pyg-nightly 2.7.0.dev20250503__tar.gz → 2.7.0.dev20250505__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/__init__.py +8 -1
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/collate.py +1 -3
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/edge_index.py +2 -7
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/linear.py +0 -20
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/connect/base.py +1 -3
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/select/base.py +1 -4
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/typing.py +0 -2
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_lexsort.py +0 -9
- pyg_nightly-2.7.0.dev20250505/torch_geometric/utils/_scatter.py +290 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_sort_edge_index.py +0 -2
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_spmm.py +1 -2
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/sparse.py +4 -12
- pyg_nightly-2.7.0.dev20250503/torch_geometric/utils/_scatter.py +0 -355
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/city.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/hash_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/attention/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/attract_repel.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/nlp/llm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/add_gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250505
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250505'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -57,6 +57,13 @@ __all__ = [
|
|
57
57
|
'__version__',
|
58
58
|
]
|
59
59
|
|
60
|
+
if not torch_geometric.typing.WITH_PT113:
|
61
|
+
import warnings as std_warnings
|
62
|
+
|
63
|
+
std_warnings.warn("PyG 2.7 removed support for PyTorch < 1.13. Consider "
|
64
|
+
"Consider upgrading to PyTorch >= 1.13 or downgrading "
|
65
|
+
"to PyG <= 2.6. ")
|
66
|
+
|
60
67
|
# Serialization ###############################################################
|
61
68
|
|
62
69
|
if torch_geometric.typing.WITH_PT24:
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/data/collate.py
RENAMED
@@ -191,10 +191,8 @@ def _collate(
|
|
191
191
|
if torch_geometric.typing.WITH_PT20:
|
192
192
|
storage = elem.untyped_storage()._new_shared(
|
193
193
|
numel * elem.element_size(), device=elem.device)
|
194
|
-
elif torch_geometric.typing.WITH_PT112:
|
195
|
-
storage = elem.storage()._new_shared(numel, device=elem.device)
|
196
194
|
else:
|
197
|
-
storage = elem.storage()._new_shared(numel)
|
195
|
+
storage = elem.storage()._new_shared(numel, device=elem.device)
|
198
196
|
shape = list(elem.size())
|
199
197
|
if cat_dim is None or elem.dim() == 0:
|
200
198
|
shape = [len(values)] + shape
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/edge_index.py
RENAMED
@@ -298,8 +298,7 @@ class EdgeIndex(Tensor):
|
|
298
298
|
indptr = None
|
299
299
|
data = torch.stack([row, col], dim=0)
|
300
300
|
|
301
|
-
if
|
302
|
-
and data.layout == torch.sparse_csc):
|
301
|
+
if data.layout == torch.sparse_csc:
|
303
302
|
row = data.row_indices()
|
304
303
|
indptr = data.ccol_indices()
|
305
304
|
|
@@ -882,10 +881,6 @@ class EdgeIndex(Tensor):
|
|
882
881
|
If not specified, non-zero elements will be assigned a value of
|
883
882
|
:obj:`1.0`. (default: :obj:`None`)
|
884
883
|
"""
|
885
|
-
if not torch_geometric.typing.WITH_PT112:
|
886
|
-
raise NotImplementedError(
|
887
|
-
"'to_sparse_csc' not supported for PyTorch < 1.12")
|
888
|
-
|
889
884
|
(colptr, row), perm = self.get_csc()
|
890
885
|
if value is not None and perm is not None:
|
891
886
|
value = value[perm]
|
@@ -922,7 +917,7 @@ class EdgeIndex(Tensor):
|
|
922
917
|
return self.to_sparse_coo(value)
|
923
918
|
if layout == torch.sparse_csr:
|
924
919
|
return self.to_sparse_csr(value)
|
925
|
-
if
|
920
|
+
if layout == torch.sparse_csc:
|
926
921
|
return self.to_sparse_csc(value)
|
927
922
|
|
928
923
|
raise ValueError(f"Unexpected tensor layout (got '{layout}')")
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/nn/dense/linear.py
RENAMED
@@ -1,4 +1,3 @@
|
|
1
|
-
import copy
|
2
1
|
import math
|
3
2
|
import sys
|
4
3
|
import time
|
@@ -114,25 +113,6 @@ class Linear(torch.nn.Module):
|
|
114
113
|
|
115
114
|
self.reset_parameters()
|
116
115
|
|
117
|
-
def __deepcopy__(self, memo):
|
118
|
-
# PyTorch<1.13 cannot handle deep copies of uninitialized parameters :(
|
119
|
-
# TODO Drop this code once PyTorch 1.12 is no longer supported.
|
120
|
-
out = Linear(
|
121
|
-
self.in_channels,
|
122
|
-
self.out_channels,
|
123
|
-
self.bias is not None,
|
124
|
-
self.weight_initializer,
|
125
|
-
self.bias_initializer,
|
126
|
-
).to(self.weight.device)
|
127
|
-
|
128
|
-
if self.in_channels > 0:
|
129
|
-
out.weight = copy.deepcopy(self.weight, memo)
|
130
|
-
|
131
|
-
if self.bias is not None:
|
132
|
-
out.bias = copy.deepcopy(self.bias, memo)
|
133
|
-
|
134
|
-
return out
|
135
|
-
|
136
116
|
def reset_parameters(self):
|
137
117
|
r"""Resets all learnable parameters of the module."""
|
138
118
|
reset_weight_(self.weight, self.in_channels, self.weight_initializer)
|
@@ -4,7 +4,6 @@ from typing import Optional
|
|
4
4
|
import torch
|
5
5
|
from torch import Tensor
|
6
6
|
|
7
|
-
import torch_geometric.typing
|
8
7
|
from torch_geometric.nn.pool.select import SelectOutput
|
9
8
|
|
10
9
|
|
@@ -49,8 +48,7 @@ class ConnectOutput:
|
|
49
48
|
self.batch = batch
|
50
49
|
|
51
50
|
|
52
|
-
|
53
|
-
ConnectOutput = torch.jit.script(ConnectOutput)
|
51
|
+
ConnectOutput = torch.jit.script(ConnectOutput)
|
54
52
|
|
55
53
|
|
56
54
|
class Connect(torch.nn.Module):
|
@@ -4,8 +4,6 @@ from typing import Optional
|
|
4
4
|
import torch
|
5
5
|
from torch import Tensor
|
6
6
|
|
7
|
-
import torch_geometric.typing
|
8
|
-
|
9
7
|
|
10
8
|
@dataclass(init=False)
|
11
9
|
class SelectOutput:
|
@@ -64,8 +62,7 @@ class SelectOutput:
|
|
64
62
|
self.weight = weight
|
65
63
|
|
66
64
|
|
67
|
-
|
68
|
-
SelectOutput = torch.jit.script(SelectOutput)
|
65
|
+
SelectOutput = torch.jit.script(SelectOutput)
|
69
66
|
|
70
67
|
|
71
68
|
class Select(torch.nn.Module):
|
@@ -21,8 +21,6 @@ WITH_PT23 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 3
|
|
21
21
|
WITH_PT24 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 4
|
22
22
|
WITH_PT25 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 5
|
23
23
|
WITH_PT26 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 6
|
24
|
-
WITH_PT111 = WITH_PT20 or int(torch.__version__.split('.')[1]) >= 11
|
25
|
-
WITH_PT112 = WITH_PT20 or int(torch.__version__.split('.')[1]) >= 12
|
26
24
|
WITH_PT113 = WITH_PT20 or int(torch.__version__.split('.')[1]) >= 13
|
27
25
|
|
28
26
|
WITH_WINDOWS = os.name == 'nt'
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_lexsort.py
RENAMED
@@ -1,11 +1,7 @@
|
|
1
1
|
from typing import List
|
2
2
|
|
3
|
-
import numpy as np
|
4
|
-
import torch
|
5
3
|
from torch import Tensor
|
6
4
|
|
7
|
-
import torch_geometric.typing
|
8
|
-
|
9
5
|
|
10
6
|
def lexsort(
|
11
7
|
keys: List[Tensor],
|
@@ -28,11 +24,6 @@ def lexsort(
|
|
28
24
|
"""
|
29
25
|
assert len(keys) >= 1
|
30
26
|
|
31
|
-
if not torch_geometric.typing.WITH_PT113:
|
32
|
-
keys = [k.neg() for k in keys] if descending else keys
|
33
|
-
out = np.lexsort([k.detach().cpu().numpy() for k in keys], axis=dim)
|
34
|
-
return torch.from_numpy(out).to(keys[0].device)
|
35
|
-
|
36
27
|
out = keys[0].argsort(dim=dim, descending=descending, stable=True)
|
37
28
|
for k in keys[1:]:
|
38
29
|
index = k.gather(dim, out)
|
@@ -0,0 +1,290 @@
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import Tensor
|
5
|
+
|
6
|
+
import torch_geometric.typing
|
7
|
+
from torch_geometric import is_compiling, is_in_onnx_export, warnings
|
8
|
+
from torch_geometric.typing import torch_scatter
|
9
|
+
from torch_geometric.utils.functions import cumsum
|
10
|
+
|
11
|
+
warnings.filterwarnings('ignore', '.*is in beta and the API may change.*')
|
12
|
+
|
13
|
+
|
14
|
+
def scatter(
|
15
|
+
src: Tensor,
|
16
|
+
index: Tensor,
|
17
|
+
dim: int = 0,
|
18
|
+
dim_size: Optional[int] = None,
|
19
|
+
reduce: str = 'sum',
|
20
|
+
) -> Tensor:
|
21
|
+
r"""Reduces all values from the :obj:`src` tensor at the indices specified
|
22
|
+
in the :obj:`index` tensor along a given dimension ``dim``. See the
|
23
|
+
`documentation <https://pytorch-scatter.readthedocs.io/en/latest/functions/scatter.html>`__ # noqa: E501
|
24
|
+
of the ``torch_scatter`` package for more information.
|
25
|
+
|
26
|
+
Args:
|
27
|
+
src (torch.Tensor): The source tensor.
|
28
|
+
index (torch.Tensor): The index tensor.
|
29
|
+
dim (int, optional): The dimension along which to index.
|
30
|
+
(default: ``0``)
|
31
|
+
dim_size (int, optional): The size of the output tensor at dimension
|
32
|
+
``dim``. If set to :obj:`None`, will create a minimal-sized output
|
33
|
+
tensor according to ``index.max() + 1``. (default: :obj:`None`)
|
34
|
+
reduce (str, optional): The reduce operation (``"sum"``, ``"mean"``,
|
35
|
+
``"mul"``, ``"min"``, ``"max"`` or ``"any"``). (default: ``"sum"``)
|
36
|
+
"""
|
37
|
+
if isinstance(index, Tensor) and index.dim() != 1:
|
38
|
+
raise ValueError(f"The `index` argument must be one-dimensional "
|
39
|
+
f"(got {index.dim()} dimensions)")
|
40
|
+
|
41
|
+
dim = src.dim() + dim if dim < 0 else dim
|
42
|
+
|
43
|
+
if isinstance(src, Tensor) and (dim < 0 or dim >= src.dim()):
|
44
|
+
raise ValueError(f"The `dim` argument must lay between 0 and "
|
45
|
+
f"{src.dim() - 1} (got {dim})")
|
46
|
+
|
47
|
+
if dim_size is None:
|
48
|
+
dim_size = int(index.max()) + 1 if index.numel() > 0 else 0
|
49
|
+
|
50
|
+
# For now, we maintain various different code paths, based on whether
|
51
|
+
# the input requires gradients and whether it lays on the CPU/GPU.
|
52
|
+
# For example, `torch_scatter` is usually faster than
|
53
|
+
# `torch.scatter_reduce` on GPU, while `torch.scatter_reduce` is faster
|
54
|
+
# on CPU.
|
55
|
+
# `torch.scatter_reduce` has a faster forward implementation for
|
56
|
+
# "min"/"max" reductions since it does not compute additional arg
|
57
|
+
# indices, but is therefore way slower in its backward implementation.
|
58
|
+
# More insights can be found in `test/utils/test_scatter.py`.
|
59
|
+
|
60
|
+
size = src.size()[:dim] + (dim_size, ) + src.size()[dim + 1:]
|
61
|
+
|
62
|
+
# For "any" reduction, we use regular `scatter_`:
|
63
|
+
if reduce == 'any':
|
64
|
+
index = broadcast(index, src, dim)
|
65
|
+
return src.new_zeros(size).scatter_(dim, index, src)
|
66
|
+
|
67
|
+
# For "sum" and "mean" reduction, we make use of `scatter_add_`:
|
68
|
+
if reduce == 'sum' or reduce == 'add':
|
69
|
+
index = broadcast(index, src, dim)
|
70
|
+
return src.new_zeros(size).scatter_add_(dim, index, src)
|
71
|
+
|
72
|
+
if reduce == 'mean':
|
73
|
+
count = src.new_zeros(dim_size)
|
74
|
+
count.scatter_add_(0, index, src.new_ones(src.size(dim)))
|
75
|
+
count = count.clamp(min=1)
|
76
|
+
|
77
|
+
index = broadcast(index, src, dim)
|
78
|
+
out = src.new_zeros(size).scatter_add_(dim, index, src)
|
79
|
+
|
80
|
+
return out / broadcast(count, out, dim)
|
81
|
+
|
82
|
+
# For "min" and "max" reduction, we prefer `scatter_reduce_` on CPU or
|
83
|
+
# in case the input does not require gradients:
|
84
|
+
if reduce in ['min', 'max', 'amin', 'amax']:
|
85
|
+
if (not torch_geometric.typing.WITH_TORCH_SCATTER or is_compiling()
|
86
|
+
or is_in_onnx_export() or not src.is_cuda
|
87
|
+
or not src.requires_grad):
|
88
|
+
|
89
|
+
if (src.is_cuda and src.requires_grad and not is_compiling()
|
90
|
+
and not is_in_onnx_export()):
|
91
|
+
warnings.warn(f"The usage of `scatter(reduce='{reduce}')` "
|
92
|
+
f"can be accelerated via the 'torch-scatter'"
|
93
|
+
f" package, but it was not found")
|
94
|
+
|
95
|
+
index = broadcast(index, src, dim)
|
96
|
+
if not is_in_onnx_export():
|
97
|
+
return src.new_zeros(size).scatter_reduce_(
|
98
|
+
dim, index, src, reduce=f'a{reduce[-3:]}',
|
99
|
+
include_self=False)
|
100
|
+
|
101
|
+
fill = torch.full( # type: ignore
|
102
|
+
size=(1, ),
|
103
|
+
fill_value=src.min() if 'max' in reduce else src.max(),
|
104
|
+
dtype=src.dtype,
|
105
|
+
device=src.device,
|
106
|
+
).expand_as(src)
|
107
|
+
out = src.new_zeros(size).scatter_reduce_(dim, index, fill,
|
108
|
+
reduce=f'a{reduce[-3:]}',
|
109
|
+
include_self=True)
|
110
|
+
return out.scatter_reduce_(dim, index, src,
|
111
|
+
reduce=f'a{reduce[-3:]}',
|
112
|
+
include_self=True)
|
113
|
+
|
114
|
+
return torch_scatter.scatter(src, index, dim, dim_size=dim_size,
|
115
|
+
reduce=reduce[-3:])
|
116
|
+
|
117
|
+
# For "mul" reduction, we prefer `scatter_reduce_` on CPU:
|
118
|
+
if reduce == 'mul':
|
119
|
+
if (not torch_geometric.typing.WITH_TORCH_SCATTER or is_compiling()
|
120
|
+
or not src.is_cuda):
|
121
|
+
|
122
|
+
if src.is_cuda and not is_compiling():
|
123
|
+
warnings.warn(f"The usage of `scatter(reduce='{reduce}')` "
|
124
|
+
f"can be accelerated via the 'torch-scatter'"
|
125
|
+
f" package, but it was not found")
|
126
|
+
|
127
|
+
index = broadcast(index, src, dim)
|
128
|
+
# We initialize with `one` here to match `scatter_mul` output:
|
129
|
+
return src.new_ones(size).scatter_reduce_(dim, index, src,
|
130
|
+
reduce='prod',
|
131
|
+
include_self=True)
|
132
|
+
|
133
|
+
return torch_scatter.scatter(src, index, dim, dim_size=dim_size,
|
134
|
+
reduce='mul')
|
135
|
+
|
136
|
+
raise ValueError(f"Encountered invalid `reduce` argument '{reduce}'")
|
137
|
+
|
138
|
+
|
139
|
+
def broadcast(src: Tensor, ref: Tensor, dim: int) -> Tensor:
|
140
|
+
dim = ref.dim() + dim if dim < 0 else dim
|
141
|
+
size = ((1, ) * dim) + (-1, ) + ((1, ) * (ref.dim() - dim - 1))
|
142
|
+
return src.view(size).expand_as(ref)
|
143
|
+
|
144
|
+
|
145
|
+
def scatter_argmax(
|
146
|
+
src: Tensor,
|
147
|
+
index: Tensor,
|
148
|
+
dim: int = 0,
|
149
|
+
dim_size: Optional[int] = None,
|
150
|
+
) -> Tensor:
|
151
|
+
|
152
|
+
if (torch_geometric.typing.WITH_TORCH_SCATTER and not is_compiling()
|
153
|
+
and not is_in_onnx_export()):
|
154
|
+
out = torch_scatter.scatter_max(src, index, dim=dim, dim_size=dim_size)
|
155
|
+
return out[1]
|
156
|
+
|
157
|
+
# Only implemented under certain conditions for now :(
|
158
|
+
assert src.dim() == 1 and index.dim() == 1
|
159
|
+
assert dim == 0 or dim == -1
|
160
|
+
assert src.numel() == index.numel()
|
161
|
+
|
162
|
+
if dim_size is None:
|
163
|
+
dim_size = int(index.max()) + 1 if index.numel() > 0 else 0
|
164
|
+
|
165
|
+
if not is_in_onnx_export():
|
166
|
+
res = src.new_empty(dim_size)
|
167
|
+
res.scatter_reduce_(0, index, src.detach(), reduce='amax',
|
168
|
+
include_self=False)
|
169
|
+
else:
|
170
|
+
# `include_self=False` is currently not supported by ONNX:
|
171
|
+
res = src.new_full(
|
172
|
+
size=(dim_size, ),
|
173
|
+
fill_value=src.min(), # type: ignore
|
174
|
+
)
|
175
|
+
res.scatter_reduce_(0, index, src.detach(), reduce="amax",
|
176
|
+
include_self=True)
|
177
|
+
|
178
|
+
out = index.new_full((dim_size, ), fill_value=dim_size - 1)
|
179
|
+
nonzero = (src == res[index]).nonzero().view(-1)
|
180
|
+
out[index[nonzero]] = nonzero
|
181
|
+
|
182
|
+
return out
|
183
|
+
|
184
|
+
|
185
|
+
def group_argsort(
|
186
|
+
src: Tensor,
|
187
|
+
index: Tensor,
|
188
|
+
dim: int = 0,
|
189
|
+
num_groups: Optional[int] = None,
|
190
|
+
descending: bool = False,
|
191
|
+
return_consecutive: bool = False,
|
192
|
+
stable: bool = False,
|
193
|
+
) -> Tensor:
|
194
|
+
r"""Returns the indices that sort the tensor :obj:`src` along a given
|
195
|
+
dimension in ascending order by value.
|
196
|
+
In contrast to :meth:`torch.argsort`, sorting is performed in groups
|
197
|
+
according to the values in :obj:`index`.
|
198
|
+
|
199
|
+
Args:
|
200
|
+
src (torch.Tensor): The source tensor.
|
201
|
+
index (torch.Tensor): The index tensor.
|
202
|
+
dim (int, optional): The dimension along which to index.
|
203
|
+
(default: :obj:`0`)
|
204
|
+
num_groups (int, optional): The number of groups.
|
205
|
+
(default: :obj:`None`)
|
206
|
+
descending (bool, optional): Controls the sorting order (ascending or
|
207
|
+
descending). (default: :obj:`False`)
|
208
|
+
return_consecutive (bool, optional): If set to :obj:`True`, will not
|
209
|
+
offset the output to start from :obj:`0` for each group.
|
210
|
+
(default: :obj:`False`)
|
211
|
+
stable (bool, optional): Controls the relative order of equivalent
|
212
|
+
elements. (default: :obj:`False`)
|
213
|
+
|
214
|
+
Example:
|
215
|
+
>>> src = torch.tensor([0, 1, 5, 4, 3, 2, 6, 7, 8])
|
216
|
+
>>> index = torch.tensor([0, 0, 1, 1, 1, 1, 2, 2, 2])
|
217
|
+
>>> group_argsort(src, index)
|
218
|
+
tensor([0, 1, 3, 2, 1, 0, 0, 1, 2])
|
219
|
+
"""
|
220
|
+
# Only implemented under certain conditions for now :(
|
221
|
+
assert src.dim() == 1 and index.dim() == 1
|
222
|
+
assert dim == 0 or dim == -1
|
223
|
+
assert src.numel() == index.numel()
|
224
|
+
|
225
|
+
if src.numel() == 0:
|
226
|
+
return torch.zeros_like(src)
|
227
|
+
|
228
|
+
# Normalize `src` to range [0, 1]:
|
229
|
+
src = src - src.min()
|
230
|
+
src = src / src.max()
|
231
|
+
|
232
|
+
# Compute `grouped_argsort`:
|
233
|
+
src = src - 2 * index if descending else src + 2 * index
|
234
|
+
perm = src.argsort(descending=descending, stable=stable)
|
235
|
+
out = torch.empty_like(index)
|
236
|
+
out[perm] = torch.arange(index.numel(), device=index.device)
|
237
|
+
|
238
|
+
if return_consecutive:
|
239
|
+
return out
|
240
|
+
|
241
|
+
# Compute cumulative sum of number of entries with the same index:
|
242
|
+
count = scatter(torch.ones_like(index), index, dim=dim,
|
243
|
+
dim_size=num_groups, reduce='sum')
|
244
|
+
ptr = cumsum(count)
|
245
|
+
|
246
|
+
return out - ptr[index]
|
247
|
+
|
248
|
+
|
249
|
+
def group_cat(
|
250
|
+
tensors: Union[List[Tensor], Tuple[Tensor, ...]],
|
251
|
+
indices: Union[List[Tensor], Tuple[Tensor, ...]],
|
252
|
+
dim: int = 0,
|
253
|
+
return_index: bool = False,
|
254
|
+
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
255
|
+
r"""Concatenates the given sequence of tensors :obj:`tensors` in the given
|
256
|
+
dimension :obj:`dim`.
|
257
|
+
Different from :meth:`torch.cat`, values along the concatenating dimension
|
258
|
+
are grouped according to the indices defined in the :obj:`index` tensors.
|
259
|
+
All tensors must have the same shape (except in the concatenating
|
260
|
+
dimension).
|
261
|
+
|
262
|
+
Args:
|
263
|
+
tensors ([Tensor]): Sequence of tensors.
|
264
|
+
indices ([Tensor]): Sequence of index tensors.
|
265
|
+
dim (int, optional): The dimension along which the tensors are
|
266
|
+
concatenated. (default: :obj:`0`)
|
267
|
+
return_index (bool, optional): If set to :obj:`True`, will return the
|
268
|
+
new index tensor. (default: :obj:`False`)
|
269
|
+
|
270
|
+
Example:
|
271
|
+
>>> x1 = torch.tensor([[0.2716, 0.4233],
|
272
|
+
... [0.3166, 0.0142],
|
273
|
+
... [0.2371, 0.3839],
|
274
|
+
... [0.4100, 0.0012]])
|
275
|
+
>>> x2 = torch.tensor([[0.3752, 0.5782],
|
276
|
+
... [0.7757, 0.5999]])
|
277
|
+
>>> index1 = torch.tensor([0, 0, 1, 2])
|
278
|
+
>>> index2 = torch.tensor([0, 2])
|
279
|
+
>>> scatter_concat([x1,x2], [index1, index2], dim=0)
|
280
|
+
tensor([[0.2716, 0.4233],
|
281
|
+
[0.3166, 0.0142],
|
282
|
+
[0.3752, 0.5782],
|
283
|
+
[0.2371, 0.3839],
|
284
|
+
[0.4100, 0.0012],
|
285
|
+
[0.7757, 0.5999]])
|
286
|
+
"""
|
287
|
+
assert len(tensors) == len(indices)
|
288
|
+
index, perm = torch.cat(indices).sort(stable=True)
|
289
|
+
out = torch.cat(tensors, dim=dim).index_select(dim, perm)
|
290
|
+
return (out, index) if return_index else out
|
@@ -107,8 +107,6 @@ def sort_edge_index( # noqa: F811
|
|
107
107
|
num_nodes = maybe_num_nodes(edge_index, num_nodes)
|
108
108
|
|
109
109
|
if num_nodes * num_nodes > torch_geometric.typing.MAX_INT64:
|
110
|
-
if not torch_geometric.typing.WITH_PT113:
|
111
|
-
raise ValueError("'sort_edge_index' will result in an overflow")
|
112
110
|
perm = lexsort(keys=[
|
113
111
|
edge_index[int(sort_by_row)],
|
114
112
|
edge_index[1 - int(sort_by_row)],
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/_spmm.py
RENAMED
@@ -115,8 +115,7 @@ def spmm(
|
|
115
115
|
if src.layout == torch.sparse_csr:
|
116
116
|
ptr = src.crow_indices()
|
117
117
|
deg = ptr[1:] - ptr[:-1]
|
118
|
-
elif
|
119
|
-
and src.layout == torch.sparse_csc):
|
118
|
+
elif src.layout == torch.sparse_csc:
|
120
119
|
assert src.layout == torch.sparse_csc
|
121
120
|
ones = torch.ones_like(src.values())
|
122
121
|
index = src.row_indices()
|
{pyg_nightly-2.7.0.dev20250503 → pyg_nightly-2.7.0.dev20250505}/torch_geometric/utils/sparse.py
RENAMED
@@ -1,4 +1,3 @@
|
|
1
|
-
import typing
|
2
1
|
import warnings
|
3
2
|
from typing import Any, List, Optional, Tuple, Union
|
4
3
|
|
@@ -124,8 +123,7 @@ def is_torch_sparse_tensor(src: Any) -> bool:
|
|
124
123
|
return True
|
125
124
|
if src.layout == torch.sparse_csr:
|
126
125
|
return True
|
127
|
-
if
|
128
|
-
and src.layout == torch.sparse_csc):
|
126
|
+
if src.layout == torch.sparse_csc:
|
129
127
|
return True
|
130
128
|
return False
|
131
129
|
|
@@ -320,12 +318,6 @@ def to_torch_csc_tensor(
|
|
320
318
|
size=(4, 4), nnz=6, layout=torch.sparse_csc)
|
321
319
|
|
322
320
|
"""
|
323
|
-
if not torch_geometric.typing.WITH_PT112:
|
324
|
-
if typing.TYPE_CHECKING:
|
325
|
-
raise NotImplementedError
|
326
|
-
return torch_geometric.typing.MockTorchCSCTensor(
|
327
|
-
edge_index, edge_attr, size)
|
328
|
-
|
329
321
|
if size is None:
|
330
322
|
size = int(edge_index.max()) + 1
|
331
323
|
|
@@ -392,7 +384,7 @@ def to_torch_sparse_tensor(
|
|
392
384
|
return to_torch_coo_tensor(edge_index, edge_attr, size, is_coalesced)
|
393
385
|
if layout == torch.sparse_csr:
|
394
386
|
return to_torch_csr_tensor(edge_index, edge_attr, size, is_coalesced)
|
395
|
-
if
|
387
|
+
if layout == torch.sparse_csc:
|
396
388
|
return to_torch_csc_tensor(edge_index, edge_attr, size, is_coalesced)
|
397
389
|
|
398
390
|
raise ValueError(f"Unexpected sparse tensor layout (got '{layout}')")
|
@@ -431,7 +423,7 @@ def to_edge_index(adj: Union[Tensor, SparseTensor]) -> Tuple[Tensor, Tensor]:
|
|
431
423
|
col = adj.col_indices().detach()
|
432
424
|
return torch.stack([row, col], dim=0).long(), adj.values()
|
433
425
|
|
434
|
-
if
|
426
|
+
if adj.layout == torch.sparse_csc:
|
435
427
|
col = ptr2index(adj.ccol_indices().detach())
|
436
428
|
row = adj.row_indices().detach()
|
437
429
|
return torch.stack([row, col], dim=0).long(), adj.values()
|
@@ -480,7 +472,7 @@ def set_sparse_value(adj: Tensor, value: Tensor) -> Tensor:
|
|
480
472
|
device=value.device,
|
481
473
|
)
|
482
474
|
|
483
|
-
if
|
475
|
+
if adj.layout == torch.sparse_csc:
|
484
476
|
return torch.sparse_csc_tensor(
|
485
477
|
ccol_indices=adj.ccol_indices(),
|
486
478
|
row_indices=adj.row_indices(),
|