pyg-nightly 2.7.0.dev20250922__py3-none-any.whl → 2.7.0.dev20250924__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyg-nightly might be problematic. Click here for more details.
- {pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/RECORD +6 -6
- torch_geometric/__init__.py +1 -1
- torch_geometric/llm/models/llm.py +9 -4
- {pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pyg-nightly
|
|
3
|
-
Version: 2.7.0.
|
|
3
|
+
Version: 2.7.0.dev20250924
|
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
|
1
|
+
torch_geometric/__init__.py,sha256=ZrtnmLssSCHHVi0DleX_SBMUPOZEpNy-QDFULbz-Idk,2292
|
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
|
3
3
|
torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
|
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
|
@@ -274,7 +274,7 @@ torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl
|
|
|
274
274
|
torch_geometric/llm/models/g_retriever.py,sha256=SeW0rlrlzMhN3aVslhq_GUyUgS4sVw_nMAT5YiXzZd8,9072
|
|
275
275
|
torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
|
|
276
276
|
torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
|
|
277
|
-
torch_geometric/llm/models/llm.py,sha256=
|
|
277
|
+
torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4Mf2Gs,18122
|
|
278
278
|
torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
|
|
279
279
|
torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
|
|
280
280
|
torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
|
|
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
|
654
654
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
|
655
655
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
|
656
656
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
|
657
|
-
pyg_nightly-2.7.0.
|
|
658
|
-
pyg_nightly-2.7.0.
|
|
659
|
-
pyg_nightly-2.7.0.
|
|
660
|
-
pyg_nightly-2.7.0.
|
|
657
|
+
pyg_nightly-2.7.0.dev20250924.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
|
658
|
+
pyg_nightly-2.7.0.dev20250924.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
|
659
|
+
pyg_nightly-2.7.0.dev20250924.dist-info/METADATA,sha256=32NMS3YGNQGFJCeXcyOzlqjzFiwXsx0WLfWHhD2Y3EI,63680
|
|
660
|
+
pyg_nightly-2.7.0.dev20250924.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
|
33
33
|
|
|
34
|
-
__version__ = '2.7.0.
|
|
34
|
+
__version__ = '2.7.0.dev20250924'
|
|
35
35
|
|
|
36
36
|
__all__ = [
|
|
37
37
|
'Index',
|
|
@@ -88,8 +88,8 @@ class LLM(torch.nn.Module):
|
|
|
88
88
|
num_params = float(list(param_count.values())[0] // 10**9)
|
|
89
89
|
|
|
90
90
|
# A rough heuristic on GPU memory requirements, e.g., we found that
|
|
91
|
-
#
|
|
92
|
-
required_memory =
|
|
91
|
+
# LLAMA3 (8B parameters) fits on a 96GB GPU.
|
|
92
|
+
required_memory = 96.0 * num_params / 8.0
|
|
93
93
|
kwargs = get_llm_kwargs(required_memory, dtype)
|
|
94
94
|
else:
|
|
95
95
|
gpu_memory: List[int] = []
|
|
@@ -136,8 +136,13 @@ class LLM(torch.nn.Module):
|
|
|
136
136
|
else:
|
|
137
137
|
self.sys_prompt = ""
|
|
138
138
|
if 'max_memory' not in kwargs: # Pure CPU:
|
|
139
|
-
warnings.warn(
|
|
140
|
-
|
|
139
|
+
warnings.warn(
|
|
140
|
+
"LLM is being used on CPU, which may be slow. This decision "
|
|
141
|
+
"was made by a rough hueristic that assumes your GPU set up "
|
|
142
|
+
"does not have enough GPU RAM. This is done to avoid GPU OOM "
|
|
143
|
+
"errors. If you think this is a mistake, please initialize "
|
|
144
|
+
"your LLM with the n_gpus param to dictate how many gpus to "
|
|
145
|
+
"use for the LLM.", stacklevel=2)
|
|
141
146
|
self.device = torch.device('cpu')
|
|
142
147
|
self.autocast_context = nullcontext()
|
|
143
148
|
else:
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20250922.dist-info → pyg_nightly-2.7.0.dev20250924.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|