pyg-nightly 2.7.0.dev20250902__tar.gz → 2.7.0.dev20250904__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (652) hide show
  1. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/PKG-INFO +1 -1
  2. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/pyproject.toml +1 -1
  3. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/__init__.py +1 -1
  4. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/data.py +98 -0
  5. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/feature_store.py +3 -3
  6. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/graph_store.py +1 -1
  7. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/hetero_data.py +116 -0
  8. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/airfrans.py +2 -2
  9. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/partition.py +1 -1
  10. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/cluster.py +4 -4
  11. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/meshcnn_conv.py +5 -5
  12. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/polynormer.py +1 -1
  13. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/rev_gnn.py +2 -2
  14. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/influence.py +3 -3
  15. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/LICENSE +0 -0
  16. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/README.md +0 -0
  17. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/_compile.py +0 -0
  18. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/_onnx.py +0 -0
  19. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/backend.py +0 -0
  20. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/config_mixin.py +0 -0
  21. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/config_store.py +0 -0
  22. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/__init__.py +0 -0
  23. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/datasets/__init__.py +0 -0
  24. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/explain/__init__.py +0 -0
  25. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
  26. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/nn/__init__.py +0 -0
  27. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
  28. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/nn/models/__init__.py +0 -0
  29. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
  30. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/contrib/transforms/__init__.py +0 -0
  31. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/__init__.py +0 -0
  32. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/batch.py +0 -0
  33. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/collate.py +0 -0
  34. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/database.py +0 -0
  35. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/datapipes.py +0 -0
  36. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/dataset.py +0 -0
  37. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/download.py +0 -0
  38. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/extract.py +0 -0
  39. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/hypergraph_data.py +0 -0
  40. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/in_memory_dataset.py +0 -0
  41. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/large_graph_indexer.py +0 -0
  42. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/lightning/__init__.py +0 -0
  43. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/lightning/datamodule.py +0 -0
  44. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/makedirs.py +0 -0
  45. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/on_disk_dataset.py +0 -0
  46. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/remote_backend_utils.py +0 -0
  47. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/separate.py +0 -0
  48. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/storage.py +0 -0
  49. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/summary.py +0 -0
  50. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/temporal.py +0 -0
  51. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/data/view.py +0 -0
  52. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/__init__.py +0 -0
  53. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/actor.py +0 -0
  54. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/airports.py +0 -0
  55. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/amazon.py +0 -0
  56. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/amazon_book.py +0 -0
  57. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/amazon_products.py +0 -0
  58. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/aminer.py +0 -0
  59. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/aqsol.py +0 -0
  60. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
  61. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
  62. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
  63. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ba_shapes.py +0 -0
  64. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/bitcoin_otc.py +0 -0
  65. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/brca_tgca.py +0 -0
  66. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/citation_full.py +0 -0
  67. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/city.py +0 -0
  68. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/coauthor.py +0 -0
  69. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/coma.py +0 -0
  70. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/cornell.py +0 -0
  71. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/dblp.py +0 -0
  72. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/dbp15k.py +0 -0
  73. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/deezer_europe.py +0 -0
  74. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/dgraph.py +0 -0
  75. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/dynamic_faust.py +0 -0
  76. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/elliptic.py +0 -0
  77. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/elliptic_temporal.py +0 -0
  78. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/email_eu_core.py +0 -0
  79. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/entities.py +0 -0
  80. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/explainer_dataset.py +0 -0
  81. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/facebook.py +0 -0
  82. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/fake.py +0 -0
  83. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/faust.py +0 -0
  84. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/flickr.py +0 -0
  85. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/freebase.py +0 -0
  86. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/gdelt.py +0 -0
  87. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/gdelt_lite.py +0 -0
  88. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ged_dataset.py +0 -0
  89. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/gemsec.py +0 -0
  90. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/geometry.py +0 -0
  91. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/git_mol_dataset.py +0 -0
  92. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/github.py +0 -0
  93. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
  94. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
  95. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
  96. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/base.py +0 -0
  97. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
  98. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
  99. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
  100. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
  101. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/hgb_dataset.py +0 -0
  102. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/hm.py +0 -0
  103. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/hydro_net.py +0 -0
  104. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/icews.py +0 -0
  105. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/igmc_dataset.py +0 -0
  106. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/imdb.py +0 -0
  107. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/infection_dataset.py +0 -0
  108. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
  109. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/jodie.py +0 -0
  110. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/karate.py +0 -0
  111. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/last_fm.py +0 -0
  112. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/lastfm_asia.py +0 -0
  113. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/linkx_dataset.py +0 -0
  114. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/lrgb.py +0 -0
  115. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/malnet_tiny.py +0 -0
  116. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/md17.py +0 -0
  117. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/medshapenet.py +0 -0
  118. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
  119. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/mnist_superpixels.py +0 -0
  120. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/modelnet.py +0 -0
  121. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
  122. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/molecule_net.py +0 -0
  123. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
  124. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/base.py +0 -0
  125. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/custom.py +0 -0
  126. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
  127. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/grid.py +0 -0
  128. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/motif_generator/house.py +0 -0
  129. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/movie_lens.py +0 -0
  130. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/movie_lens_100k.py +0 -0
  131. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/movie_lens_1m.py +0 -0
  132. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/myket.py +0 -0
  133. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/nell.py +0 -0
  134. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/neurograph.py +0 -0
  135. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ogb_mag.py +0 -0
  136. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/omdb.py +0 -0
  137. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/opf.py +0 -0
  138. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ose_gvcs.py +0 -0
  139. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/particle.py +0 -0
  140. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/pascal.py +0 -0
  141. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/pascal_pf.py +0 -0
  142. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
  143. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/pcqm4m.py +0 -0
  144. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/planetoid.py +0 -0
  145. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/polblogs.py +0 -0
  146. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/ppi.py +0 -0
  147. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/protein_mpnn_dataset.py +0 -0
  148. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/qm7.py +0 -0
  149. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/qm9.py +0 -0
  150. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/rcdd.py +0 -0
  151. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/reddit.py +0 -0
  152. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/reddit2.py +0 -0
  153. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
  154. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/s3dis.py +0 -0
  155. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/sbm_dataset.py +0 -0
  156. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/shapenet.py +0 -0
  157. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/shrec2016.py +0 -0
  158. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/snap_dataset.py +0 -0
  159. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/suite_sparse.py +0 -0
  160. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/tag_dataset.py +0 -0
  161. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/taobao.py +0 -0
  162. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/teeth3ds.py +0 -0
  163. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/tosca.py +0 -0
  164. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/tu_dataset.py +0 -0
  165. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/twitch.py +0 -0
  166. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/upfd.py +0 -0
  167. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/utils/__init__.py +0 -0
  168. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
  169. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
  170. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/webkb.py +0 -0
  171. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/wikics.py +0 -0
  172. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/wikidata.py +0 -0
  173. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/wikipedia_network.py +0 -0
  174. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/willow_object_class.py +0 -0
  175. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/word_net.py +0 -0
  176. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/yelp.py +0 -0
  177. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/datasets/zinc.py +0 -0
  178. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/debug.py +0 -0
  179. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/deprecation.py +0 -0
  180. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/device.py +0 -0
  181. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/__init__.py +0 -0
  182. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/dist_context.py +0 -0
  183. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
  184. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/dist_loader.py +0 -0
  185. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
  186. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
  187. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/event_loop.py +0 -0
  188. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/local_feature_store.py +0 -0
  189. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/local_graph_store.py +0 -0
  190. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/rpc.py +0 -0
  191. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/distributed/utils.py +0 -0
  192. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/edge_index.py +0 -0
  193. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/experimental.py +0 -0
  194. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/__init__.py +0 -0
  195. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/__init__.py +0 -0
  196. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
  197. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/base.py +0 -0
  198. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/captum.py +0 -0
  199. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
  200. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
  201. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
  202. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
  203. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
  204. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/algorithm/utils.py +0 -0
  205. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/config.py +0 -0
  206. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/explainer.py +0 -0
  207. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/explanation.py +0 -0
  208. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/metric/__init__.py +0 -0
  209. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/metric/basic.py +0 -0
  210. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/metric/faithfulness.py +0 -0
  211. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/explain/metric/fidelity.py +0 -0
  212. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/__init__.py +0 -0
  213. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/benchmark.py +0 -0
  214. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/checkpoint.py +0 -0
  215. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/cmd_args.py +0 -0
  216. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/config.py +0 -0
  217. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/__init__.py +0 -0
  218. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
  219. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
  220. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
  221. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
  222. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
  223. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
  224. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
  225. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
  226. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
  227. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
  228. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
  229. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
  230. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
  231. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
  232. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/imports.py +0 -0
  233. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/init.py +0 -0
  234. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/loader.py +0 -0
  235. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/logger.py +0 -0
  236. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/loss.py +0 -0
  237. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/model_builder.py +0 -0
  238. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/__init__.py +0 -0
  239. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/act.py +0 -0
  240. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/encoder.py +0 -0
  241. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/gnn.py +0 -0
  242. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/head.py +0 -0
  243. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/layer.py +0 -0
  244. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/pooling.py +0 -0
  245. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/models/transform.py +0 -0
  246. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/optim.py +0 -0
  247. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/register.py +0 -0
  248. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/train.py +0 -0
  249. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/LICENSE +0 -0
  250. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/__init__.py +0 -0
  251. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
  252. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
  253. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/device.py +0 -0
  254. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/epoch.py +0 -0
  255. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/io.py +0 -0
  256. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/plot.py +0 -0
  257. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/graphgym/utils/tools.py +0 -0
  258. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/hash_tensor.py +0 -0
  259. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/home.py +0 -0
  260. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/index.py +0 -0
  261. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/inspector.py +0 -0
  262. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/__init__.py +0 -0
  263. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/fs.py +0 -0
  264. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/npz.py +0 -0
  265. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/obj.py +0 -0
  266. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/off.py +0 -0
  267. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/planetoid.py +0 -0
  268. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/ply.py +0 -0
  269. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/sdf.py +0 -0
  270. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/tu.py +0 -0
  271. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/io/txt_array.py +0 -0
  272. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/isinstance.py +0 -0
  273. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/lazy_loader.py +0 -0
  274. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/__init__.py +0 -0
  275. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/base.py +0 -0
  276. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/cache.py +0 -0
  277. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/data_list_loader.py +0 -0
  278. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/dataloader.py +0 -0
  279. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/dense_data_loader.py +0 -0
  280. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
  281. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/graph_saint.py +0 -0
  282. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/hgt_loader.py +0 -0
  283. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/ibmb_loader.py +0 -0
  284. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/imbalanced_sampler.py +0 -0
  285. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/link_loader.py +0 -0
  286. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/link_neighbor_loader.py +0 -0
  287. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/mixin.py +0 -0
  288. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/neighbor_loader.py +0 -0
  289. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/neighbor_sampler.py +0 -0
  290. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/node_loader.py +0 -0
  291. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/prefetch.py +0 -0
  292. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/rag_loader.py +0 -0
  293. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/random_node_loader.py +0 -0
  294. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/shadow.py +0 -0
  295. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/temporal_dataloader.py +0 -0
  296. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/utils.py +0 -0
  297. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/loader/zip_loader.py +0 -0
  298. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/logging.py +0 -0
  299. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/metrics/__init__.py +0 -0
  300. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/metrics/link_pred.py +0 -0
  301. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/__init__.py +0 -0
  302. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/__init__.py +0 -0
  303. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/attention.py +0 -0
  304. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/base.py +0 -0
  305. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/basic.py +0 -0
  306. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/deep_sets.py +0 -0
  307. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/equilibrium.py +0 -0
  308. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/fused.py +0 -0
  309. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/gmt.py +0 -0
  310. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/gru.py +0 -0
  311. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/lcm.py +0 -0
  312. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/lstm.py +0 -0
  313. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/mlp.py +0 -0
  314. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/multi.py +0 -0
  315. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
  316. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/quantile.py +0 -0
  317. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/scaler.py +0 -0
  318. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/set2set.py +0 -0
  319. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/set_transformer.py +0 -0
  320. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/sort.py +0 -0
  321. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/utils.py +0 -0
  322. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
  323. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/attention/__init__.py +0 -0
  324. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/attention/performer.py +0 -0
  325. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/attention/polynormer.py +0 -0
  326. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/attention/qformer.py +0 -0
  327. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/attention/sgformer.py +0 -0
  328. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/__init__.py +0 -0
  329. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/agnn_conv.py +0 -0
  330. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
  331. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/appnp.py +0 -0
  332. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/arma_conv.py +0 -0
  333. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cg_conv.py +0 -0
  334. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cheb_conv.py +0 -0
  335. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
  336. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/collect.jinja +0 -0
  337. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
  338. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cugraph/base.py +0 -0
  339. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
  340. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
  341. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
  342. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
  343. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/dna_conv.py +0 -0
  344. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/edge_conv.py +0 -0
  345. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
  346. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/eg_conv.py +0 -0
  347. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/fa_conv.py +0 -0
  348. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/feast_conv.py +0 -0
  349. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/film_conv.py +0 -0
  350. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
  351. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gat_conv.py +0 -0
  352. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
  353. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
  354. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
  355. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gcn_conv.py +0 -0
  356. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gen_conv.py +0 -0
  357. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/general_conv.py +0 -0
  358. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gin_conv.py +0 -0
  359. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gmm_conv.py +0 -0
  360. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gps_conv.py +0 -0
  361. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/graph_conv.py +0 -0
  362. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
  363. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/han_conv.py +0 -0
  364. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/heat_conv.py +0 -0
  365. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/hetero_conv.py +0 -0
  366. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/hgt_conv.py +0 -0
  367. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
  368. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/le_conv.py +0 -0
  369. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/lg_conv.py +0 -0
  370. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/message_passing.py +0 -0
  371. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/mf_conv.py +0 -0
  372. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
  373. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/nn_conv.py +0 -0
  374. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/pan_conv.py +0 -0
  375. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/pdn_conv.py +0 -0
  376. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/pna_conv.py +0 -0
  377. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/point_conv.py +0 -0
  378. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
  379. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
  380. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/ppf_conv.py +0 -0
  381. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/propagate.jinja +0 -0
  382. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
  383. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/rgat_conv.py +0 -0
  384. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
  385. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/sage_conv.py +0 -0
  386. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/sg_conv.py +0 -0
  387. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/signed_conv.py +0 -0
  388. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/simple_conv.py +0 -0
  389. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/spline_conv.py +0 -0
  390. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/ssg_conv.py +0 -0
  391. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/supergat_conv.py +0 -0
  392. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/tag_conv.py +0 -0
  393. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/transformer_conv.py +0 -0
  394. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/utils/__init__.py +0 -0
  395. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
  396. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/wl_conv.py +0 -0
  397. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
  398. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/conv/x_conv.py +0 -0
  399. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/data_parallel.py +0 -0
  400. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/__init__.py +0 -0
  401. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
  402. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
  403. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
  404. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
  405. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
  406. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/diff_pool.py +0 -0
  407. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/dmon_pool.py +0 -0
  408. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/linear.py +0 -0
  409. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/dense/mincut_pool.py +0 -0
  410. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/encoding.py +0 -0
  411. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/functional/__init__.py +0 -0
  412. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/functional/bro.py +0 -0
  413. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/functional/gini.py +0 -0
  414. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/fx.py +0 -0
  415. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/glob.py +0 -0
  416. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/inits.py +0 -0
  417. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/__init__.py +0 -0
  418. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/base.py +0 -0
  419. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/complex.py +0 -0
  420. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/distmult.py +0 -0
  421. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/loader.py +0 -0
  422. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/rotate.py +0 -0
  423. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/kge/transe.py +0 -0
  424. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/lr_scheduler.py +0 -0
  425. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/model_hub.py +0 -0
  426. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/__init__.py +0 -0
  427. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/attentive_fp.py +0 -0
  428. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/attract_repel.py +0 -0
  429. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/autoencoder.py +0 -0
  430. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/basic_gnn.py +0 -0
  431. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/captum.py +0 -0
  432. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
  433. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
  434. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/deepgcn.py +0 -0
  435. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/dimenet.py +0 -0
  436. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/dimenet_utils.py +0 -0
  437. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/g_retriever.py +0 -0
  438. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/git_mol.py +0 -0
  439. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/glem.py +0 -0
  440. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/gnnff.py +0 -0
  441. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/gpse.py +0 -0
  442. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/graph_mixer.py +0 -0
  443. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/graph_unet.py +0 -0
  444. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
  445. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/label_prop.py +0 -0
  446. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/lightgcn.py +0 -0
  447. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/linkx.py +0 -0
  448. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/lpformer.py +0 -0
  449. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/mask_label.py +0 -0
  450. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/meta.py +0 -0
  451. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/metapath2vec.py +0 -0
  452. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/mlp.py +0 -0
  453. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/molecule_gpt.py +0 -0
  454. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
  455. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/node2vec.py +0 -0
  456. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/pmlp.py +0 -0
  457. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/protein_mpnn.py +0 -0
  458. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/re_net.py +0 -0
  459. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/rect.py +0 -0
  460. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/schnet.py +0 -0
  461. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/sgformer.py +0 -0
  462. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/signed_gcn.py +0 -0
  463. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/tgn.py +0 -0
  464. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/models/visnet.py +0 -0
  465. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/module_dict.py +0 -0
  466. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/nlp/__init__.py +0 -0
  467. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/nlp/llm.py +0 -0
  468. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
  469. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
  470. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/__init__.py +0 -0
  471. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/batch_norm.py +0 -0
  472. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
  473. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/graph_norm.py +0 -0
  474. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
  475. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/instance_norm.py +0 -0
  476. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/layer_norm.py +0 -0
  477. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
  478. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/msg_norm.py +0 -0
  479. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/norm/pair_norm.py +0 -0
  480. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/parameter_dict.py +0 -0
  481. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/__init__.py +0 -0
  482. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/approx_knn.py +0 -0
  483. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/asap.py +0 -0
  484. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/avg_pool.py +0 -0
  485. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/cluster_pool.py +0 -0
  486. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/connect/__init__.py +0 -0
  487. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/connect/base.py +0 -0
  488. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
  489. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/consecutive.py +0 -0
  490. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/decimation.py +0 -0
  491. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/edge_pool.py +0 -0
  492. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/glob.py +0 -0
  493. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/graclus.py +0 -0
  494. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/knn.py +0 -0
  495. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/max_pool.py +0 -0
  496. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/mem_pool.py +0 -0
  497. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/pan_pool.py +0 -0
  498. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/pool.py +0 -0
  499. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/sag_pool.py +0 -0
  500. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/select/__init__.py +0 -0
  501. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/select/base.py +0 -0
  502. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/select/topk.py +0 -0
  503. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/topk_pool.py +0 -0
  504. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/pool/voxel_grid.py +0 -0
  505. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/reshape.py +0 -0
  506. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/resolver.py +0 -0
  507. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/sequential.jinja +0 -0
  508. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/sequential.py +0 -0
  509. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/summary.py +0 -0
  510. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
  511. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/to_hetero_module.py +0 -0
  512. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/to_hetero_transformer.py +0 -0
  513. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
  514. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/unpool/__init__.py +0 -0
  515. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
  516. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/__init__.py +0 -0
  517. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/benchmark.py +0 -0
  518. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/nvtx.py +0 -0
  519. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/profile.py +0 -0
  520. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/profiler.py +0 -0
  521. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/profile/utils.py +0 -0
  522. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/resolver.py +0 -0
  523. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/sampler/__init__.py +0 -0
  524. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/sampler/base.py +0 -0
  525. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/sampler/hgt_sampler.py +0 -0
  526. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/sampler/neighbor_sampler.py +0 -0
  527. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/sampler/utils.py +0 -0
  528. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/seed.py +0 -0
  529. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/template.py +0 -0
  530. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/__init__.py +0 -0
  531. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/asserts.py +0 -0
  532. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/data.py +0 -0
  533. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/decorators.py +0 -0
  534. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/distributed.py +0 -0
  535. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/feature_store.py +0 -0
  536. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/testing/graph_store.py +0 -0
  537. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/__init__.py +0 -0
  538. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/add_gpse.py +0 -0
  539. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/add_metapaths.py +0 -0
  540. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/add_positional_encoding.py +0 -0
  541. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
  542. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/add_self_loops.py +0 -0
  543. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/base_transform.py +0 -0
  544. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/cartesian.py +0 -0
  545. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/center.py +0 -0
  546. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/compose.py +0 -0
  547. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/constant.py +0 -0
  548. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/delaunay.py +0 -0
  549. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/distance.py +0 -0
  550. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/face_to_edge.py +0 -0
  551. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/feature_propagation.py +0 -0
  552. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/fixed_points.py +0 -0
  553. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/gcn_norm.py +0 -0
  554. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/gdc.py +0 -0
  555. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
  556. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/grid_sampling.py +0 -0
  557. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/half_hop.py +0 -0
  558. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/knn_graph.py +0 -0
  559. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
  560. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/largest_connected_components.py +0 -0
  561. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/line_graph.py +0 -0
  562. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/linear_transformation.py +0 -0
  563. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/local_cartesian.py +0 -0
  564. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/local_degree_profile.py +0 -0
  565. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/mask.py +0 -0
  566. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/node_property_split.py +0 -0
  567. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/normalize_features.py +0 -0
  568. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/normalize_rotation.py +0 -0
  569. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/normalize_scale.py +0 -0
  570. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/one_hot_degree.py +0 -0
  571. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/pad.py +0 -0
  572. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/point_pair_features.py +0 -0
  573. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/polar.py +0 -0
  574. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/radius_graph.py +0 -0
  575. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_flip.py +0 -0
  576. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_jitter.py +0 -0
  577. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_link_split.py +0 -0
  578. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_node_split.py +0 -0
  579. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_rotate.py +0 -0
  580. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_scale.py +0 -0
  581. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/random_shear.py +0 -0
  582. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
  583. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
  584. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/remove_self_loops.py +0 -0
  585. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/remove_training_classes.py +0 -0
  586. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/rooted_subgraph.py +0 -0
  587. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/sample_points.py +0 -0
  588. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/sign.py +0 -0
  589. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/spherical.py +0 -0
  590. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
  591. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/target_indegree.py +0 -0
  592. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/to_dense.py +0 -0
  593. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/to_device.py +0 -0
  594. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
  595. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/to_superpixels.py +0 -0
  596. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/to_undirected.py +0 -0
  597. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/two_hop.py +0 -0
  598. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/transforms/virtual_node.py +0 -0
  599. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/typing.py +0 -0
  600. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/__init__.py +0 -0
  601. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_assortativity.py +0 -0
  602. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_coalesce.py +0 -0
  603. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_degree.py +0 -0
  604. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_grid.py +0 -0
  605. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_homophily.py +0 -0
  606. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_index_sort.py +0 -0
  607. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_lexsort.py +0 -0
  608. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_negative_sampling.py +0 -0
  609. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_normalize_edge_index.py +0 -0
  610. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_normalized_cut.py +0 -0
  611. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_one_hot.py +0 -0
  612. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_scatter.py +0 -0
  613. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_segment.py +0 -0
  614. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_select.py +0 -0
  615. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_softmax.py +0 -0
  616. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_sort_edge_index.py +0 -0
  617. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_spmm.py +0 -0
  618. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_subgraph.py +0 -0
  619. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_to_dense_adj.py +0 -0
  620. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_to_dense_batch.py +0 -0
  621. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_train_test_split_edges.py +0 -0
  622. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_tree_decomposition.py +0 -0
  623. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_trim_to_layer.py +0 -0
  624. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/_unbatch.py +0 -0
  625. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/augmentation.py +0 -0
  626. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/convert.py +0 -0
  627. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/cross_entropy.py +0 -0
  628. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/dropout.py +0 -0
  629. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/embedding.py +0 -0
  630. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/functions.py +0 -0
  631. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/geodesic.py +0 -0
  632. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/hetero.py +0 -0
  633. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/isolated.py +0 -0
  634. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/laplacian.py +0 -0
  635. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/loop.py +0 -0
  636. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/map.py +0 -0
  637. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/mask.py +0 -0
  638. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/mesh_laplacian.py +0 -0
  639. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/mixin.py +0 -0
  640. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/nested.py +0 -0
  641. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/noise_scheduler.py +0 -0
  642. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/num_nodes.py +0 -0
  643. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/ppr.py +0 -0
  644. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/random.py +0 -0
  645. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/repeat.py +0 -0
  646. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/smiles.py +0 -0
  647. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/sparse.py +0 -0
  648. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/utils/undirected.py +0 -0
  649. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/visualization/__init__.py +0 -0
  650. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/visualization/graph.py +0 -0
  651. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/visualization/influence.py +0 -0
  652. {pyg_nightly-2.7.0.dev20250902 → pyg_nightly-2.7.0.dev20250904}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250902
3
+ Version: 2.7.0.dev20250904
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -4,7 +4,7 @@ build-backend="flit_core.buildapi"
4
4
 
5
5
  [project]
6
6
  name="pyg-nightly"
7
- version="2.7.0.dev20250902"
7
+ version="2.7.0.dev20250904"
8
8
  authors=[
9
9
  {name="Matthias Fey", email="matthias@pyg.org"},
10
10
  ]
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250902'
34
+ __version__ = '2.7.0.dev20250904'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -1,5 +1,6 @@
1
1
  import copy
2
2
  import warnings
3
+ from collections import defaultdict
3
4
  from collections.abc import Mapping, Sequence
4
5
  from dataclasses import dataclass
5
6
  from itertools import chain
@@ -904,6 +905,60 @@ class Data(BaseData, FeatureStore, GraphStore):
904
905
 
905
906
  return data
906
907
 
908
+ def connected_components(self) -> List[Self]:
909
+ r"""Extracts connected components of the graph using a union-find
910
+ algorithm. The components are returned as a list of
911
+ :class:`~torch_geometric.data.Data` objects, where each object
912
+ represents a connected component of the graph.
913
+
914
+ .. code-block::
915
+
916
+ data = Data()
917
+ data.x = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
918
+ data.y = torch.tensor([[1.1], [2.1], [3.1], [4.1]])
919
+ data.edge_index = torch.tensor(
920
+ [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long
921
+ )
922
+
923
+ components = data.connected_components()
924
+ print(len(components))
925
+ >>> 2
926
+
927
+ print(components[0].x)
928
+ >>> Data(x=[2, 1], y=[2, 1], edge_index=[2, 2])
929
+
930
+ Returns:
931
+ List[Data]: A list of disconnected components.
932
+ """
933
+ # Union-Find algorithm to find connected components
934
+ self._parents: Dict[int, int] = {}
935
+ self._ranks: Dict[int, int] = {}
936
+ for edge in self.edge_index.t().tolist():
937
+ self._union(edge[0], edge[1])
938
+
939
+ # Rerun _find_parent to ensure all nodes are covered correctly
940
+ for node in range(self.num_nodes):
941
+ self._find_parent(node)
942
+
943
+ # Group parents
944
+ grouped_parents = defaultdict(list)
945
+ for node, parent in self._parents.items():
946
+ grouped_parents[parent].append(node)
947
+ del self._ranks
948
+ del self._parents
949
+
950
+ # Create components based on the found parents (roots)
951
+ components: List[Self] = []
952
+ for nodes in grouped_parents.values():
953
+ # Convert the list of node IDs to a tensor
954
+ subset = torch.tensor(nodes, dtype=torch.long)
955
+
956
+ # Use the existing subgraph function
957
+ component_data = self.subgraph(subset)
958
+ components.append(component_data)
959
+
960
+ return components
961
+
907
962
  ###########################################################################
908
963
 
909
964
  @classmethod
@@ -1150,6 +1205,49 @@ class Data(BaseData, FeatureStore, GraphStore):
1150
1205
 
1151
1206
  return list(edge_attrs.values())
1152
1207
 
1208
+ # Connected Components Helper Functions ###################################
1209
+
1210
+ def _find_parent(self, node: int) -> int:
1211
+ r"""Finds and returns the representative parent of the given node in a
1212
+ disjoint-set (union-find) data structure. Implements path compression
1213
+ to optimize future queries.
1214
+
1215
+ Args:
1216
+ node (int): The node for which to find the representative parent.
1217
+
1218
+ Returns:
1219
+ int: The representative parent of the node.
1220
+ """
1221
+ if node not in self._parents:
1222
+ self._parents[node] = node
1223
+ self._ranks[node] = 0
1224
+ if self._parents[node] != node:
1225
+ self._parents[node] = self._find_parent(self._parents[node])
1226
+ return self._parents[node]
1227
+
1228
+ def _union(self, node1: int, node2: int):
1229
+ r"""Merges the sets containing node1 and node2 in the disjoint-set
1230
+ data structure.
1231
+
1232
+ Finds the root parents of node1 and node2 using the _find_parent
1233
+ method. If they belong to different sets, updates the parent of
1234
+ root2 to be root1, effectively merging the two sets.
1235
+
1236
+ Args:
1237
+ node1 (int): The index of the first node to union.
1238
+ node2 (int): The index of the second node to union.
1239
+ """
1240
+ root1 = self._find_parent(node1)
1241
+ root2 = self._find_parent(node2)
1242
+ if root1 != root2:
1243
+ if self._ranks[root1] < self._ranks[root2]:
1244
+ self._parents[root1] = root2
1245
+ elif self._ranks[root1] > self._ranks[root2]:
1246
+ self._parents[root2] = root1
1247
+ else:
1248
+ self._parents[root2] = root1
1249
+ self._ranks[root1] += 1
1250
+
1153
1251
 
1154
1252
  ###############################################################################
1155
1253
 
@@ -11,7 +11,7 @@ This particular feature store abstraction makes a few key assumptions:
11
11
  * A feature can be uniquely identified from any associated attributes specified
12
12
  in `TensorAttr`.
13
13
 
14
- It is the job of a feature store implementor class to handle these assumptions
14
+ It is the job of a feature store implementer class to handle these assumptions
15
15
  properly. For example, a simple in-memory feature store implementation may
16
16
  concatenate all metadata values with a feature index and use this as a unique
17
17
  index in a KV store. More complicated implementations may choose to partition
@@ -352,7 +352,7 @@ class FeatureStore(ABC):
352
352
 
353
353
  .. note::
354
354
  The default implementation simply iterates over all calls to
355
- :meth:`get_tensor`. Implementor classes that can provide
355
+ :meth:`get_tensor`. Implementer classes that can provide
356
356
  additional, more performant functionality are recommended to
357
357
  to override this method.
358
358
 
@@ -412,7 +412,7 @@ class FeatureStore(ABC):
412
412
  value. Returns whether the update was successful.
413
413
 
414
414
  .. note::
415
- Implementor classes can choose to define more efficient update
415
+ Implementer classes can choose to define more efficient update
416
416
  methods; the default performs a removal and insertion.
417
417
 
418
418
  Args:
@@ -10,7 +10,7 @@ This particular graph store abstraction makes a few key assumptions:
10
10
  support dynamic modification of edge indices once they have been inserted
11
11
  into the graph store.
12
12
 
13
- It is the job of a graph store implementor class to handle these assumptions
13
+ It is the job of a graph store implementer class to handle these assumptions
14
14
  properly. For example, a simple in-memory graph store implementation may
15
15
  concatenate all metadata values with an edge index and use this as a unique
16
16
  index in a KV store. More complicated implementations may choose to partition
@@ -487,6 +487,77 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
487
487
 
488
488
  return status
489
489
 
490
+ def connected_components(self) -> List[Self]:
491
+ r"""Extracts connected components of the heterogeneous graph using
492
+ a union-find algorithm. The components are returned as a list of
493
+ :class:`~torch_geometric.data.HeteroData` objects.
494
+
495
+ .. code-block::
496
+
497
+ data = HeteroData()
498
+ data["red"].x = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
499
+ data["blue"].x = torch.tensor([[5.0], [6.0]])
500
+ data["red", "to", "red"].edge_index = torch.tensor(
501
+ [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long
502
+ )
503
+
504
+ components = data.connected_components()
505
+ print(len(components))
506
+ >>> 4
507
+
508
+ print(components[0])
509
+ >>> HeteroData(
510
+ red={x: tensor([[1.], [2.]])},
511
+ blue={x: tensor([[]])},
512
+ red, to, red={edge_index: tensor([[0, 1], [1, 0]])}
513
+ )
514
+
515
+ Returns:
516
+ List[HeteroData]: A list of connected components.
517
+ """
518
+ # Initialize union-find structures
519
+ self._parents: Dict[Tuple[str, int], Tuple[str, int]] = {}
520
+ self._ranks: Dict[Tuple[str, int], int] = {}
521
+
522
+ # Union-Find algorithm to find connected components
523
+ for edge_type in self.edge_types:
524
+ src, _, dst = edge_type
525
+ edge_index = self[edge_type].edge_index
526
+ for src_node, dst_node in edge_index.t().tolist():
527
+ self._union((src, src_node), (dst, dst_node))
528
+
529
+ # Rerun _find_parent to ensure all nodes are covered correctly
530
+ for node_type in self.node_types:
531
+ for node_index in range(self[node_type].num_nodes):
532
+ self._find_parent((node_type, node_index))
533
+
534
+ # Group nodes by their representative parent
535
+ components_map = defaultdict(list)
536
+ for node, parent in self._parents.items():
537
+ components_map[parent].append(node)
538
+ del self._parents
539
+ del self._ranks
540
+
541
+ components: List[Self] = []
542
+ for nodes in components_map.values():
543
+ # Prefill subset_dict with all node types to ensure all are present
544
+ subset_dict = {node_type: [] for node_type in self.node_types}
545
+
546
+ # Convert the list of (node_type, node_id) tuples to a subset_dict
547
+ for node_type, node_id in nodes:
548
+ subset_dict[node_type].append(node_id)
549
+
550
+ # Convert lists to tensors
551
+ for node_type, node_ids in subset_dict.items():
552
+ subset_dict[node_type] = torch.tensor(node_ids,
553
+ dtype=torch.long)
554
+
555
+ # Use the existing subgraph function to do all the heavy lifting
556
+ component_data = self.subgraph(subset_dict)
557
+ components.append(component_data)
558
+
559
+ return components
560
+
490
561
  def debug(self):
491
562
  pass # TODO
492
563
 
@@ -1148,6 +1219,51 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
1148
1219
 
1149
1220
  return list(edge_attrs.values())
1150
1221
 
1222
+ # Connected Components Helper Functions ###################################
1223
+
1224
+ def _find_parent(self, node: Tuple[str, int]) -> Tuple[str, int]:
1225
+ r"""Finds and returns the representative parent of the given node in a
1226
+ disjoint-set (union-find) data structure. Implements path compression
1227
+ to optimize future queries.
1228
+
1229
+ Args:
1230
+ node (tuple[str, int]): The node for which to find the parent.
1231
+ First element is the node type, second is the node index.
1232
+
1233
+ Returns:
1234
+ tuple[str, int]: The representative parent of the node.
1235
+ """
1236
+ if node not in self._parents:
1237
+ self._parents[node] = node
1238
+ self._ranks[node] = 0
1239
+ if self._parents[node] != node:
1240
+ self._parents[node] = self._find_parent(self._parents[node])
1241
+ return self._parents[node]
1242
+
1243
+ def _union(self, node1: Tuple[str, int], node2: Tuple[str, int]):
1244
+ r"""Merges the node1 and node2 in the disjoint-set data structure.
1245
+
1246
+ Finds the root parents of node1 and node2 using the _find_parent
1247
+ method. If they belong to different sets, updates the parent of
1248
+ root2 to be root1, effectively merging the two sets.
1249
+
1250
+ Args:
1251
+ node1 (Tuple[str, int]): The first node to union. First element is
1252
+ the node type, second is the node index.
1253
+ node2 (Tuple[str, int]): The second node to union. First element is
1254
+ the node type, second is the node index.
1255
+ """
1256
+ root1 = self._find_parent(node1)
1257
+ root2 = self._find_parent(node2)
1258
+ if root1 != root2:
1259
+ if self._ranks[root1] < self._ranks[root2]:
1260
+ self._parents[root1] = root2
1261
+ elif self._ranks[root1] > self._ranks[root2]:
1262
+ self._parents[root2] = root1
1263
+ else:
1264
+ self._parents[root2] = root1
1265
+ self._ranks[root1] += 1
1266
+
1151
1267
 
1152
1268
  # Helper functions ############################################################
1153
1269
 
@@ -30,8 +30,8 @@ class AirfRANS(InMemoryDataset):
30
30
  divided by the specific mass (one component in meter squared per second
31
31
  squared), the turbulent kinematic viscosity (one component in meter squared
32
32
  per second).
33
- Finaly, a boolean is attached to each point to inform if this point lies on
34
- the airfoil or not.
33
+ Finally, a boolean is attached to each point to inform if this point lies
34
+ on the airfoil or not.
35
35
 
36
36
  A library for manipulating simulations of the dataset is available `here
37
37
  <https://airfrans.readthedocs.io/en/latest/index.html>`_.
@@ -361,7 +361,7 @@ class Partitioner:
361
361
  'edge_types': self.edge_types,
362
362
  'node_offset': list(node_offset.values()) if node_offset else None,
363
363
  'is_hetero': self.is_hetero,
364
- 'is_sorted': True, # Based on columnn/destination.
364
+ 'is_sorted': True, # Based on column/destination.
365
365
  }
366
366
  with open(osp.join(self.root, 'META.json'), 'w') as f:
367
367
  json.dump(meta, f)
@@ -235,9 +235,9 @@ class ClusterData(torch.utils.data.Dataset):
235
235
  class ClusterLoader(torch.utils.data.DataLoader):
236
236
  r"""The data loader scheme from the `"Cluster-GCN: An Efficient Algorithm
237
237
  for Training Deep and Large Graph Convolutional Networks"
238
- <https://arxiv.org/abs/1905.07953>`_ paper which merges partioned subgraphs
239
- and their between-cluster links from a large-scale graph data object to
240
- form a mini-batch.
238
+ <https://arxiv.org/abs/1905.07953>`_ paper which merges partitioned
239
+ subgraphs and their between-cluster links from a large-scale graph data
240
+ object to form a mini-batch.
241
241
 
242
242
  .. note::
243
243
 
@@ -252,7 +252,7 @@ class ClusterLoader(torch.utils.data.DataLoader):
252
252
 
253
253
  Args:
254
254
  cluster_data (torch_geometric.loader.ClusterData): The already
255
- partioned data object.
255
+ partitioned data object.
256
256
  **kwargs (optional): Additional arguments of
257
257
  :class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
258
258
  :obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
@@ -64,7 +64,7 @@ class MeshCNNConv(MessagePassing):
64
64
  :math:`\mathcal{N}(1) = (a(1), b(1), c(1), d(1)) = (2, 3, 4, 5)`
65
65
 
66
66
 
67
- Because of this ordering constrait, :obj:`MeshCNNConv` **requires
67
+ Because of this ordering constraint, :obj:`MeshCNNConv` **requires
68
68
  that the columns of** :math:`A`
69
69
  **be ordered in the following way**:
70
70
 
@@ -149,7 +149,7 @@ class MeshCNNConv(MessagePassing):
149
149
 
150
150
 
151
151
  Args:
152
- in_channels (int): Corresonds to :math:`\text{Dim-Out}(k)`
152
+ in_channels (int): Corresponds to :math:`\text{Dim-Out}(k)`
153
153
  in the above overview. This
154
154
  represents the output dimension of the prior layer. For the given
155
155
  input mesh :math:`\mathcal{m} = (V, F)`, the prior layer is
@@ -184,7 +184,7 @@ class MeshCNNConv(MessagePassing):
184
184
  a vector of dimensions :attr:`out_channels`.
185
185
 
186
186
  Discussion:
187
- The key difference that seperates :obj:`MeshCNNConv` from a traditional
187
+ The key difference that separates :obj:`MeshCNNConv` from a traditional
188
188
  message passing graph neural network is that :obj:`MeshCNNConv`
189
189
  requires the set of neighbors for a node
190
190
  :math:`\mathcal{N}(u) = (v_1, v_2, ...)`
@@ -198,7 +198,7 @@ class MeshCNNConv(MessagePassing):
198
198
  :math:`\mathbb{S}_4`. Put more plainly, in tradition message passing
199
199
  GNNs, the network is *unable* to distinguish one neighboring node
200
200
  from another.
201
- In constrast, in :obj:`MeshCNNConv`, each of the 4 neighbors has a
201
+ In contrast, in :obj:`MeshCNNConv`, each of the 4 neighbors has a
202
202
  "role", either the "a", "b", "c", or "d" neighbor. We encode this fact
203
203
  by requiring that :math:`\mathcal{N}` return the 4-tuple,
204
204
  where the first component is the "a" neighbor, and so on.
@@ -444,7 +444,7 @@ class MeshCNNConv(MessagePassing):
444
444
  """
445
445
  assert isinstance(kernels, ModuleList), \
446
446
  f"Parameter 'kernels' must be a \
447
- torch.nn.module.ModuleList with 5 memebers, but we got \
447
+ torch.nn.module.ModuleList with 5 members, but we got \
448
448
  {type(kernels)}."
449
449
 
450
450
  assert len(kernels) == 5, "Parameter 'kernels' must be a \
@@ -37,7 +37,7 @@ class Polynormer(torch.nn.Module):
37
37
  (default: :obj:`True`)
38
38
  pre_ln (bool): Pre layer normalization.
39
39
  (default: :obj:`False`)
40
- post_bn (bool): Post batch normlization.
40
+ post_bn (bool): Post batch normalization.
41
41
  (default: :obj:`True`)
42
42
  local_attn (bool): Whether use local attention.
43
43
  (default: :obj:`False`)
@@ -196,8 +196,8 @@ class InvertibleModule(torch.nn.Module):
196
196
  class GroupAddRev(InvertibleModule):
197
197
  r"""The Grouped Reversible GNN module from the `"Graph Neural Networks with
198
198
  1000 Layers" <https://arxiv.org/abs/2106.07476>`_ paper.
199
- This module enables training of arbitary deep GNNs with a memory complexity
200
- independent of the number of layers.
199
+ This module enables training of arbitrary deep GNNs with a memory
200
+ complexity independent of the number of layers.
201
201
 
202
202
  It does so by partitioning input node features :math:`\mathbf{X}` into
203
203
  :math:`C` groups across the feature dimension. Then, a grouped reversible
@@ -159,8 +159,8 @@ def jacobian_l1_agg_per_hop(
159
159
  vectorize=vectorize)
160
160
  hop_subsets = k_hop_subsets_exact(node_idx, max_hops, edge_index,
161
161
  num_nodes, influence.device)
162
- sigle_node_influence_per_hop = [influence[s].sum() for s in hop_subsets]
163
- return torch.tensor(sigle_node_influence_per_hop, device=influence.device)
162
+ single_node_influence_per_hop = [influence[s].sum() for s in hop_subsets]
163
+ return torch.tensor(single_node_influence_per_hop, device=influence.device)
164
164
 
165
165
 
166
166
  def avg_total_influence(
@@ -169,7 +169,7 @@ def avg_total_influence(
169
169
  ) -> Tensor:
170
170
  """Compute the *influence‑weighted receptive field* ``R``."""
171
171
  avg_total_influences = torch.mean(influence_all_nodes, dim=0)
172
- if normalize: # nomalize by hop_0 (jacobian of the center node feature)
172
+ if normalize: # normalize by hop_0 (jacobian of the center node feature)
173
173
  avg_total_influences = avg_total_influences / avg_total_influences[0]
174
174
  return avg_total_influences
175
175