pyg-nightly 2.7.0.dev20250603__tar.gz → 2.7.0.dev20250605__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/__init__.py +1 -1
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/city.py +6 -5
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/__init__.py +2 -0
- pyg_nightly-2.7.0.dev20250605/torch_geometric/nn/conv/meshcnn_conv.py +491 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/__init__.py +2 -0
- pyg_nightly-2.7.0.dev20250605/torch_geometric/utils/influence.py +279 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/medshapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/hash_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/attention/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/attract_repel.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/nlp/llm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/add_gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250605
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250605'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
{pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/datasets/city.py
RENAMED
@@ -16,11 +16,12 @@ class CityNetwork(InMemoryDataset):
|
|
16
16
|
a Large Graph Dataset and a Measurement"
|
17
17
|
<https://arxiv.org/abs/2503.09008>`_ paper.
|
18
18
|
The dataset contains four city networks: `paris`, `shanghai`, `la`,
|
19
|
-
and
|
20
|
-
|
21
|
-
score, which is approximated based on its 16-hop neighborhood
|
22
|
-
|
23
|
-
10 quantiles for transductive
|
19
|
+
and `london`, where nodes represent junctions and edges represent
|
20
|
+
undirected road segments. The task is to predict each node's eccentricity
|
21
|
+
score, which is approximated based on its 16-hop neighborhood and naturally
|
22
|
+
requires long-range information. The score indicates how accessible one
|
23
|
+
node is in the network, and is mapped to 10 quantiles for transductive
|
24
|
+
classification. See the original
|
24
25
|
`source code <https://github.com/LeonResearch/City-Networks>`_ for more
|
25
26
|
details on the individual networks.
|
26
27
|
|
{pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/nn/conv/__init__.py
RENAMED
@@ -61,6 +61,7 @@ from .gps_conv import GPSConv
|
|
61
61
|
from .antisymmetric_conv import AntiSymmetricConv
|
62
62
|
from .dir_gnn_conv import DirGNNConv
|
63
63
|
from .mixhop_conv import MixHopConv
|
64
|
+
from .meshcnn_conv import MeshCNNConv
|
64
65
|
|
65
66
|
import torch_geometric.nn.conv.utils # noqa
|
66
67
|
|
@@ -131,6 +132,7 @@ __all__ = [
|
|
131
132
|
'AntiSymmetricConv',
|
132
133
|
'DirGNNConv',
|
133
134
|
'MixHopConv',
|
135
|
+
'MeshCNNConv',
|
134
136
|
]
|
135
137
|
|
136
138
|
classes = __all__
|
@@ -0,0 +1,491 @@
|
|
1
|
+
# The below is to suppress the warning on torch.nn.conv.MeshCNNConv::update
|
2
|
+
# pyright: reportIncompatibleMethodOverride=false
|
3
|
+
from typing import Optional
|
4
|
+
from warnings import warn
|
5
|
+
|
6
|
+
import torch
|
7
|
+
from torch.nn import Linear, Module, ModuleList
|
8
|
+
|
9
|
+
from torch_geometric.nn.conv import MessagePassing
|
10
|
+
from torch_geometric.typing import Tensor
|
11
|
+
|
12
|
+
|
13
|
+
class MeshCNNConv(MessagePassing):
|
14
|
+
r"""The convolutional layer introduced by the paper
|
15
|
+
`"MeshCNN: A Network With An Edge" <https://arxiv.org/abs/1809.05910>`_.
|
16
|
+
|
17
|
+
Recall that, given a set of categories :math:`C`,
|
18
|
+
MeshCNN is a function that takes as its input
|
19
|
+
a triangular mesh
|
20
|
+
:math:`\mathcal{m} = (V, F) \in \mathbb{R}^{|V| \times 3} \times
|
21
|
+
\{0,...,|V|-1\}^{3 \times |F|}`, and returns as its output
|
22
|
+
a :math:`|C|`-dimensional vector, whose :math:`i` th component denotes
|
23
|
+
the probability of the input mesh belonging to category :math:`c_i \in C`.
|
24
|
+
|
25
|
+
Let :math:`X^{(k)} \in \mathbb{R}^{|E| \times \text{Dim-Out}(k)}`
|
26
|
+
denote the output value of the prior (e.g. :math:`k` th )
|
27
|
+
layer of our neural network. The :math:`i` th row of :math:`X^{(k)}` is a
|
28
|
+
:math:`\text{Dim-Out}(k)`-dimensional vector that represents the features
|
29
|
+
computed by the :math:`k` th layer for edge :math:`e_i` of the input mesh
|
30
|
+
:math:`\mathcal{m}`. Let :math:`A \in \{0, ..., |E|-1\}^{2 \times 4*|E|}`
|
31
|
+
denote the *edge adjacency* matrix of our input mesh :math:`\mathcal{m}`.
|
32
|
+
The :math:`j` th column of :math:`A` returns a pair of indices
|
33
|
+
:math:`k,l \in \{0,...,|E|-1\}`, which means that edge
|
34
|
+
:math:`e_k` is adjacent to edge :math:`e_l`
|
35
|
+
in our input mesh :math:`\mathcal{m}`.
|
36
|
+
The definition of edge adjacency in a triangular
|
37
|
+
mesh is illustrated in Figure 1.
|
38
|
+
In a triangular
|
39
|
+
mesh, each edge :math:`e_i` is expected to be adjacent to exactly :math:`4`
|
40
|
+
neighboring edges, hence the number of columns of :math:`A`: :math:`4*|E|`.
|
41
|
+
We write *the neighborhood* of edge :math:`e_i` as
|
42
|
+
:math:`\mathcal{N}(i) = (a(i), b(i), c(i), d(i))` where
|
43
|
+
|
44
|
+
1. :math:`a(i)` denotes the index of the *first* counter-clockwise
|
45
|
+
edge of the face *above* :math:`e_i`.
|
46
|
+
|
47
|
+
2. :math:`b(i)` denotes the index of the *second* counter-clockwise
|
48
|
+
edge of the face *above* :math:`e_i`.
|
49
|
+
|
50
|
+
3. :math:`c(i)` denotes the index of the *first* counter-clockwise edge
|
51
|
+
of the face *below* :math:`e_i`.
|
52
|
+
|
53
|
+
4. :math:`d(i)` denotes the index of the *second*
|
54
|
+
counter-clockwise edge of the face *below* :math:`e_i`.
|
55
|
+
|
56
|
+
.. figure:: ../_figures/meshcnn_edge_adjacency.svg
|
57
|
+
:align: center
|
58
|
+
:width: 80%
|
59
|
+
|
60
|
+
**Figure 1:** The neighbors of edge :math:`\mathbf{e_1}`
|
61
|
+
are :math:`\mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}` and
|
62
|
+
:math:`\mathbf{e_5}`, respectively.
|
63
|
+
We write this as
|
64
|
+
:math:`\mathcal{N}(1) = (a(1), b(1), c(1), d(1)) = (2, 3, 4, 5)`
|
65
|
+
|
66
|
+
|
67
|
+
Because of this ordering constrait, :obj:`MeshCNNConv` **requires
|
68
|
+
that the columns of** :math:`A`
|
69
|
+
**be ordered in the following way**:
|
70
|
+
|
71
|
+
.. math::
|
72
|
+
&A[:,0] = (0, \text{The index of the "a" edge for edge } 0) \\
|
73
|
+
&A[:,1] = (0, \text{The index of the "b" edge for edge } 0) \\
|
74
|
+
&A[:,2] = (0, \text{The index of the "c" edge for edge } 0) \\
|
75
|
+
&A[:,3] = (0, \text{The index of the "d" edge for edge } 0) \\
|
76
|
+
\vdots \\
|
77
|
+
&A[:,4*|E|-4] =
|
78
|
+
\bigl(|E|-1,
|
79
|
+
a\bigl(|E|-1\bigr)\bigr) \\
|
80
|
+
&A[:,4*|E|-3] =
|
81
|
+
\bigl(|E|-1,
|
82
|
+
b\bigl(|E|-1\bigr)\bigr) \\
|
83
|
+
&A[:,4*|E|-2] =
|
84
|
+
\bigl(|E|-1,
|
85
|
+
c\bigl(|E|-1\bigr)\bigr) \\
|
86
|
+
&A[:,4*|E|-1] =
|
87
|
+
\bigl(|E|-1,
|
88
|
+
d\bigl(|E|-1\bigr)\bigr)
|
89
|
+
|
90
|
+
|
91
|
+
Stated a bit more compactly, for every edge :math:`e_i` in the input mesh,
|
92
|
+
:math:`A`, should have the following entries
|
93
|
+
|
94
|
+
.. math::
|
95
|
+
A[:, 4*i] &= (i, a(i)) \\
|
96
|
+
A[:, 4*i + 1] &= (i, b(i)) \\
|
97
|
+
A[:, 4*i + 2] &= (i, c(i)) \\
|
98
|
+
A[:, 4*i + 3] &= (i, d(i))
|
99
|
+
|
100
|
+
To summarize so far, we have defined 3 things:
|
101
|
+
|
102
|
+
1. The activation of the prior (e.g. :math:`k` th) layer,
|
103
|
+
:math:`X^{(k)} \in \mathbb{R}^{|E| \times \text{Dim-Out}(k)}`
|
104
|
+
|
105
|
+
2. The edge adjacency matrix and the definition of edge adjacency.
|
106
|
+
:math:`A \in \{0,...,|E|-1\}^{2 \times 4*|E|}`
|
107
|
+
|
108
|
+
3. The ways the columns of :math:`A` must be ordered.
|
109
|
+
|
110
|
+
|
111
|
+
|
112
|
+
We are now finally able to define the :obj:`MeshCNNConv` class/layer.
|
113
|
+
In the following definition
|
114
|
+
we assume :obj:`MeshCNNConv` is at the :math:`k+1` th layer of our
|
115
|
+
neural network.
|
116
|
+
|
117
|
+
The :obj:`MeshCNNConv` layer is a function,
|
118
|
+
|
119
|
+
.. math::
|
120
|
+
\text{MeshCNNConv}^{(k+1)}(X^{(k)}, A) = X^{(k+1)},
|
121
|
+
|
122
|
+
that, given the prior layer's output
|
123
|
+
:math:`X^{(k)} \in \mathbb{R}^{|E| \times \text{Dim-Out}(k)}`
|
124
|
+
and the edge adjacency matrix :math:`A`
|
125
|
+
of the input mesh (graph) :math:`\mathcal{m}` ,
|
126
|
+
returns a new edge feature tensor
|
127
|
+
:math:`X^{(k+1)} \in \mathbb{R}^{|E| \times \text{Dim-Out}(k+1)}`,
|
128
|
+
where the :math:`i` th row of :math:`X^{(k+1)}`, denoted by
|
129
|
+
:math:`x^{(k+1)}_i`,
|
130
|
+
represents the :math:`\text{Dim-Out}(k+1)`-dimensional feature vector
|
131
|
+
of edge :math:`e_i`, **and is defined as follows**:
|
132
|
+
|
133
|
+
.. math::
|
134
|
+
x^{(k+1)}_i &= W^{(k+1)}_0 x^{(k)}_i \\
|
135
|
+
&+ W^{(k+1)}_1 \bigl| x^{(k)}_{a(i)} - x^{(k)}_{c(i)} \bigr| \\
|
136
|
+
&+ W^{(k+1)}_2 \bigl( x^{(k)}_{a(i)} + x^{(k)}_{c(i)} \bigr) \\
|
137
|
+
&+ W^{(k+1)}_3 \bigl| x^{(k)}_{b(i)} - x^{(k)}_{d(i)} \bigr| \\
|
138
|
+
&+ W^{(k+1)}_4 \bigl( x^{(k)}_{b(i)} + x^{(k)}_{d(i)} \bigr).
|
139
|
+
|
140
|
+
:math:`W_0^{(k+1)},W_1^{(k+1)},W_2^{(k+1)},W_3^{(k+1)}, W_4^{(k+1)}
|
141
|
+
\in \mathbb{R}^{\text{Dim-Out}(k+1) \times \text{Dim-Out}(k)}`
|
142
|
+
are trainable linear functions (i.e. "the weights" of this layer).
|
143
|
+
:math:`x_i` is the :math:`\text{Dim-Out}(k)`-dimensional feature of
|
144
|
+
edge :math:`e_i` vector computed by the prior (e.g. :math:`k`) th layer.
|
145
|
+
:math:`x^{(k)}_{a(i)}, x^{(k)}_{b(i)}, x^{(k)}_{c(i)}`, and
|
146
|
+
:math:`x^{(k)}_{d(i)}` are the :math:`\text{Dim-Out}(k)`-feature vectors,
|
147
|
+
computed in the :math:`k` th layer, that are associated with the :math:`4`
|
148
|
+
neighboring edges of :math:`e_i`.
|
149
|
+
|
150
|
+
|
151
|
+
Args:
|
152
|
+
in_channels (int): Corresonds to :math:`\text{Dim-Out}(k)`
|
153
|
+
in the above overview. This
|
154
|
+
represents the output dimension of the prior layer. For the given
|
155
|
+
input mesh :math:`\mathcal{m} = (V, F)`, the prior layer is
|
156
|
+
expected to output a
|
157
|
+
:math:`X \in \mathbb{R}^{|E| \times \textit{in_channels}}`
|
158
|
+
feature matrix.
|
159
|
+
Assuming the instance of this class
|
160
|
+
is situated at layer :math:`k+1`, we write that
|
161
|
+
:math:`X^{(k)} \in \mathbb{R}^{|E| \times \textit{in_channels}}`.
|
162
|
+
out_channels (int): Corresponds to :math:`\text{Dim-Out}(k+1)` in the
|
163
|
+
above overview. This represents the output dimension of this layer.
|
164
|
+
Assuming the instance of this class
|
165
|
+
is situated at layer :math:`k+1`, we write that
|
166
|
+
:math:`X^{(k+1)}
|
167
|
+
\in \mathbb{R}^{|E| \times \textit{out_channels}}`.
|
168
|
+
kernels (torch.nn.ModuleList, optional): A list of length of 5,
|
169
|
+
where each
|
170
|
+
element is a :class:`torch.nn.module` (i.e a neural network),
|
171
|
+
that each MUST take as input a vector
|
172
|
+
of dimension :`obj:in_channels` and return a vector of dimension
|
173
|
+
:obj:`out_channels`. In particular,
|
174
|
+
`obj:kernels[0]` is :math:`W^{(k+1)}_0` in the above overview
|
175
|
+
(see :obj:`MeshCNNConv`), `obj:kernels[1]` is :math:`W^{(k+1)}_1`,
|
176
|
+
`obj:kernels[2]` is :math:`W^{(k+1)}_2`,
|
177
|
+
`obj:kernels[3]` is :math:`W^{(k+1)}_3`
|
178
|
+
`obj:kernels[4]` is :math:`W^{(k+1)}_4`.
|
179
|
+
Note that this input is optional, in which case
|
180
|
+
each of the 5 elements in the kernels will be a linear
|
181
|
+
neural network :class:`torch.nn.modules.Linear`
|
182
|
+
correctly configured to take as input
|
183
|
+
:attr:`in_channels`-dimensional vectors and return
|
184
|
+
a vector of dimensions :attr:`out_channels`.
|
185
|
+
|
186
|
+
Discussion:
|
187
|
+
The key difference that seperates :obj:`MeshCNNConv` from a traditional
|
188
|
+
message passing graph neural network is that :obj:`MeshCNNConv`
|
189
|
+
requires the set of neighbors for a node
|
190
|
+
:math:`\mathcal{N}(u) = (v_1, v_2, ...)`
|
191
|
+
to *be an ordered set* (i.e. a tuple). In
|
192
|
+
fact, :obj:`MeshCNNConv` goes further, requiring
|
193
|
+
that :math:`\mathcal{N}(u)` always return a set of size :math:`4`.
|
194
|
+
This is different to most message passing graph neural networks,
|
195
|
+
which assume that :math:`\mathcal{N}(u) = \{v_1, v_2, ...\}` returns an
|
196
|
+
ordered set. This lends :obj:`MeshCNNConv` more expressive power,
|
197
|
+
at the cost of no longer being permutation invariant to
|
198
|
+
:math:`\mathbb{S}_4`. Put more plainly, in tradition message passing
|
199
|
+
GNNs, the network is *unable* to distinguish one neighboring node
|
200
|
+
from another.
|
201
|
+
In constrast, in :obj:`MeshCNNConv`, each of the 4 neighbors has a
|
202
|
+
"role", either the "a", "b", "c", or "d" neighbor. We encode this fact
|
203
|
+
by requiring that :math:`\mathcal{N}` return the 4-tuple,
|
204
|
+
where the first component is the "a" neighbor, and so on.
|
205
|
+
|
206
|
+
To summarize this comparison, it may re-define
|
207
|
+
:obj:`MeshCNNConv` in terms of :math:`\text{UPDATE}` and
|
208
|
+
:math:`\text{AGGREGATE}`
|
209
|
+
functions, which is a general way to define a traditional GNN layer.
|
210
|
+
If we let :math:`x_i^{(k+1)}`
|
211
|
+
denote the output of a GNN layer for node :math:`i` at
|
212
|
+
layer :math:`k+1`, and let
|
213
|
+
:math:`\mathcal{N}(i)` denote the set of nodes adjacent
|
214
|
+
to node :math:`i`,
|
215
|
+
then we can describe the :math:`k+1` th layer as traditional GNN
|
216
|
+
as
|
217
|
+
|
218
|
+
.. math::
|
219
|
+
x_i^{(k+1)} = \text{UPDATE}^{(k+1)}\bigl(x^{(k)}_i,
|
220
|
+
\text{AGGREGATE}^{(k+1)}\bigl(\mathcal{N}(i)\bigr)\bigr).
|
221
|
+
|
222
|
+
Here, :math:`\text{UPDATE}^{(k+1)}` is a function of :math:`2`
|
223
|
+
:math:`\text{Dim-Out}(k)`-dimensional vectors, and returns a
|
224
|
+
:math:`\text{Dim-Out}(k+1)`-dimensional vector.
|
225
|
+
:math:`\text{AGGREGATE}^{(k+1)}` function
|
226
|
+
is a function of a *unordered set*
|
227
|
+
of nodes that are neighbors of node :math:`i`, as defined by
|
228
|
+
:math:`\mathcal{N}(i)`. Usually the size of this set varies across
|
229
|
+
different nodes :math:`i`, and one of the most basic examples
|
230
|
+
of such a function is the "sum aggregation", defined as
|
231
|
+
:math:`\text{AGGREGATE}^{(k+1)}(\mathcal{N}(i)) =
|
232
|
+
\sum_{j \in \mathcal{N}(i)} x^{(k)}_j`.
|
233
|
+
See
|
234
|
+
:class:`SumAggregation <torch_geometric.nn.aggr.basic.SumAggregation>`
|
235
|
+
for more.
|
236
|
+
|
237
|
+
In contrast, while :obj:`MeshCNNConv` 's :math:`\text{UPDATE}`
|
238
|
+
function follows
|
239
|
+
a tradition GNN, its :math:`\text{AGGREGATE}` is a function of a tuple
|
240
|
+
(i.e. an ordered set) of neighbors
|
241
|
+
rather than a unordered set of neighbors.
|
242
|
+
In particular, while the :math:`\text{UPDATE}`
|
243
|
+
function of :obj:`MeshCNNConv` for :math:`e_i` is
|
244
|
+
|
245
|
+
.. math::
|
246
|
+
x_i^{(k+1)} = \text{UPDATE}^{(k+1)}(x_i^{(k)}, s_i^{(k+1)})
|
247
|
+
= W_0^{(k+1)}x_i^{(k)} + s_i^{(k+1)},
|
248
|
+
|
249
|
+
in contrast, :obj:`MeshCNNConv` 's :math:`\text{AGGREGATE}` function is
|
250
|
+
|
251
|
+
.. math::
|
252
|
+
s_i^{(k+1)} = \text{AGGREGATE}^{(k+1)}(A, B, C, D)
|
253
|
+
&= W_1^{(k+1)}\bigl|A - C \bigr| \\
|
254
|
+
&= W_2^{(k+1)}\bigl(A + C \bigr) \\
|
255
|
+
&= W_3^{(k+1)}\bigl|B - D \bigr| \\
|
256
|
+
&= W_4^{(k+1)}\bigl(B + D \bigr),
|
257
|
+
|
258
|
+
where :math:`A=x_{a(i)}^{(k)}, B=x_{b(i)}^{(k)}, C=x_{c(i)}^{(k)},`
|
259
|
+
and :math:`D=x_{d(i)}^{(k)}`.
|
260
|
+
|
261
|
+
..
|
262
|
+
|
263
|
+
The :math:`i` th row of
|
264
|
+
:math:`V \in \mathbb{R}^{|V| \times 3}`
|
265
|
+
holds the cartesian :math:`xyz`
|
266
|
+
coordinates for node :math:`v_i` in the mesh, and the :math:`j` th
|
267
|
+
column in :math:`F \in \{1,...,|V|\}^{3 \times |V|}`
|
268
|
+
holds the :math:`3` indices
|
269
|
+
:math:`(k,l,m)` that correspond to the :math:`3` nodes
|
270
|
+
:math:`(v_k, v_l, v_m)` that construct face :math:`j` of the mesh.
|
271
|
+
"""
|
272
|
+
def __init__(self, in_channels: int, out_channels: int,
|
273
|
+
kernels: Optional[ModuleList] = None):
|
274
|
+
super().__init__(aggr='add')
|
275
|
+
self.in_channels = in_channels
|
276
|
+
self.out_channels = out_channels
|
277
|
+
|
278
|
+
if kernels is None:
|
279
|
+
self.kernels = ModuleList(
|
280
|
+
[Linear(in_channels, out_channels) for _ in range(5)])
|
281
|
+
|
282
|
+
else:
|
283
|
+
# ensures kernels is properly formed, otherwise throws
|
284
|
+
# the appropriate error.
|
285
|
+
self._assert_kernels(kernels)
|
286
|
+
self.kernels = kernels
|
287
|
+
|
288
|
+
def forward(self, x: Tensor, edge_index: Tensor):
|
289
|
+
r"""Forward pass.
|
290
|
+
|
291
|
+
Args:
|
292
|
+
x(torch.Tensor): :math:`X^{(k)} \in
|
293
|
+
\mathbb{R}^{|E| \times \textit{in_channels}}`.
|
294
|
+
The edge feature tensor returned by the prior layer
|
295
|
+
(e.g. :math:`k`). The tensor is of shape
|
296
|
+
:math:`|E| \times \text{Dim-Out}(k)`, or equivalently,
|
297
|
+
:obj:`(|E|, self.in_channels)`.
|
298
|
+
|
299
|
+
edge_index(torch.Tensor):
|
300
|
+
:math:`A \in \{0,...,|E|-1\}^{2 \times 4*|E|}`.
|
301
|
+
The edge adjacency tensor of the networks input mesh
|
302
|
+
:math:`\mathcal{m} = (V, F)`. The edge adjacency tensor
|
303
|
+
**MUST** have the following form:
|
304
|
+
|
305
|
+
.. math::
|
306
|
+
&A[:,0] = (0,
|
307
|
+
\text{The index of the "a" edge for edge } 0) \\
|
308
|
+
&A[:,1] = (0,
|
309
|
+
\text{The index of the "b" edge for edge } 0) \\
|
310
|
+
&A[:,2] = (0,
|
311
|
+
\text{The index of the "c" edge for edge } 0) \\
|
312
|
+
&A[:,3] = (0,
|
313
|
+
\text{The index of the "d" edge for edge } 0) \\
|
314
|
+
\vdots \\
|
315
|
+
&A[:,4*|E|-4] =
|
316
|
+
\bigl(|E|-1,
|
317
|
+
a\bigl(|E|-1\bigr)\bigr) \\
|
318
|
+
&A[:,4*|E|-3] =
|
319
|
+
\bigl(|E|-1,
|
320
|
+
b\bigl(|E|-1\bigr)\bigr) \\
|
321
|
+
&A[:,4*|E|-2] =
|
322
|
+
\bigl(|E|-1,
|
323
|
+
c\bigl(|E|-1\bigr)\bigr) \\
|
324
|
+
&A[:,4*|E|-1] =
|
325
|
+
\bigl(|E|-1,
|
326
|
+
d\bigl(|E|-1\bigr)\bigr)
|
327
|
+
|
328
|
+
See :obj:`MeshCNNConv` for what
|
329
|
+
"index of the 'a'(b,c,d) edge for edge i" means, and also
|
330
|
+
for the general definition of edge adjacency in MeshCNN.
|
331
|
+
These definitions are also provided in the
|
332
|
+
`paper <https://arxiv.org/abs/1809.05910>`_ itself.
|
333
|
+
|
334
|
+
Returns:
|
335
|
+
torch.Tensor:
|
336
|
+
:math:`X^{(k+1)} \in \mathbb{R}^{|E| \times \textit{out_channels}}`.
|
337
|
+
The edge feature tensor for this (e.g. the :math:`k+1` th) layer.
|
338
|
+
The :math:`i` th row of :math:`X^{(k+1)}` is computed according
|
339
|
+
to the formula
|
340
|
+
|
341
|
+
.. math::
|
342
|
+
x^{(k+1)}_i &= W^{(k+1)}_0 x^{(k)}_i \\
|
343
|
+
&+ W^{(k+1)}_1 \bigl| x^{(k)}_{a(i)} - x^{(k)}_{c(i)} \bigr| \\
|
344
|
+
&+ W^{(k+1)}_2 \bigl( x^{(k)}_{a(i)} + x^{(k)}_{c(i)} \bigr) \\
|
345
|
+
&+ W^{(k+1)}_3 \bigl| x^{(k)}_{b(i)} - x^{(k)}_{d(i)} \bigr| \\
|
346
|
+
&+ W^{(k+1)}_4 \bigl( x^{(k)}_{b(i)} + x^{(k)}_{d(i)} \bigr),
|
347
|
+
|
348
|
+
where :math:`W_0^{(k+1)},W_1^{(k+1)},
|
349
|
+
W_2^{(k+1)},W_3^{(k+1)}, W_4^{(k+1)}
|
350
|
+
\in \mathbb{R}^{\text{Dim-Out}(k+1) \times \text{Dim-Out}(k)}`
|
351
|
+
are the trainable linear functions (i.e. the trainable
|
352
|
+
"weights") of this layer, and
|
353
|
+
:math:`x^{(k)}_{a(i)}, x^{(k)}_{b(i)}, x^{(k)}_{c(i)}`,
|
354
|
+
:math:`x^{(k)}_{d(i)}` are the
|
355
|
+
:math:`\text{Dim-Out}(k)`-dimensional edge feature vectors
|
356
|
+
computed by the prior (:math:`k` th) layer,
|
357
|
+
that are associated with the :math:`4`
|
358
|
+
neighboring edges of :math:`e_i`.
|
359
|
+
|
360
|
+
"""
|
361
|
+
return self.propagate(edge_index, x=x)
|
362
|
+
|
363
|
+
def message(self, x_j: Tensor) -> Tensor:
|
364
|
+
r"""The messaging passing step of :obj:`MeshCNNConv`.
|
365
|
+
|
366
|
+
|
367
|
+
Args:
|
368
|
+
x_j: A :obj:`[4*|E|, num_node_features]` tensor.
|
369
|
+
Its ith row holds the value
|
370
|
+
stored by the source node in the previous layer of edge i.
|
371
|
+
|
372
|
+
Returns:
|
373
|
+
A :obj:`[|E|, num_node_features]` tensor,
|
374
|
+
whose ith row will be the value
|
375
|
+
that the target node of edge i will receive.
|
376
|
+
"""
|
377
|
+
# The following variables names are taken from the paper
|
378
|
+
# MeshCNN computes the features associated with edge
|
379
|
+
# e by (|a - c|, a + c, |b - c|, b + c), where a, b, c, d are the
|
380
|
+
# neighboring edges of e, a being the 1 edge of the upper face,
|
381
|
+
# b being the second edge of the upper face, c being the first edge
|
382
|
+
# of the lower face,
|
383
|
+
# and d being the second edge of the lower face of the input Mesh
|
384
|
+
|
385
|
+
# TODO: It is unclear if view is faster. If it is not,
|
386
|
+
# then we should prefer the strided method commented out below
|
387
|
+
|
388
|
+
E4, in_channels = x_j.size() # E4 = 4|E|, i.e. num edges in line graph
|
389
|
+
# Option 1
|
390
|
+
n_a = x_j[0::4] # shape: |E| x in_channels
|
391
|
+
n_b = x_j[1::4] # shape: |E| x in_channels
|
392
|
+
n_c = x_j[2::4] # shape: |E| x in_channels
|
393
|
+
n_d = x_j[3::4] # shape: |E| x in_channels
|
394
|
+
m = torch.empty(E4, self.out_channels)
|
395
|
+
m[0::4] = self.kernels[1].forward(torch.abs(n_a - n_c))
|
396
|
+
m[1::4] = self.kernels[2].forward(n_a + n_c)
|
397
|
+
m[2::4] = self.kernels[3].forward(torch.abs(n_b - n_d))
|
398
|
+
m[3::4] = self.kernels[4].forward(n_b + n_d)
|
399
|
+
return m
|
400
|
+
|
401
|
+
# Option 2
|
402
|
+
# E4, in_channels = x_j.size()
|
403
|
+
# E = E4 // 4
|
404
|
+
# x_j = x_j.view(E, 4, in_channels) # shape: (|E| x 4 x in_channels)
|
405
|
+
# n_a, n_b, n_c, n_d = x_j.unbind(
|
406
|
+
# dim=1) # shape: (4 x |E| x in_channels)
|
407
|
+
# m = torch.stack(
|
408
|
+
# [
|
409
|
+
# (n_a - n_c).abs(), # shape: |E| x in_channels
|
410
|
+
# n_a + n_c,
|
411
|
+
# (n_b - n_d).abs(),
|
412
|
+
# n_b + n_d,
|
413
|
+
# ],
|
414
|
+
# dim=1) # shape: (|E| x 4 x in_channels)
|
415
|
+
# m.view(E4, in_channels) # shape 4*|E| x in_channels
|
416
|
+
# return m
|
417
|
+
|
418
|
+
def update(self, inputs: Tensor, x: Tensor) -> Tensor:
|
419
|
+
r"""The UPDATE step, in reference to the UPDATE and AGGREGATE
|
420
|
+
formulation of message passing convolution.
|
421
|
+
|
422
|
+
Args:
|
423
|
+
inputs(torch.Tensor): The :attr:`in_channels`-dimensional vector
|
424
|
+
returned by aggregate.
|
425
|
+
x(torch.Tensor): :math:`X^{(k)}`. The original inputs to this layer.
|
426
|
+
|
427
|
+
Returns:
|
428
|
+
torch.Tensor: :math:`X^{(k+1)}`. The output of this layer, which
|
429
|
+
has shape :obj:`(|E|, out_channels)`.
|
430
|
+
"""
|
431
|
+
return self.kernels[0].forward(x) + inputs
|
432
|
+
|
433
|
+
def _assert_kernels(self, kernels: ModuleList):
|
434
|
+
r"""Ensures that :obj:`kernels` is a list of 5 :obj:`torch.nn.Module`
|
435
|
+
modules (i.e. networks). In addition, it also ensures that each network
|
436
|
+
takes in input of dimension :attr:`in_channels`, and returns output
|
437
|
+
of dimension :attr:`out_channels`.
|
438
|
+
This method throws an error otherwise.
|
439
|
+
|
440
|
+
.. warn::
|
441
|
+
This method throws an error if :obj:`kernels` is
|
442
|
+
not valid. (Otherwise this method returns nothing)
|
443
|
+
|
444
|
+
"""
|
445
|
+
assert isinstance(kernels, ModuleList), \
|
446
|
+
f"Parameter 'kernels' must be a \
|
447
|
+
torch.nn.module.ModuleList with 5 memebers, but we got \
|
448
|
+
{type(kernels)}."
|
449
|
+
|
450
|
+
assert len(kernels) == 5, "Parameter 'kernels' must be a \
|
451
|
+
torch.nn.module.ModuleList of with exactly 5 members"
|
452
|
+
|
453
|
+
for i, network in enumerate(kernels):
|
454
|
+
assert isinstance(network, Module), \
|
455
|
+
f"kernels[{i}] must be torch.nn.Module, got \
|
456
|
+
{type(network)}"
|
457
|
+
if not hasattr(network, "in_channels") and \
|
458
|
+
not hasattr(network, "in_features"):
|
459
|
+
warn(f"kernel[{i}] does not have attribute \
|
460
|
+
'in_channels' nor 'out_features'. The \
|
461
|
+
network must take as input a \
|
462
|
+
{self.in_channels}-dimensional tensor. \
|
463
|
+
Still, assuming user configured \
|
464
|
+
correctly. Continuing..")
|
465
|
+
else:
|
466
|
+
input_dimension = getattr(network, "in_channels",
|
467
|
+
network.in_features)
|
468
|
+
assert input_dimension == self.in_channels, f"The input \
|
469
|
+
dimension of the neural network in kernel[{i}] must \
|
470
|
+
be \
|
471
|
+
equal to 'in_channels', but input_dimension = \
|
472
|
+
{input_dimension}, and \
|
473
|
+
self.in_channels={self.in_channels}."
|
474
|
+
|
475
|
+
if not hasattr(network, "out_channels") and \
|
476
|
+
not hasattr(network, "out_features"):
|
477
|
+
warn(f"kernel[{i}] does not have attribute \
|
478
|
+
'in_channels' nor 'out_features'. The \
|
479
|
+
network must take as input a \
|
480
|
+
{self.in_channels}-dimensional tensor. \
|
481
|
+
Still, assuming user configured \
|
482
|
+
correctly. Continuing..")
|
483
|
+
else:
|
484
|
+
output_dimension = getattr(network, "out_channels",
|
485
|
+
network.out_features)
|
486
|
+
assert output_dimension == self.out_channels, f"The output \
|
487
|
+
dimension of the neural network in kernel[{i}] must \
|
488
|
+
be \
|
489
|
+
equal to 'out_channels', but out_dimension = \
|
490
|
+
{output_dimension}, and \
|
491
|
+
self.out_channels={self.out_channels}."
|
{pyg_nightly-2.7.0.dev20250603 → pyg_nightly-2.7.0.dev20250605}/torch_geometric/utils/__init__.py
RENAMED
@@ -57,6 +57,7 @@ from .embedding import get_embeddings, get_embeddings_hetero
|
|
57
57
|
from ._trim_to_layer import trim_to_layer
|
58
58
|
from .ppr import get_ppr
|
59
59
|
from ._train_test_split_edges import train_test_split_edges
|
60
|
+
from .influence import total_influence
|
60
61
|
|
61
62
|
__all__ = [
|
62
63
|
'scatter',
|
@@ -149,6 +150,7 @@ __all__ = [
|
|
149
150
|
'trim_to_layer',
|
150
151
|
'get_ppr',
|
151
152
|
'train_test_split_edges',
|
153
|
+
'total_influence',
|
152
154
|
]
|
153
155
|
|
154
156
|
# `structured_negative_sampling_feasible` is a long name and thus destroys the
|