pymast 0.0.3__tar.gz → 0.0.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pymast
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: Movement Analysis Software for Telemetry (MAST) for
5
5
  Home-page: https://github.com/knebiolo/mast
6
6
  Author: Kevin P. Nebiolo and Theodore Castro-Santos
@@ -14,5 +14,5 @@ Requires-Dist: matplotlib>=3.1.1
14
14
  Requires-Dist: statsmodels>=0.10.1
15
15
  Requires-Dist: networkx>=2.2
16
16
  Requires-Dist: scipy>=1.7.1
17
- Requires-Dist: sklearn
17
+ Requires-Dist: scikit-learn
18
18
  Requires-Dist: h5py
@@ -38,26 +38,26 @@ The tag table must match the following schema and be saved as a comma delimited
38
38
 
39
39
  | Field | Data Type | Comment |
40
40
  |------------|-----------|--------------------------------------------------------------------------|
41
- |FreqCode |String |(required) combination of radio frequency and tag code. **must be unique**|
42
- |PIT_ID |Integer |(not required) if tagged with RFID tag indicate ID |
43
- |PulseRate |Float |(required) seconds between tag pulses |
44
- |MortRate |Float |(not required) if equipped, seconds between tag pulses if fish has died |
45
- |CapLoc |String |(required) capture location of fish |
46
- |RelLoc |String |(required) release location of fish |
47
- |TagType |String |(required) either 'Study' or 'Beacon |
48
- |Length |Integer |(not required) - mm |
49
- |Sex |String |(not required) - either 'M' or 'F' |
50
- |RelDate |DateTime |(required) - Date and time of release |
41
+ |freq_code |String |(required) combination of radio frequency and tag code. **must be unique**|
42
+ |pit_id |Integer |(not required) if tagged with RFID tag indicate ID |
43
+ |pulse_rate |Float |(required) seconds between tag pulses |
44
+ |mort_rate |Float |(not required) if equipped, seconds between tag pulses if fish has died |
45
+ |cap_loc |String |(required) capture location of fish |
46
+ |rel_loc |String |(required) release location of fish |
47
+ |tag_type |String |(required) either 'study' or 'beacon' |
48
+ |length |Integer |(not required) - mm |
49
+ |sex |String |(not required) - either 'M' or 'F' |
50
+ |rel_date |DateTime |(required) - Date and time of release |
51
51
 
52
52
  ## Master Receiver Table
53
53
  The receiver file must contain the following fields and should be saved as a comma delimited text file. Please see the schema below. As with the master tag file, please save the master receiver file to the ‘Data’ folder. A good name for this file is “tblMasterReceiver.csv”.
54
54
 
55
55
  | Field | Data Type | Comment |
56
56
  |------------|-----------|--------------------------------------------------------------------------|
57
- |Name |String |(not required) - common name of reciever location, e.g. 'Norse Farms' |
58
- |RecType |String |(required) - acceptable inputs are either **'lotek'** or **'orion'** |
59
- |recID |String |(required) - alphanumeric ID for receiver, e.g. 'T01' |
60
- |Node |String |(required) - alphanumeric ID for network node, e.g. 'S01'. |
57
+ |name |String |(not required) - common name of reciever location, e.g. 'Norse Farms' |
58
+ |rec_type |String |(required) - acceptable inputs are either **'srx600'**, **'srx800'**, **'srx1200'**, **'orion'**, or **'ares'**| |
59
+ |rec_id |String |(required) - alphanumeric ID for receiver, e.g. 'T01' |
60
+ |node |String |(required) - alphanumeric ID for network node, e.g. 'S01'. |
61
61
 
62
62
  ## Telemetry network
63
63
  If one of your objectives is to analyze how fish move through a study area, you will need to create a table that describes relationships between receivers (single receivers or groupings) by identifying the logical pathways that exist between them. Figure 1 depicts a telemetry network of a recent project completed by Kleinschmidt Associates. Each point on the picture is either a single telemetry receiver or group of receivers. These points are known as nodes and represent telemetered river reaches. The receiver-to-node relationship is mapped in the master receiver table with the ‘Node’ column. The lines, or edges in Figure 1 depict the relationships between nodes. Some are double headed while others are one way. Some edges are one way because it is impossible for a fish to swim up through a hydroelectric turbine. This type of graph is known as a directed acyclic graph. For now, we only need to identify the nodes and give them arbitrary XY coordinates.
@@ -68,8 +68,8 @@ Like the tag and receiver tables, the node table will be saved as a comma delimi
68
68
 
69
69
  | Field | Data Type | Comment |
70
70
  |------------|-----------|--------------------------------------------------------------------------|
71
- |Node |String |(required) - alphanumeric ID for network node **must be unique** |
72
- |Reach |String |(not required) - common name of reach monitored by node, e.g. 'Cabot Tailrace'|
71
+ |node |String |(required) - alphanumeric ID for network node **must be unique** |
72
+ |reach |String |(not required) - common name of reach monitored by node, e.g. 'Cabot Tailrace'|
73
73
  |X |Integer |(required) - arbitrary X coordinate point |
74
74
  |Y |Integer |(required) - arbitrary Y coordinate point |
75
75
 
@@ -79,7 +79,7 @@ def ares(file_name,
79
79
 
80
80
  telem_dat = telem_dat.astype({'power':'float32',
81
81
  'freq_code':'object',
82
- 'time_stamp':'datetime64',
82
+ 'time_stamp':'datetime64[ns]',
83
83
  'scan_time':'float32',
84
84
  'channels':'int32',
85
85
  'rec_type':'object',
@@ -175,7 +175,7 @@ def orion_import(file_name,
175
175
 
176
176
  telem_dat = telem_dat.astype({'power':'float32',
177
177
  'freq_code':'object',
178
- 'time_stamp':'datetime64',
178
+ 'time_stamp':'datetime64[ns]',
179
179
  'scan_time':'float32',
180
180
  'channels':'int32',
181
181
  'rec_type':'object',
@@ -293,7 +293,7 @@ def vr2_import(file_name,db_dir,study_tags, rec_id):
293
293
 
294
294
  telem_dat = telem_dat.astype({'power':'float32',
295
295
  'freq_code':'object',
296
- 'time_stamp':'datetime64',
296
+ 'time_stamp':'datetime64[ns]',
297
297
  'scan_time':'float32',
298
298
  'channels':'int32',
299
299
  'rec_type':'object',
@@ -520,7 +520,7 @@ def srx1200(file_name,
520
520
 
521
521
  telem_dat = telem_dat.astype({'power':'float32',
522
522
  'freq_code':'object',
523
- 'time_stamp':'datetime64',
523
+ 'time_stamp':'datetime64[ns]',
524
524
  'scan_time':'int32',
525
525
  'channels':'int32',
526
526
  'rec_type':'object',
@@ -596,7 +596,7 @@ def srx1200(file_name,
596
596
 
597
597
  telem_dat = telem_dat.astype({'power':'float32',
598
598
  'freq_code':'object',
599
- 'time_stamp':'datetime64',
599
+ 'time_stamp':'datetime64[ns]',
600
600
  'scan_time':'float32',
601
601
  'channels':'int32',
602
602
  'rec_type':'object',
@@ -1129,7 +1129,7 @@ def srx600(file_name,
1129
1129
 
1130
1130
  telem_dat_sub = telem_dat_sub.astype({'power':'float32',
1131
1131
  'freq_code':'object',
1132
- 'time_stamp':'datetime64',
1132
+ 'time_stamp':'datetime64[ns]',
1133
1133
  'scan_time':'float32',
1134
1134
  'channels':'int32',
1135
1135
  'rec_type':'object',
@@ -1204,7 +1204,7 @@ def srx600(file_name,
1204
1204
 
1205
1205
  telem_dat_sub = telem_dat_sub.astype({'power':'float32',
1206
1206
  'freq_code':'object',
1207
- 'time_stamp':'datetime64',
1207
+ 'time_stamp':'datetime64[ns]',
1208
1208
  'scan_time':'float32',
1209
1209
  'channels':'int32',
1210
1210
  'rec_type':'object',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pymast
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: Movement Analysis Software for Telemetry (MAST) for
5
5
  Home-page: https://github.com/knebiolo/mast
6
6
  Author: Kevin P. Nebiolo and Theodore Castro-Santos
@@ -14,5 +14,5 @@ Requires-Dist: matplotlib>=3.1.1
14
14
  Requires-Dist: statsmodels>=0.10.1
15
15
  Requires-Dist: networkx>=2.2
16
16
  Requires-Dist: scipy>=1.7.1
17
- Requires-Dist: sklearn
17
+ Requires-Dist: scikit-learn
18
18
  Requires-Dist: h5py
@@ -4,5 +4,5 @@ matplotlib>=3.1.1
4
4
  statsmodels>=0.10.1
5
5
  networkx>=2.2
6
6
  scipy>=1.7.1
7
- sklearn
7
+ scikit-learn
8
8
  h5py
@@ -1,7 +1,7 @@
1
1
  from setuptools import setup
2
2
 
3
3
  setup(name = 'pymast',
4
- version = '0.0.3',
4
+ version = '0.0.5',
5
5
  description = '''Movement Analysis Software for Telemetry (MAST) for
6
6
  use in removing false positive and overlap detections from radio telemetry
7
7
  projects and assessing 1D movement patterns.''',
@@ -17,7 +17,7 @@ projects and assessing 1D movement patterns.''',
17
17
  "statsmodels >= 0.10.1",
18
18
  "networkx >= 2.2",
19
19
  "scipy >= 1.7.1",
20
- "sklearn",
20
+ "scikit-learn",
21
21
  "h5py"],
22
22
  zip_safe = False
23
23
  )
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes