
96
|
+
✅ done node=save_result (0.30 ms)
|
|
97
|
+
🥕 done flow=hello_pyoco
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
See [examples/hello_pyoco.py](examples/hello_pyoco.py) for the full code.
|
|
101
|
+
|
|
102
|
+
## 🏗️ Architecture
|
|
103
|
+
|
|
104
|
+
Pyoco is designed with a simple flow:
|
|
105
|
+
|
|
106
|
+
```
|
|
107
|
+
+-----------+ +------------------+ +-----------------+
|
|
108
|
+
| User Code | ---> | pyoco.core.Flow | ---> | trace/logger |
|
|
109
|
+
| (Tasks) | | (Engine) | | (Console/File) |
|
|
110
|
+
+-----------+ +------------------+ +-----------------+
|
|
111
|
+
```
|
|
112
|
+
|
|
113
|
+
1. **User Code**: You define tasks and flows using Python decorators.
|
|
114
|
+
2. **Core Engine**: The engine resolves dependencies and executes tasks (in parallel where possible).
|
|
115
|
+
3. **Trace**: Execution events are sent to the trace backend for logging (cute or plain).
|
|
116
|
+
|
|
117
|
+
## 🎭 Modes
|
|
118
|
+
|
|
119
|
+
Pyoco has two output modes:
|
|
120
|
+
|
|
121
|
+
- **Cute Mode** (Default): Uses emojis and friendly messages. Best for local development and learning.
|
|
122
|
+
- **Non-Cute Mode**: Plain text logs. Best for CI/CD and production monitoring.
|
|
123
|
+
|
|
124
|
+
You can switch modes using an environment variable:
|
|
125
|
+
|
|
126
|
+
```bash
|
|
127
|
+
export PYOCO_CUTE=0 # Disable cute mode
|
|
128
|
+
```
|
|
129
|
+
|
|
130
|
+
Or via CLI flag:
|
|
131
|
+
|
|
132
|
+
```bash
|
|
133
|
+
pyoco run --non-cute ...
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
## 🔭 Observability Bridge (v0.5)
|
|
137
|
+
|
|
138
|
+
- `/metrics` exposes Prometheus counters (`pyoco_runs_total`, `pyoco_runs_in_progress`) and histograms (`pyoco_task_duration_seconds`, `pyoco_run_duration_seconds`). Point Grafana/Prometheus at it to watch pipelines without opening sockets.
|
|
139
|
+
- `/runs` now accepts `status`, `flow`, `limit` query params; `/runs/{id}/logs?tail=100` fetches only the latest snippets for dashboards.
|
|
140
|
+
- Webhook notifications fire when runs COMPLETE/FAIL—configure via `PYOCO_WEBHOOK_*` env vars and forward to Slack or your alerting stack.
|
|
141
|
+
- Import `docs/grafana_pyoco_cute.json` for a lavender/orange starter dashboard (3 panels: in-progress count, completion trend, per-flow latency).
|
|
142
|
+
- 詳細な手順は [docs/observability.md](docs/observability.md) を参照してください。
|
|
143
|
+
|
|
144
|
+
## 🧩 Plug-ins
|
|
145
|
+
|
|
146
|
+
Need to share domain-specific tasks? Publish an entry point under `pyoco.tasks` and pyoco will auto-load it. See [docs/plugins.md](docs/plugins.md) for the `PluginRegistry` decorator, example `pyproject.toml`, and `pyoco plugins list` CLI helper.
|
|
147
|
+
|
|
148
|
+
## 📚 Documentation
|
|
149
|
+
|
|
150
|
+
- [Tutorials](docs/tutorial/index.md)
|
|
151
|
+
- [Roadmap](docs/roadmap.md)
|
|
152
|
+
|
|
153
|
+
## 💖 Contributing
|
|
154
|
+
|
|
155
|
+
We love contributions! Please feel free to submit a Pull Request.
|
|
156
|
+
|
|
157
|
+
---
|
|
158
|
+
|
|
159
|
+
*Made with 🥕 by the Pyoco Team.*
|
pyoco-0.5.0/README.md
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
# 🐇 Pyoco
|
|
2
|
+
|
|
3
|
+
**pyoco is a minimal, pure-Python DAG engine for defining and running simple task-based workflows.**
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Pyoco is designed to be significantly smaller, lighter, and have fewer dependencies than full-scale workflow engines like Airflow. It is optimized for local development and single-machine execution.
|
|
8
|
+
|
|
9
|
+
You can define tasks and their dependencies entirely in Python code using decorators and a simple API. There is no need for complex configuration files or external databases.
|
|
10
|
+
|
|
11
|
+
It is ideal for small jobs, development environments, and personal projects where a full-stack workflow engine would be overkill.
|
|
12
|
+
|
|
13
|
+
## ✨ Features
|
|
14
|
+
|
|
15
|
+
- **Pure Python**: No external services or heavy dependencies required.
|
|
16
|
+
- **Minimal DAG model**: Tasks and dependencies are defined directly in code.
|
|
17
|
+
- **Task-oriented**: Focus on "small workflows" that should be easy to read and maintain.
|
|
18
|
+
- **Friendly trace logs**: Runs can be traced step by step from the terminal with cute (or plain) logs.
|
|
19
|
+
- **Parallel Execution**: Automatically runs independent tasks in parallel.
|
|
20
|
+
- **Artifact Management**: Easily save and manage task outputs and files.
|
|
21
|
+
- **Observability**: Track execution with unique Run IDs and detailed state transitions.
|
|
22
|
+
- **Control**: Cancel running workflows gracefully with `Ctrl+C`.
|
|
23
|
+
|
|
24
|
+
## 📦 Installation
|
|
25
|
+
|
|
26
|
+
```bash
|
|
27
|
+
pip install pyoco
|
|
28
|
+
```
|
|
29
|
+
|
|
30
|
+
## 🚀 Usage
|
|
31
|
+
|
|
32
|
+
Here is a minimal example of a pure-Python workflow.
|
|
33
|
+
|
|
34
|
+
```python
|
|
35
|
+
from pyoco import task
|
|
36
|
+
from pyoco.core.models import Flow
|
|
37
|
+
from pyoco.core.engine import Engine
|
|
38
|
+
|
|
39
|
+
@task
|
|
40
|
+
def fetch_data(ctx):
|
|
41
|
+
print("🐰 Fetching data...")
|
|
42
|
+
return {"id": 1, "value": "carrot"}
|
|
43
|
+
|
|
44
|
+
@task
|
|
45
|
+
def process_data(ctx, data):
|
|
46
|
+
print(f"🥕 Processing: {data['value']}")
|
|
47
|
+
return data['value'].upper()
|
|
48
|
+
|
|
49
|
+
@task
|
|
50
|
+
def save_result(ctx, result):
|
|
51
|
+
print(f"✨ Saved: {result}")
|
|
52
|
+
|
|
53
|
+
# Define the flow
|
|
54
|
+
flow = Flow(name="hello_pyoco")
|
|
55
|
+
flow >> fetch_data >> process_data >> save_result
|
|
56
|
+
|
|
57
|
+
# Wire inputs (explicitly for this example)
|
|
58
|
+
process_data.task.inputs = {"data": "$node.fetch_data.output"}
|
|
59
|
+
save_result.task.inputs = {"result": "$node.process_data.output"}
|
|
60
|
+
|
|
61
|
+
if __name__ == "__main__":
|
|
62
|
+
engine = Engine()
|
|
63
|
+
engine.run(flow)
|
|
64
|
+
```
|
|
65
|
+
|
|
66
|
+
Run it:
|
|
67
|
+
|
|
68
|
+
```bash
|
|
69
|
+
python examples/hello_pyoco.py
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
Output:
|
|
73
|
+
|
|
74
|
+
```
|
|
75
|
+
🐇 pyoco > start flow=hello_pyoco
|
|
76
|
+
🏃 start node=fetch_data
|
|
77
|
+
🐰 Fetching data...
|
|
78
|
+
✅ done node=fetch_data (0.30 ms)
|
|
79
|
+
🏃 start node=process_data
|
|
80
|
+
🥕 Processing: carrot
|
|
81
|
+
✅ done node=process_data (0.23 ms)
|
|
82
|
+
🏃 start node=save_result
|
|
83
|
+
✨ Saved: CARROT
|
|
84
|
+
✅ done node=save_result (0.30 ms)
|
|
85
|
+
🥕 done flow=hello_pyoco
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
See [examples/hello_pyoco.py](examples/hello_pyoco.py) for the full code.
|
|
89
|
+
|
|
90
|
+
## 🏗️ Architecture
|
|
91
|
+
|
|
92
|
+
Pyoco is designed with a simple flow:
|
|
93
|
+
|
|
94
|
+
```
|
|
95
|
+
+-----------+ +------------------+ +-----------------+
|
|
96
|
+
| User Code | ---> | pyoco.core.Flow | ---> | trace/logger |
|
|
97
|
+
| (Tasks) | | (Engine) | | (Console/File) |
|
|
98
|
+
+-----------+ +------------------+ +-----------------+
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
1. **User Code**: You define tasks and flows using Python decorators.
|
|
102
|
+
2. **Core Engine**: The engine resolves dependencies and executes tasks (in parallel where possible).
|
|
103
|
+
3. **Trace**: Execution events are sent to the trace backend for logging (cute or plain).
|
|
104
|
+
|
|
105
|
+
## 🎭 Modes
|
|
106
|
+
|
|
107
|
+
Pyoco has two output modes:
|
|
108
|
+
|
|
109
|
+
- **Cute Mode** (Default): Uses emojis and friendly messages. Best for local development and learning.
|
|
110
|
+
- **Non-Cute Mode**: Plain text logs. Best for CI/CD and production monitoring.
|
|
111
|
+
|
|
112
|
+
You can switch modes using an environment variable:
|
|
113
|
+
|
|
114
|
+
```bash
|
|
115
|
+
export PYOCO_CUTE=0 # Disable cute mode
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
Or via CLI flag:
|
|
119
|
+
|
|
120
|
+
```bash
|
|
121
|
+
pyoco run --non-cute ...
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
## 🔭 Observability Bridge (v0.5)
|
|
125
|
+
|
|
126
|
+
- `/metrics` exposes Prometheus counters (`pyoco_runs_total`, `pyoco_runs_in_progress`) and histograms (`pyoco_task_duration_seconds`, `pyoco_run_duration_seconds`). Point Grafana/Prometheus at it to watch pipelines without opening sockets.
|
|
127
|
+
- `/runs` now accepts `status`, `flow`, `limit` query params; `/runs/{id}/logs?tail=100` fetches only the latest snippets for dashboards.
|
|
128
|
+
- Webhook notifications fire when runs COMPLETE/FAIL—configure via `PYOCO_WEBHOOK_*` env vars and forward to Slack or your alerting stack.
|
|
129
|
+
- Import `docs/grafana_pyoco_cute.json` for a lavender/orange starter dashboard (3 panels: in-progress count, completion trend, per-flow latency).
|
|
130
|
+
- 詳細な手順は [docs/observability.md](docs/observability.md) を参照してください。
|
|
131
|
+
|
|
132
|
+
## 🧩 Plug-ins
|
|
133
|
+
|
|
134
|
+
Need to share domain-specific tasks? Publish an entry point under `pyoco.tasks` and pyoco will auto-load it. See [docs/plugins.md](docs/plugins.md) for the `PluginRegistry` decorator, example `pyproject.toml`, and `pyoco plugins list` CLI helper.
|
|
135
|
+
|
|
136
|
+
## 📚 Documentation
|
|
137
|
+
|
|
138
|
+
- [Tutorials](docs/tutorial/index.md)
|
|
139
|
+
- [Roadmap](docs/roadmap.md)
|
|
140
|
+
|
|
141
|
+
## 💖 Contributing
|
|
142
|
+
|
|
143
|
+
We love contributions! Please feel free to submit a Pull Request.
|
|
144
|
+
|
|
145
|
+
---
|
|
146
|
+
|
|
147
|
+
*Made with 🥕 by the Pyoco Team.*
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "pyoco"
|
|
3
|
+
version = "0.5.0"
|
|
4
|
+
description = "A workflow engine with sugar syntax"
|
|
5
|
+
readme = "README.md"
|
|
6
|
+
requires-python = ">=3.10"
|
|
7
|
+
dependencies = [
|
|
8
|
+
"pyyaml>=6.0.3",
|
|
9
|
+
"fastapi>=0.100.0",
|
|
10
|
+
"uvicorn>=0.20.0",
|
|
11
|
+
"httpx>=0.24.0",
|
|
12
|
+
"prometheus-client>=0.20.0",
|
|
13
|
+
]
|
|
14
|
+
|
|
15
|
+
[dependency-groups]
|
|
16
|
+
dev = [
|
|
17
|
+
"pytest>=9.0.1",
|
|
18
|
+
"socketless-http>=0.1.0",
|
|
19
|
+
"pytest-asyncio>=0.23.0",
|
|
20
|
+
]
|