pyg-nightly 2.7.0.dev20250920__py3-none-any.whl → 2.7.0.dev20250921__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

@@ -1,15 +1,14 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250920
3
+ Version: 2.7.0.dev20250921
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
7
- Requires-Python: >=3.9
7
+ Requires-Python: >=3.10
8
8
  Description-Content-Type: text/markdown
9
9
  License-Expression: MIT
10
10
  Classifier: Development Status :: 5 - Production/Stable
11
11
  Classifier: Programming Language :: Python
12
- Classifier: Programming Language :: Python :: 3.9
13
12
  Classifier: Programming Language :: Python :: 3.10
14
13
  Classifier: Programming Language :: Python :: 3.11
15
14
  Classifier: Programming Language :: Python :: 3.12
@@ -45,7 +44,6 @@ Requires-Dist: networkx ; extra == "full"
45
44
  Requires-Dist: numba<0.60.0 ; extra == "full"
46
45
  Requires-Dist: opt_einsum ; extra == "full"
47
46
  Requires-Dist: pandas ; extra == "full"
48
- Requires-Dist: pgmpy ; extra == "full"
49
47
  Requires-Dist: pynndescent ; extra == "full"
50
48
  Requires-Dist: pytorch-memlab ; extra == "full"
51
49
  Requires-Dist: rdflib ; extra == "full"
@@ -91,14 +89,21 @@ Provides-Extra: test
91
89
 
92
90
  ______________________________________________________________________
93
91
 
92
+ <div align="center">
93
+
94
94
  [![PyPI Version][pypi-image]][pypi-url]
95
- [![Testing Status][testing-image]][testing-url]
96
- [![Linting Status][linting-image]][linting-url]
97
- [![Docs Status][docs-image]][docs-url]
98
- [![Contributing][contributing-image]][contributing-url]
95
+ [![PyPI Download][pypi-download-image]][pypi-download-url]
99
96
  [![Slack][slack-image]][slack-url]
97
+ [![Contributing][contributing-image]][contributing-url]
98
+
99
+ **[Documentation](https://pytorch-geometric.readthedocs.io)** |
100
+ **[PyG 1.0 Paper](https://arxiv.org/abs/1903.02428)** |
101
+ **[PyG 2.0 Paper](https://arxiv.org/abs/2507.16991)** |
102
+ **[Colab Notebooks](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** |
103
+ **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** |
104
+ **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)**
100
105
 
101
- **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[PyG 1.0 Paper](https://arxiv.org/abs/1903.02428)** | **[PyG 2.0 Paper](https://arxiv.org/abs/2507.16991)** | **[Colab Notebooks](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)**
106
+ </div>
102
107
 
103
108
  **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
104
109
 
@@ -421,7 +426,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
421
426
 
422
427
  ## Installation
423
428
 
424
- PyG is available for Python 3.9 to Python 3.13.
429
+ PyG is available for Python 3.10 to Python 3.13.
425
430
 
426
431
  From **PyG 2.3** onwards, you can install and use PyG **without any external library** required except for PyTorch.
427
432
  For this, simply run
@@ -546,16 +551,12 @@ If you notice anything unexpected, please open an [issue](https://github.com/pyg
546
551
  If you have any questions or are missing a specific feature, feel free [to discuss them with us](https://github.com/pyg-team/pytorch_geometric/discussions).
547
552
  We are motivated to constantly make PyG even better.
548
553
 
549
- [contributing-image]: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat
554
+ [contributing-image]: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat&color=4B26A4
550
555
  [contributing-url]: https://github.com/pyg-team/pytorch_geometric/blob/master/.github/CONTRIBUTING.md
551
- [docs-image]: https://readthedocs.org/projects/pytorch-geometric/badge/?version=latest
552
- [docs-url]: https://pytorch-geometric.readthedocs.io/en/latest
553
- [linting-image]: https://github.com/pyg-team/pytorch_geometric/actions/workflows/linting.yml/badge.svg
554
- [linting-url]: https://github.com/pyg-team/pytorch_geometric/actions/workflows/linting.yml
555
- [pypi-image]: https://badge.fury.io/py/torch-geometric.svg
556
+ [pypi-download-image]: https://img.shields.io/pypi/dm/torch_geometric?color=4B26A4
557
+ [pypi-download-url]: https://pepy.tech/projects/torch_geometric
558
+ [pypi-image]: https://img.shields.io/pypi/pyversions/torch-geometric?color=4B26A4
556
559
  [pypi-url]: https://pypi.python.org/pypi/torch-geometric
557
- [slack-image]: https://img.shields.io/badge/slack-pyg-brightgreen
560
+ [slack-image]: https://img.shields.io/badge/slack-join-white.svg?logo=slack&color=4B26A4
558
561
  [slack-url]: https://data.pyg.org/slack.html
559
- [testing-image]: https://github.com/pyg-team/pytorch_geometric/actions/workflows/testing.yml/badge.svg
560
- [testing-url]: https://github.com/pyg-team/pytorch_geometric/actions/workflows/testing.yml
561
562
 
@@ -1,9 +1,9 @@
1
- torch_geometric/__init__.py,sha256=0ij8VxVSK4T5A19Dr05CrBi0vbfTv2d0vTpB73hQsws,2292
1
+ torch_geometric/__init__.py,sha256=pOD9vZjRGqoUzFw5_-UNQVsobbiDjoaicP9Jw5mj9jE,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
5
5
  torch_geometric/config_mixin.py,sha256=hOTJu5LLVrEAZ6Pjt4ScLDLKv9aHbfAzF_3ufwKgO4I,4301
6
- torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7zk,16818
6
+ torch_geometric/config_store.py,sha256=Lj5pY_fFamF6pr5XhaKcYXZ3ecUTFNHWEprnBwaNbso,16801
7
7
  torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
8
8
  torch_geometric/deprecation.py,sha256=gN65uX23c3miRPOpQzxcRS_QDUpD3B-qVKD6y6GX8Yw,872
9
9
  torch_geometric/device.py,sha256=tU5-_lBNVbVHl_kUmWPwiG5mQ1pyapwMF4JkmtNN3MM,1224
@@ -19,7 +19,7 @@ torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,85
19
19
  torch_geometric/resolver.py,sha256=fn-_6mCpI2xv7eDZnIFcYrHOn0IrwbkWFLDb9laQrWI,1270
20
20
  torch_geometric/seed.py,sha256=MJLbVwpb9i8mK3oi32sS__Cq-dRq_afTeoOL_HoA9ko,372
21
21
  torch_geometric/template.py,sha256=rqjDWgcSAgTCiV4bkOjWRPaO4PpUdC_RXigzxxBqAu8,1060
22
- torch_geometric/typing.py,sha256=PenHvJZ2ZQ0V6t5hYypcZq8mQ47upgSlVTqHPy6QvLc,15704
22
+ torch_geometric/typing.py,sha256=Kj0R-aw81aY6JE1pbsG_7Jf830tect31uzibDFsjSPc,15684
23
23
  torch_geometric/warnings.py,sha256=SB9dWGovX_KKcxqsOrdTDvSb_j0NoB5vPGnK2vg0jVw,727
24
24
  torch_geometric/contrib/__init__.py,sha256=To_lDofgM7sogKEYOICIXei7Njuk-Vkfm-OFhPIdaLo,366
25
25
  torch_geometric/contrib/datasets/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
@@ -36,7 +36,7 @@ torch_geometric/data/collate.py,sha256=tOUvttXoEo-bOvJx_qMivJq2JqOsB9iDdjovtiyys
36
36
  torch_geometric/data/data.py,sha256=-E6el1knNgSJyapV8KUk2aRRHOfvwEvjUFfe_BapLfc,47490
37
37
  torch_geometric/data/database.py,sha256=K3KLefYVfsBN9HRItgFZNkbUIllfDt4ueauBFxk3Rxk,23106
38
38
  torch_geometric/data/datapipes.py,sha256=9_Cq3j_7LIF4plQFzbLaqyy0LcpKdAic6yiKgMqSX9A,3083
39
- torch_geometric/data/dataset.py,sha256=AaJH0N9eZgvxX0ljyTH8cXutKJ0AGFAyE-H4Sw9D51w,16834
39
+ torch_geometric/data/dataset.py,sha256=-B9lXmpJ5-yhLZ-38PzKaaDeFZ1y-hfsTn-bVrnzrYA,16886
40
40
  torch_geometric/data/download.py,sha256=kcesTu6jlgmCeePpOxDQOnVhxB_GuZ9iu9ds72KEORc,1889
41
41
  torch_geometric/data/extract.py,sha256=DMG8_6ps4O5xKfkb7j1gUBX_jlWpFdmz6OLY2jBSEx4,2339
42
42
  torch_geometric/data/feature_store.py,sha256=pl2pJL25wqzEZnNZbW8c8Ee_yH0DnE2AK8TioTWZV-g,20045
@@ -118,7 +118,7 @@ torch_geometric/datasets/medshapenet.py,sha256=eCBCXKpueweCwDSf_Q4_MwVA3IbJd04FS
118
118
  torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
119
119
  torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
120
120
  torch_geometric/datasets/modelnet.py,sha256=rqR-e75lC8PS_IX7VlNbo2Az9IWfqMNvDp8rmQCp-LE,5357
121
- torch_geometric/datasets/molecule_gpt_dataset.py,sha256=d6V8_Qy1Y2nt9hFhn7Re1omFw5Tf_uhv13QM0Vg76eg,19091
121
+ torch_geometric/datasets/molecule_gpt_dataset.py,sha256=DUzX1h7a0qsIhUVzLyNb5qarxZYFrxBr4bsQJ7vsJrk,19096
122
122
  torch_geometric/datasets/molecule_net.py,sha256=pMzaJzd-LbBncZ0VoC87HfA8d1F4NwCWTb5YKvLM890,7404
123
123
  torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
124
124
  torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
@@ -181,7 +181,7 @@ torch_geometric/datasets/motif_generator/grid.py,sha256=Pcv3r80nfzqpBvRTAJT_J0Dp
181
181
  torch_geometric/datasets/motif_generator/house.py,sha256=C_E2EgeqXEB9CHKRd9V5Jji4lFPpJb_3c41vYSk9Gcs,814
182
182
  torch_geometric/datasets/utils/__init__.py,sha256=At_dId4MdpzAkDS_7Mc6I7XlkThbL0AbVzHC_92lcjA,182
183
183
  torch_geometric/datasets/utils/cheatsheet.py,sha256=M55Bj64cjMVqDNoIq1shUVeU2ngoxpEjhdtyqw7Sd_k,1835
184
- torch_geometric/distributed/__init__.py,sha256=NNCGXbDTAW5xoJgSr-PK0VYEnT8UCI7SoZXc16fjuxQ,589
184
+ torch_geometric/distributed/__init__.py,sha256=FUsRoS28c7XfnwlA9yF4m2xZWos5TdpQSuY3Bm48vz8,1108
185
185
  torch_geometric/distributed/dist_context.py,sha256=n34e2HU-TxmK6DrOpb5lWZu_xg1To1IFrXH4ueF_Jhg,418
186
186
  torch_geometric/distributed/dist_link_neighbor_loader.py,sha256=wM9heZmStrPSW7eo9qWusKdI_lVkDkLlda8ILBqC2c8,4933
187
187
  torch_geometric/distributed/dist_loader.py,sha256=Gjvl5Ck8YrFN6YmCWEFWVqLEwI1hog-rWj2Sk_zqYC0,6504
@@ -453,7 +453,7 @@ torch_geometric/nn/models/__init__.py,sha256=7eRlAR93pltDfLEcsTJaaK67mVFezAIjg0V
453
453
  torch_geometric/nn/models/attentive_fp.py,sha256=1z3iTV2O5W9tqHFAdno8FeBFeXmuG-TDZk4lwwVh3Ac,6634
454
454
  torch_geometric/nn/models/attract_repel.py,sha256=h9OyogT0NY0xiT0DkpJHMxH6ZUmo8R-CmwZdKEwq8Ek,5277
455
455
  torch_geometric/nn/models/autoencoder.py,sha256=nGje-zty78Y3hxOJ9o0_6QziJjOvBlknk6z0_fDQwQU,10770
456
- torch_geometric/nn/models/basic_gnn.py,sha256=PGa0RUMyvrNy_5yRI2jX_zwPsmZXwOQWfsWvxOiHsSk,31225
456
+ torch_geometric/nn/models/basic_gnn.py,sha256=tp7qbHKn_uO1CBaEiW79zaBDAD-fR88E8ffJpdDYr9w,31261
457
457
  torch_geometric/nn/models/captum.py,sha256=vPN85_HDMTNcw-rKXAtYY-vT2SbHdf4CFtkseqYsnHg,3972
458
458
  torch_geometric/nn/models/correct_and_smooth.py,sha256=wmq-US2r4ocd0a661R8YeDiBeVtILOjdN-4swIth9BQ,6827
459
459
  torch_geometric/nn/models/deep_graph_infomax.py,sha256=yXSZ4mCrq4Dcvl1muzkxEWH4Lo525J4cYuAXpGs55IY,4137
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.7.0.dev20250920.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.7.0.dev20250920.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.7.0.dev20250920.dist-info/METADATA,sha256=PAeahjszlJpaI4WHs-eZPOYELiodtDDAPudxTK4MfTA,64145
660
- pyg_nightly-2.7.0.dev20250920.dist-info/RECORD,,
657
+ pyg_nightly-2.7.0.dev20250921.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.7.0.dev20250921.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.7.0.dev20250921.dist-info/METADATA,sha256=A3uqoYW6Tuh_CSAyaqwO_WS0CY4l-r6_kQZAu_PYo_U,63680
660
+ pyg_nightly-2.7.0.dev20250921.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250920'
34
+ __version__ = '2.7.0.dev20250921'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -168,7 +168,7 @@ def map_annotation(
168
168
  assert origin is not None
169
169
  args = tuple(map_annotation(a, mapping) for a in args)
170
170
  if type(annotation).__name__ == 'GenericAlias':
171
- # If annotated with `list[...]` or `dict[...]` (>= Python 3.10):
171
+ # If annotated with `list[...]` or `dict[...]`:
172
172
  annotation = origin[args]
173
173
  else:
174
174
  # If annotated with `typing.List[...]` or `typing.Dict[...]`:
@@ -236,8 +236,8 @@ class Dataset(torch.utils.data.Dataset):
236
236
 
237
237
  def _process(self):
238
238
  f = osp.join(self.processed_dir, 'pre_transform.pt')
239
- if osp.exists(f) and torch.load(f, weights_only=False) != _repr(
240
- self.pre_transform):
239
+ if not self.force_reload and osp.exists(f) and torch.load(
240
+ f, weights_only=False) != _repr(self.pre_transform):
241
241
  warnings.warn(
242
242
  "The `pre_transform` argument differs from the one used in "
243
243
  "the pre-processed version of this dataset. If you want to "
@@ -246,8 +246,8 @@ class Dataset(torch.utils.data.Dataset):
246
246
  stacklevel=2)
247
247
 
248
248
  f = osp.join(self.processed_dir, 'pre_filter.pt')
249
- if osp.exists(f) and torch.load(f, weights_only=False) != _repr(
250
- self.pre_filter):
249
+ if not self.force_reload and osp.exists(f) and torch.load(
250
+ f, weights_only=False) != _repr(self.pre_filter):
251
251
  warnings.warn(
252
252
  "The `pre_filter` argument differs from the one used in "
253
253
  "the pre-processed version of this dataset. If you want to "
@@ -174,7 +174,7 @@ def extract_name(
174
174
  class MoleculeGPTDataset(InMemoryDataset):
175
175
  r"""The dataset from the `"MoleculeGPT: Instruction Following Large
176
176
  Language Models for Molecular Property Prediction"
177
- <https://ai4d3.github.io/papers/34.pdf>`_ paper.
177
+ <https://ai4d3.github.io/2023/papers/34.pdf>`_ paper.
178
178
 
179
179
  Args:
180
180
  root (str): Root directory where the dataset should be saved.
@@ -1,3 +1,5 @@
1
+ from warnings import warn
2
+
1
3
  from .dist_context import DistContext
2
4
  from .local_feature_store import LocalFeatureStore
3
5
  from .local_graph_store import LocalGraphStore
@@ -7,6 +9,17 @@ from .dist_loader import DistLoader
7
9
  from .dist_neighbor_loader import DistNeighborLoader
8
10
  from .dist_link_neighbor_loader import DistLinkNeighborLoader
9
11
 
12
+ warn(
13
+ "`torch_geometric.distributed` has been deprecated since 2.7.0 and will "
14
+ "no longer be maintained. For distributed training, refer to our "
15
+ "tutorials on distributed training at "
16
+ "https://pytorch-geometric.readthedocs.io/en/latest/tutorial/distributed.html " # noqa: E501
17
+ "or cuGraph examples at "
18
+ "https://github.com/rapidsai/cugraph-gnn/tree/main/python/cugraph-pyg/cugraph_pyg/examples", # noqa: E501
19
+ stacklevel=2,
20
+ category=DeprecationWarning,
21
+ )
22
+
10
23
  __all__ = classes = [
11
24
  'DistContext',
12
25
  'LocalFeatureStore',
@@ -415,7 +415,8 @@ class GCN(BasicGNN):
415
415
  (default: :obj:`None`)
416
416
  jk (str, optional): The Jumping Knowledge mode. If specified, the model
417
417
  will additionally apply a final linear transformation to transform
418
- node embeddings to the expected output feature dimensionality.
418
+ node embeddings to the expected output feature dimensionality,
419
+ while default will not.
419
420
  (:obj:`None`, :obj:`"last"`, :obj:`"cat"`, :obj:`"max"`,
420
421
  :obj:`"lstm"`). (default: :obj:`None`)
421
422
  **kwargs (optional): Additional arguments of
torch_geometric/typing.py CHANGED
@@ -3,17 +3,12 @@ import os
3
3
  import sys
4
4
  import typing
5
5
  import warnings
6
- from typing import Any, Dict, List, Optional, Set, Tuple, Union
6
+ from typing import Any, Dict, List, Optional, Set, Tuple, TypeAlias, Union
7
7
 
8
8
  import numpy as np
9
9
  import torch
10
10
  from torch import Tensor
11
11
 
12
- try:
13
- from typing import TypeAlias # type: ignore
14
- except ImportError:
15
- from typing_extensions import TypeAlias
16
-
17
12
  WITH_PT20 = int(torch.__version__.split('.')[0]) >= 2
18
13
  WITH_PT21 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 1
19
14
  WITH_PT22 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 2
@@ -98,7 +93,7 @@ except Exception as e:
98
93
  WITH_CUDA_HASH_MAP = False
99
94
 
100
95
  if WITH_CPU_HASH_MAP:
101
- CPUHashMap: TypeAlias = torch.classes.pyg.CPUHashMap
96
+ CPUHashMap: TypeAlias = torch.classes.pyg.CPUHashMap # type: ignore[name-defined] # noqa: E501
102
97
  else:
103
98
 
104
99
  class CPUHashMap: # type: ignore
@@ -110,7 +105,7 @@ else:
110
105
 
111
106
 
112
107
  if WITH_CUDA_HASH_MAP:
113
- CUDAHashMap: TypeAlias = torch.classes.pyg.CUDAHashMap
108
+ CUDAHashMap: TypeAlias = torch.classes.pyg.CUDAHashMap # type: ignore[name-defined] # noqa: E501
114
109
  else:
115
110
 
116
111
  class CUDAHashMap: # type: ignore