pyg-nightly 2.7.0.dev20250923__py3-none-any.whl → 2.7.0.dev20250925__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250923
3
+ Version: 2.7.0.dev20250925
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=9tjG4vnRqyHpJs0XLAjF6E_9lqg_YcaZOy9xc4QGG_Q,2292
1
+ torch_geometric/__init__.py,sha256=eS7o7KHhfi--lfF0jP-PY1JK7HC6l9e4ye92D95yTO8,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -274,7 +274,7 @@ torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl
274
274
  torch_geometric/llm/models/g_retriever.py,sha256=SeW0rlrlzMhN3aVslhq_GUyUgS4sVw_nMAT5YiXzZd8,9072
275
275
  torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
276
276
  torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
277
- torch_geometric/llm/models/llm.py,sha256=LKYdUSw2PSWYEN13DYYaJt0dHRQTptX6mM1rAh7-J6c,17764
277
+ torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4Mf2Gs,18122
278
278
  torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
279
279
  torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
280
280
  torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.7.0.dev20250923.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.7.0.dev20250923.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.7.0.dev20250923.dist-info/METADATA,sha256=so_Naefkcr5oKwvFzOzlpwS6A-k6_k_wKV5E4bYbiQg,63680
660
- pyg_nightly-2.7.0.dev20250923.dist-info/RECORD,,
657
+ pyg_nightly-2.7.0.dev20250925.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.7.0.dev20250925.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.7.0.dev20250925.dist-info/METADATA,sha256=qEgIQwmythqlKxXyWkF4wScrpN64_jPshGe3wyT-52o,63680
660
+ pyg_nightly-2.7.0.dev20250925.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250923'
34
+ __version__ = '2.7.0.dev20250925'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -88,8 +88,8 @@ class LLM(torch.nn.Module):
88
88
  num_params = float(list(param_count.values())[0] // 10**9)
89
89
 
90
90
  # A rough heuristic on GPU memory requirements, e.g., we found that
91
- # LLAMA2 (7B parameters) fits on a 85GB GPU.
92
- required_memory = 85 * num_params / 7
91
+ # LLAMA3 (8B parameters) fits on a 96GB GPU.
92
+ required_memory = 96.0 * num_params / 8.0
93
93
  kwargs = get_llm_kwargs(required_memory, dtype)
94
94
  else:
95
95
  gpu_memory: List[int] = []
@@ -136,8 +136,13 @@ class LLM(torch.nn.Module):
136
136
  else:
137
137
  self.sys_prompt = ""
138
138
  if 'max_memory' not in kwargs: # Pure CPU:
139
- warnings.warn("LLM is being used on CPU, which may be slow",
140
- stacklevel=2)
139
+ warnings.warn(
140
+ "LLM is being used on CPU, which may be slow. This decision "
141
+ "was made by a rough hueristic that assumes your GPU set up "
142
+ "does not have enough GPU RAM. This is done to avoid GPU OOM "
143
+ "errors. If you think this is a mistake, please initialize "
144
+ "your LLM with the n_gpus param to dictate how many gpus to "
145
+ "use for the LLM.", stacklevel=2)
141
146
  self.device = torch.device('cpu')
142
147
  self.autocast_context = nullcontext()
143
148
  else: