pyg-nightly 2.7.0.dev20250428__tar.gz → 2.7.0.dev20250429__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/__init__.py +1 -1
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/explanation.py +86 -2
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/visualization/__init__.py +2 -1
- pyg_nightly-2.7.0.dev20250429/torch_geometric/visualization/graph.py +398 -0
- pyg_nightly-2.7.0.dev20250428/torch_geometric/visualization/graph.py +0 -152
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/hash_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/attention/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/attract_repel.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/nlp/llm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/add_gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250428 → pyg_nightly-2.7.0.dev20250429}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250429
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250429'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -1,5 +1,5 @@
|
|
1
1
|
import copy
|
2
|
-
from typing import Dict, List, Optional, Union
|
2
|
+
from typing import Dict, List, Optional, Tuple, Union
|
3
3
|
|
4
4
|
import torch
|
5
5
|
from torch import Tensor
|
@@ -8,7 +8,10 @@ from torch_geometric.data.data import Data, warn_or_raise
|
|
8
8
|
from torch_geometric.data.hetero_data import HeteroData
|
9
9
|
from torch_geometric.explain.config import ThresholdConfig, ThresholdType
|
10
10
|
from torch_geometric.typing import EdgeType, NodeType
|
11
|
-
from torch_geometric.visualization import
|
11
|
+
from torch_geometric.visualization import (
|
12
|
+
visualize_graph,
|
13
|
+
visualize_hetero_graph,
|
14
|
+
)
|
12
15
|
|
13
16
|
|
14
17
|
class ExplanationMixin:
|
@@ -362,6 +365,87 @@ class HeteroExplanation(HeteroData, ExplanationMixin):
|
|
362
365
|
|
363
366
|
return _visualize_score(score, all_feat_labels, path, top_k)
|
364
367
|
|
368
|
+
def visualize_graph(
|
369
|
+
self,
|
370
|
+
path: Optional[str] = None,
|
371
|
+
node_labels: Optional[Dict[NodeType, List[str]]] = None,
|
372
|
+
node_size_range: Tuple[float, float] = (50, 500),
|
373
|
+
node_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
374
|
+
edge_width_range: Tuple[float, float] = (0.1, 2.0),
|
375
|
+
edge_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
376
|
+
) -> None:
|
377
|
+
r"""Visualizes the explanation subgraph using networkx, with edge
|
378
|
+
opacity corresponding to edge importance and node colors
|
379
|
+
corresponding to node types.
|
380
|
+
|
381
|
+
Args:
|
382
|
+
path (str, optional): The path to where the plot is saved.
|
383
|
+
If set to :obj:`None`, will visualize the plot on-the-fly.
|
384
|
+
(default: :obj:`None`)
|
385
|
+
node_labels (Dict[NodeType, List[str]], optional): The display
|
386
|
+
names of nodes for each node type that will be shown in the
|
387
|
+
visualization. (default: :obj:`None`)
|
388
|
+
node_size_range (Tuple[float, float], optional): The minimum and
|
389
|
+
maximum node size in the visualization.
|
390
|
+
(default: :obj:`(50, 500)`)
|
391
|
+
node_opacity_range (Tuple[float, float], optional): The minimum and
|
392
|
+
maximum node opacity in the visualization.
|
393
|
+
(default: :obj:`(0.2, 1.0)`)
|
394
|
+
edge_width_range (Tuple[float, float], optional): The minimum and
|
395
|
+
maximum edge width in the visualization.
|
396
|
+
(default: :obj:`(0.1, 2.0)`)
|
397
|
+
edge_opacity_range (Tuple[float, float], optional): The minimum and
|
398
|
+
maximum edge opacity in the visualization.
|
399
|
+
(default: :obj:`(0.2, 1.0)`)
|
400
|
+
"""
|
401
|
+
# Validate node labels if provided
|
402
|
+
if node_labels is not None:
|
403
|
+
for node_type, labels in node_labels.items():
|
404
|
+
if node_type not in self.node_types:
|
405
|
+
raise ValueError(
|
406
|
+
f"Node type '{node_type}' in node_labels "
|
407
|
+
f"does not exist in the explanation graph")
|
408
|
+
if len(labels) != self[node_type].num_nodes:
|
409
|
+
raise ValueError(f"Number of labels for node type "
|
410
|
+
f"'{node_type}' (got {len(labels)}) does "
|
411
|
+
f"not match the number of nodes "
|
412
|
+
f"(got {self[node_type].num_nodes})")
|
413
|
+
# Get the explanation subgraph
|
414
|
+
subgraph = self.get_explanation_subgraph()
|
415
|
+
|
416
|
+
# Prepare edge indices and weights for each edge type
|
417
|
+
edge_index_dict = {}
|
418
|
+
edge_weight_dict = {}
|
419
|
+
for edge_type in subgraph.edge_types:
|
420
|
+
if edge_type[0] == 'x' or edge_type[-1] == 'x': # Skip edges
|
421
|
+
continue
|
422
|
+
edge_index_dict[edge_type] = subgraph[edge_type].edge_index
|
423
|
+
edge_weight_dict[edge_type] = subgraph[edge_type].get(
|
424
|
+
'edge_mask',
|
425
|
+
torch.ones(subgraph[edge_type].edge_index.size(1)))
|
426
|
+
|
427
|
+
# Prepare node weights for each node type
|
428
|
+
node_weight_dict = {}
|
429
|
+
for node_type in subgraph.node_types:
|
430
|
+
if node_type == 'x': # Skip the global store
|
431
|
+
continue
|
432
|
+
node_weight_dict[node_type] = subgraph[node_type] \
|
433
|
+
.get('node_mask',
|
434
|
+
torch.ones(subgraph[node_type].num_nodes)).squeeze(-1)
|
435
|
+
|
436
|
+
# Call the visualization function
|
437
|
+
visualize_hetero_graph(
|
438
|
+
edge_index_dict=edge_index_dict,
|
439
|
+
edge_weight_dict=edge_weight_dict,
|
440
|
+
path=path,
|
441
|
+
node_labels_dict=node_labels,
|
442
|
+
node_weight_dict=node_weight_dict,
|
443
|
+
node_size_range=node_size_range,
|
444
|
+
node_opacity_range=node_opacity_range,
|
445
|
+
edge_width_range=edge_width_range,
|
446
|
+
edge_opacity_range=edge_opacity_range,
|
447
|
+
)
|
448
|
+
|
365
449
|
|
366
450
|
def _visualize_score(
|
367
451
|
score: torch.Tensor,
|
@@ -0,0 +1,398 @@
|
|
1
|
+
from math import sqrt
|
2
|
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import Tensor
|
6
|
+
|
7
|
+
BACKENDS = {'graphviz', 'networkx'}
|
8
|
+
|
9
|
+
|
10
|
+
def has_graphviz() -> bool:
|
11
|
+
try:
|
12
|
+
import graphviz
|
13
|
+
except ImportError:
|
14
|
+
return False
|
15
|
+
|
16
|
+
try:
|
17
|
+
graphviz.Digraph().pipe()
|
18
|
+
except graphviz.backend.ExecutableNotFound:
|
19
|
+
return False
|
20
|
+
|
21
|
+
return True
|
22
|
+
|
23
|
+
|
24
|
+
def visualize_graph(
|
25
|
+
edge_index: Tensor,
|
26
|
+
edge_weight: Optional[Tensor] = None,
|
27
|
+
path: Optional[str] = None,
|
28
|
+
backend: Optional[str] = None,
|
29
|
+
node_labels: Optional[List[str]] = None,
|
30
|
+
) -> Any:
|
31
|
+
r"""Visualizes the graph given via :obj:`edge_index` and (optional)
|
32
|
+
:obj:`edge_weight`.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
edge_index (torch.Tensor): The edge indices.
|
36
|
+
edge_weight (torch.Tensor, optional): The edge weights.
|
37
|
+
path (str, optional): The path to where the plot is saved.
|
38
|
+
If set to :obj:`None`, will visualize the plot on-the-fly.
|
39
|
+
(default: :obj:`None`)
|
40
|
+
backend (str, optional): The graph drawing backend to use for
|
41
|
+
visualization (:obj:`"graphviz"`, :obj:`"networkx"`).
|
42
|
+
If set to :obj:`None`, will use the most appropriate
|
43
|
+
visualization backend based on available system packages.
|
44
|
+
(default: :obj:`None`)
|
45
|
+
node_labels (List[str], optional): The labels/IDs of nodes.
|
46
|
+
(default: :obj:`None`)
|
47
|
+
"""
|
48
|
+
if edge_weight is not None: # Normalize edge weights.
|
49
|
+
edge_weight = edge_weight - edge_weight.min()
|
50
|
+
edge_weight = edge_weight / edge_weight.max()
|
51
|
+
|
52
|
+
if edge_weight is not None: # Discard any edges with zero edge weight:
|
53
|
+
mask = edge_weight > 1e-7
|
54
|
+
edge_index = edge_index[:, mask]
|
55
|
+
edge_weight = edge_weight[mask]
|
56
|
+
|
57
|
+
if edge_weight is None:
|
58
|
+
edge_weight = torch.ones(edge_index.size(1))
|
59
|
+
|
60
|
+
if backend is None:
|
61
|
+
backend = 'graphviz' if has_graphviz() else 'networkx'
|
62
|
+
|
63
|
+
if backend.lower() == 'networkx':
|
64
|
+
return _visualize_graph_via_networkx(edge_index, edge_weight, path,
|
65
|
+
node_labels)
|
66
|
+
elif backend.lower() == 'graphviz':
|
67
|
+
return _visualize_graph_via_graphviz(edge_index, edge_weight, path,
|
68
|
+
node_labels)
|
69
|
+
|
70
|
+
raise ValueError(f"Expected graph drawing backend to be in "
|
71
|
+
f"{BACKENDS} (got '{backend}')")
|
72
|
+
|
73
|
+
|
74
|
+
def _visualize_graph_via_graphviz(
|
75
|
+
edge_index: Tensor,
|
76
|
+
edge_weight: Tensor,
|
77
|
+
path: Optional[str] = None,
|
78
|
+
node_labels: Optional[List[str]] = None,
|
79
|
+
) -> Any:
|
80
|
+
import graphviz
|
81
|
+
|
82
|
+
suffix = path.split('.')[-1] if path is not None else None
|
83
|
+
g = graphviz.Digraph('graph', format=suffix)
|
84
|
+
g.attr('node', shape='circle', fontsize='11pt')
|
85
|
+
|
86
|
+
for node in edge_index.view(-1).unique().tolist():
|
87
|
+
g.node(str(node) if node_labels is None else node_labels[node])
|
88
|
+
|
89
|
+
for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
|
90
|
+
hex_color = hex(255 - round(255 * w))[2:]
|
91
|
+
hex_color = f'{hex_color}0' if len(hex_color) == 1 else hex_color
|
92
|
+
if node_labels is not None:
|
93
|
+
src = node_labels[src]
|
94
|
+
dst = node_labels[dst]
|
95
|
+
g.edge(str(src), str(dst), color=f'#{hex_color}{hex_color}{hex_color}')
|
96
|
+
|
97
|
+
if path is not None:
|
98
|
+
path = '.'.join(path.split('.')[:-1])
|
99
|
+
g.render(path, cleanup=True)
|
100
|
+
else:
|
101
|
+
g.view()
|
102
|
+
|
103
|
+
return g
|
104
|
+
|
105
|
+
|
106
|
+
def _visualize_graph_via_networkx(
|
107
|
+
edge_index: Tensor,
|
108
|
+
edge_weight: Tensor,
|
109
|
+
path: Optional[str] = None,
|
110
|
+
node_labels: Optional[List[str]] = None,
|
111
|
+
) -> Any:
|
112
|
+
import matplotlib.pyplot as plt
|
113
|
+
import networkx as nx
|
114
|
+
|
115
|
+
g = nx.DiGraph()
|
116
|
+
node_size = 800
|
117
|
+
|
118
|
+
for node in edge_index.view(-1).unique().tolist():
|
119
|
+
g.add_node(node if node_labels is None else node_labels[node])
|
120
|
+
|
121
|
+
for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
|
122
|
+
if node_labels is not None:
|
123
|
+
src = node_labels[src]
|
124
|
+
dst = node_labels[dst]
|
125
|
+
g.add_edge(src, dst, alpha=w)
|
126
|
+
|
127
|
+
ax = plt.gca()
|
128
|
+
pos = nx.spring_layout(g)
|
129
|
+
for src, dst, data in g.edges(data=True):
|
130
|
+
ax.annotate(
|
131
|
+
'',
|
132
|
+
xy=pos[src],
|
133
|
+
xytext=pos[dst],
|
134
|
+
arrowprops=dict(
|
135
|
+
arrowstyle="<-",
|
136
|
+
alpha=data['alpha'],
|
137
|
+
shrinkA=sqrt(node_size) / 2.0,
|
138
|
+
shrinkB=sqrt(node_size) / 2.0,
|
139
|
+
connectionstyle="arc3,rad=0.1",
|
140
|
+
),
|
141
|
+
)
|
142
|
+
|
143
|
+
nx.draw_networkx_nodes(g, pos, node_size=node_size, node_color='white',
|
144
|
+
margins=0.1, edgecolors='black')
|
145
|
+
nx.draw_networkx_labels(g, pos, font_size=10)
|
146
|
+
|
147
|
+
if path is not None:
|
148
|
+
plt.savefig(path)
|
149
|
+
else:
|
150
|
+
plt.show()
|
151
|
+
|
152
|
+
plt.close()
|
153
|
+
|
154
|
+
|
155
|
+
def visualize_hetero_graph(
|
156
|
+
edge_index_dict: Dict[Tuple[str, str, str], Tensor],
|
157
|
+
edge_weight_dict: Dict[Tuple[str, str, str], Tensor],
|
158
|
+
path: Optional[str] = None,
|
159
|
+
backend: Optional[str] = None,
|
160
|
+
node_labels_dict: Optional[Dict[str, List[str]]] = None,
|
161
|
+
node_weight_dict: Optional[Dict[str, Tensor]] = None,
|
162
|
+
node_size_range: Tuple[float, float] = (50, 500),
|
163
|
+
node_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
164
|
+
edge_width_range: Tuple[float, float] = (0.1, 2.0),
|
165
|
+
edge_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
166
|
+
) -> Any:
|
167
|
+
"""Visualizes a heterogeneous graph using networkx."""
|
168
|
+
if backend is not None and backend != "networkx":
|
169
|
+
raise ValueError("Only 'networkx' backend is supported")
|
170
|
+
|
171
|
+
# Filter out edges with 0 weight
|
172
|
+
filtered_edge_index_dict = {}
|
173
|
+
filtered_edge_weight_dict = {}
|
174
|
+
for edge_type in edge_index_dict.keys():
|
175
|
+
mask = edge_weight_dict[edge_type] > 0
|
176
|
+
if mask.sum() > 0:
|
177
|
+
filtered_edge_index_dict[edge_type] = edge_index_dict[
|
178
|
+
edge_type][:, mask]
|
179
|
+
filtered_edge_weight_dict[edge_type] = edge_weight_dict[edge_type][
|
180
|
+
mask]
|
181
|
+
|
182
|
+
# Get all unique nodes that are still in the filtered edges
|
183
|
+
remaining_nodes: Dict[str, Set[int]] = {}
|
184
|
+
for edge_type, edge_index in filtered_edge_index_dict.items():
|
185
|
+
src_type, _, dst_type = edge_type
|
186
|
+
if src_type not in remaining_nodes:
|
187
|
+
remaining_nodes[src_type] = set()
|
188
|
+
if dst_type not in remaining_nodes:
|
189
|
+
remaining_nodes[dst_type] = set()
|
190
|
+
remaining_nodes[src_type].update(edge_index[0].tolist())
|
191
|
+
remaining_nodes[dst_type].update(edge_index[1].tolist())
|
192
|
+
|
193
|
+
# Filter node weights to only include remaining nodes
|
194
|
+
if node_weight_dict is not None:
|
195
|
+
filtered_node_weight_dict = {}
|
196
|
+
for node_type, weights in node_weight_dict.items():
|
197
|
+
if node_type in remaining_nodes:
|
198
|
+
mask = torch.zeros(len(weights), dtype=torch.bool)
|
199
|
+
mask[list(remaining_nodes[node_type])] = True
|
200
|
+
filtered_node_weight_dict[node_type] = weights[mask]
|
201
|
+
node_weight_dict = filtered_node_weight_dict
|
202
|
+
|
203
|
+
# Filter node labels to only include remaining nodes
|
204
|
+
if node_labels_dict is not None:
|
205
|
+
filtered_node_labels_dict = {}
|
206
|
+
for node_type, labels in node_labels_dict.items():
|
207
|
+
if node_type in remaining_nodes:
|
208
|
+
filtered_node_labels_dict[node_type] = [
|
209
|
+
label for i, label in enumerate(labels)
|
210
|
+
if i in remaining_nodes[node_type]
|
211
|
+
]
|
212
|
+
node_labels_dict = filtered_node_labels_dict
|
213
|
+
|
214
|
+
return _visualize_hetero_graph_via_networkx(
|
215
|
+
filtered_edge_index_dict,
|
216
|
+
filtered_edge_weight_dict,
|
217
|
+
path,
|
218
|
+
node_labels_dict,
|
219
|
+
node_weight_dict,
|
220
|
+
node_size_range,
|
221
|
+
node_opacity_range,
|
222
|
+
edge_width_range,
|
223
|
+
edge_opacity_range,
|
224
|
+
)
|
225
|
+
|
226
|
+
|
227
|
+
def _visualize_hetero_graph_via_networkx(
|
228
|
+
edge_index_dict: Dict[Tuple[str, str, str], Tensor],
|
229
|
+
edge_weight_dict: Dict[Tuple[str, str, str], Tensor],
|
230
|
+
path: Optional[str] = None,
|
231
|
+
node_labels_dict: Optional[Dict[str, List[str]]] = None,
|
232
|
+
node_weight_dict: Optional[Dict[str, Tensor]] = None,
|
233
|
+
node_size_range: Tuple[float, float] = (50, 500),
|
234
|
+
node_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
235
|
+
edge_width_range: Tuple[float, float] = (0.1, 2.0),
|
236
|
+
edge_opacity_range: Tuple[float, float] = (0.2, 1.0),
|
237
|
+
) -> Any:
|
238
|
+
import matplotlib.pyplot as plt
|
239
|
+
import networkx as nx
|
240
|
+
|
241
|
+
g = nx.DiGraph()
|
242
|
+
node_offsets: Dict[str, int] = {}
|
243
|
+
current_offset = 0
|
244
|
+
|
245
|
+
# First, collect all unique node types and their counts
|
246
|
+
node_types = set()
|
247
|
+
node_counts: Dict[str, int] = {}
|
248
|
+
remaining_nodes: Dict[str, Set[int]] = {
|
249
|
+
} # Track which nodes are actually present in edges
|
250
|
+
|
251
|
+
# Get all unique nodes that are in the edges
|
252
|
+
for edge_type in edge_index_dict.keys():
|
253
|
+
src_type, _, dst_type = edge_type
|
254
|
+
node_types.add(src_type)
|
255
|
+
node_types.add(dst_type)
|
256
|
+
|
257
|
+
if src_type not in remaining_nodes:
|
258
|
+
remaining_nodes[src_type] = set()
|
259
|
+
if dst_type not in remaining_nodes:
|
260
|
+
remaining_nodes[dst_type] = set()
|
261
|
+
|
262
|
+
remaining_nodes[src_type].update(
|
263
|
+
edge_index_dict[edge_type][0].tolist())
|
264
|
+
remaining_nodes[dst_type].update(
|
265
|
+
edge_index_dict[edge_type][1].tolist())
|
266
|
+
|
267
|
+
# Set node counts based on remaining nodes
|
268
|
+
for node_type in node_types:
|
269
|
+
node_counts[node_type] = len(remaining_nodes[node_type])
|
270
|
+
|
271
|
+
# Add nodes for each node type
|
272
|
+
for node_type in node_types:
|
273
|
+
num_nodes = node_counts[node_type]
|
274
|
+
node_offsets[node_type] = current_offset
|
275
|
+
|
276
|
+
# Get node weights if provided
|
277
|
+
weights = None
|
278
|
+
if node_weight_dict is not None and node_type in node_weight_dict:
|
279
|
+
weights = node_weight_dict[node_type]
|
280
|
+
if len(weights) != num_nodes:
|
281
|
+
raise ValueError(f"Number of weights for node type "
|
282
|
+
f"{node_type} ({len(weights)}) does not "
|
283
|
+
f"match number of nodes ({num_nodes})")
|
284
|
+
|
285
|
+
for i in range(num_nodes):
|
286
|
+
node_id = current_offset + i
|
287
|
+
label = (node_labels_dict[node_type][i]
|
288
|
+
if node_labels_dict is not None
|
289
|
+
and node_type in node_labels_dict else "")
|
290
|
+
|
291
|
+
# Calculate node size and opacity if weights provided
|
292
|
+
size = node_size_range[1]
|
293
|
+
opacity = node_opacity_range[1]
|
294
|
+
if weights is not None:
|
295
|
+
w = weights[i].item()
|
296
|
+
size = node_size_range[0] + w * \
|
297
|
+
(node_size_range[1] - node_size_range[0])
|
298
|
+
opacity = node_opacity_range[0] + w * \
|
299
|
+
(node_opacity_range[1] - node_opacity_range[0])
|
300
|
+
|
301
|
+
g.add_node(node_id, label=label, type=node_type, size=size,
|
302
|
+
alpha=opacity)
|
303
|
+
|
304
|
+
current_offset += num_nodes
|
305
|
+
|
306
|
+
# Add edges with remapped node indices
|
307
|
+
for edge_type, edge_index in edge_index_dict.items():
|
308
|
+
src_type, _, dst_type = edge_type
|
309
|
+
edge_weight = edge_weight_dict[edge_type]
|
310
|
+
src_offset = node_offsets[src_type]
|
311
|
+
dst_offset = node_offsets[dst_type]
|
312
|
+
|
313
|
+
# Create mappings for source and target nodes
|
314
|
+
src_mapping = {
|
315
|
+
old_idx: new_idx
|
316
|
+
for new_idx, old_idx in enumerate(sorted(
|
317
|
+
remaining_nodes[src_type]))
|
318
|
+
}
|
319
|
+
dst_mapping = {
|
320
|
+
old_idx: new_idx
|
321
|
+
for new_idx, old_idx in enumerate(sorted(
|
322
|
+
remaining_nodes[dst_type]))
|
323
|
+
}
|
324
|
+
|
325
|
+
for (src, dst), w in zip(edge_index.t().tolist(),
|
326
|
+
edge_weight.tolist()):
|
327
|
+
# Remap node indices
|
328
|
+
new_src = src_mapping[src] + src_offset
|
329
|
+
new_dst = dst_mapping[dst] + dst_offset
|
330
|
+
|
331
|
+
# Calculate edge width and opacity based on weight
|
332
|
+
width = edge_width_range[0] + w * \
|
333
|
+
(edge_width_range[1] - edge_width_range[0])
|
334
|
+
opacity = edge_opacity_range[0] + w * \
|
335
|
+
(edge_opacity_range[1] - edge_opacity_range[0])
|
336
|
+
g.add_edge(new_src, new_dst, width=width, alpha=opacity)
|
337
|
+
|
338
|
+
# Draw the graph
|
339
|
+
ax = plt.gca()
|
340
|
+
pos = nx.arf_layout(g)
|
341
|
+
|
342
|
+
# Draw edges with arrows
|
343
|
+
for src, dst, data in g.edges(data=True):
|
344
|
+
ax.annotate(
|
345
|
+
'',
|
346
|
+
xy=pos[src],
|
347
|
+
xytext=pos[dst],
|
348
|
+
arrowprops=dict(
|
349
|
+
arrowstyle="<-",
|
350
|
+
alpha=data['alpha'],
|
351
|
+
linewidth=data['width'],
|
352
|
+
shrinkA=sqrt(g.nodes[src]['size']) / 2.0,
|
353
|
+
shrinkB=sqrt(g.nodes[dst]['size']) / 2.0,
|
354
|
+
connectionstyle="arc3,rad=0.1",
|
355
|
+
),
|
356
|
+
)
|
357
|
+
|
358
|
+
# Draw nodes colored by type
|
359
|
+
node_colors = []
|
360
|
+
node_sizes = []
|
361
|
+
node_alphas = []
|
362
|
+
|
363
|
+
# Use matplotlib tab20 colormap for consistent coloring
|
364
|
+
tab10_cmap = plt.cm.tab10 # type: ignore[attr-defined]
|
365
|
+
node_type_colors: Dict[str, Any] = {} # Store color for each node type
|
366
|
+
for node in g.nodes():
|
367
|
+
node_type = g.nodes[node]['type']
|
368
|
+
# Assign a consistent color for each node type
|
369
|
+
if node_type not in node_type_colors:
|
370
|
+
color_idx = len(node_type_colors) % 10 # Cycle through colors
|
371
|
+
node_type_colors[node_type] = tab10_cmap(color_idx)
|
372
|
+
node_colors.append(node_type_colors[node_type])
|
373
|
+
node_sizes.append(g.nodes[node]['size'])
|
374
|
+
node_alphas.append(g.nodes[node]['alpha'])
|
375
|
+
|
376
|
+
nx.draw_networkx_nodes(g, pos, node_size=node_sizes,
|
377
|
+
node_color=node_colors, margins=0.1,
|
378
|
+
alpha=node_alphas)
|
379
|
+
|
380
|
+
# Draw labels
|
381
|
+
labels = nx.get_node_attributes(g, 'label')
|
382
|
+
nx.draw_networkx_labels(g, pos, labels, font_size=10)
|
383
|
+
|
384
|
+
# Add legend
|
385
|
+
legend_elements = []
|
386
|
+
for node_type, color in node_type_colors.items():
|
387
|
+
legend_elements.append(
|
388
|
+
plt.Line2D([0], [0], marker='o', color='w', label=node_type,
|
389
|
+
markerfacecolor=color, markersize=10))
|
390
|
+
ax.legend(handles=legend_elements, loc='upper right',
|
391
|
+
bbox_to_anchor=(0.9, 1))
|
392
|
+
|
393
|
+
if path is not None:
|
394
|
+
plt.savefig(path, bbox_inches='tight')
|
395
|
+
else:
|
396
|
+
plt.show()
|
397
|
+
|
398
|
+
plt.close()
|
@@ -1,152 +0,0 @@
|
|
1
|
-
from math import sqrt
|
2
|
-
from typing import Any, List, Optional
|
3
|
-
|
4
|
-
import torch
|
5
|
-
from torch import Tensor
|
6
|
-
|
7
|
-
BACKENDS = {'graphviz', 'networkx'}
|
8
|
-
|
9
|
-
|
10
|
-
def has_graphviz() -> bool:
|
11
|
-
try:
|
12
|
-
import graphviz
|
13
|
-
except ImportError:
|
14
|
-
return False
|
15
|
-
|
16
|
-
try:
|
17
|
-
graphviz.Digraph().pipe()
|
18
|
-
except graphviz.backend.ExecutableNotFound:
|
19
|
-
return False
|
20
|
-
|
21
|
-
return True
|
22
|
-
|
23
|
-
|
24
|
-
def visualize_graph(
|
25
|
-
edge_index: Tensor,
|
26
|
-
edge_weight: Optional[Tensor] = None,
|
27
|
-
path: Optional[str] = None,
|
28
|
-
backend: Optional[str] = None,
|
29
|
-
node_labels: Optional[List[str]] = None,
|
30
|
-
) -> Any:
|
31
|
-
r"""Visualizes the graph given via :obj:`edge_index` and (optional)
|
32
|
-
:obj:`edge_weight`.
|
33
|
-
|
34
|
-
Args:
|
35
|
-
edge_index (torch.Tensor): The edge indices.
|
36
|
-
edge_weight (torch.Tensor, optional): The edge weights.
|
37
|
-
path (str, optional): The path to where the plot is saved.
|
38
|
-
If set to :obj:`None`, will visualize the plot on-the-fly.
|
39
|
-
(default: :obj:`None`)
|
40
|
-
backend (str, optional): The graph drawing backend to use for
|
41
|
-
visualization (:obj:`"graphviz"`, :obj:`"networkx"`).
|
42
|
-
If set to :obj:`None`, will use the most appropriate
|
43
|
-
visualization backend based on available system packages.
|
44
|
-
(default: :obj:`None`)
|
45
|
-
node_labels (List[str], optional): The labels/IDs of nodes.
|
46
|
-
(default: :obj:`None`)
|
47
|
-
"""
|
48
|
-
if edge_weight is not None: # Normalize edge weights.
|
49
|
-
edge_weight = edge_weight - edge_weight.min()
|
50
|
-
edge_weight = edge_weight / edge_weight.max()
|
51
|
-
|
52
|
-
if edge_weight is not None: # Discard any edges with zero edge weight:
|
53
|
-
mask = edge_weight > 1e-7
|
54
|
-
edge_index = edge_index[:, mask]
|
55
|
-
edge_weight = edge_weight[mask]
|
56
|
-
|
57
|
-
if edge_weight is None:
|
58
|
-
edge_weight = torch.ones(edge_index.size(1))
|
59
|
-
|
60
|
-
if backend is None:
|
61
|
-
backend = 'graphviz' if has_graphviz() else 'networkx'
|
62
|
-
|
63
|
-
if backend.lower() == 'networkx':
|
64
|
-
return _visualize_graph_via_networkx(edge_index, edge_weight, path,
|
65
|
-
node_labels)
|
66
|
-
elif backend.lower() == 'graphviz':
|
67
|
-
return _visualize_graph_via_graphviz(edge_index, edge_weight, path,
|
68
|
-
node_labels)
|
69
|
-
|
70
|
-
raise ValueError(f"Expected graph drawing backend to be in "
|
71
|
-
f"{BACKENDS} (got '{backend}')")
|
72
|
-
|
73
|
-
|
74
|
-
def _visualize_graph_via_graphviz(
|
75
|
-
edge_index: Tensor,
|
76
|
-
edge_weight: Tensor,
|
77
|
-
path: Optional[str] = None,
|
78
|
-
node_labels: Optional[List[str]] = None,
|
79
|
-
) -> Any:
|
80
|
-
import graphviz
|
81
|
-
|
82
|
-
suffix = path.split('.')[-1] if path is not None else None
|
83
|
-
g = graphviz.Digraph('graph', format=suffix)
|
84
|
-
g.attr('node', shape='circle', fontsize='11pt')
|
85
|
-
|
86
|
-
for node in edge_index.view(-1).unique().tolist():
|
87
|
-
g.node(str(node) if node_labels is None else node_labels[node])
|
88
|
-
|
89
|
-
for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
|
90
|
-
hex_color = hex(255 - round(255 * w))[2:]
|
91
|
-
hex_color = f'{hex_color}0' if len(hex_color) == 1 else hex_color
|
92
|
-
if node_labels is not None:
|
93
|
-
src = node_labels[src]
|
94
|
-
dst = node_labels[dst]
|
95
|
-
g.edge(str(src), str(dst), color=f'#{hex_color}{hex_color}{hex_color}')
|
96
|
-
|
97
|
-
if path is not None:
|
98
|
-
path = '.'.join(path.split('.')[:-1])
|
99
|
-
g.render(path, cleanup=True)
|
100
|
-
else:
|
101
|
-
g.view()
|
102
|
-
|
103
|
-
return g
|
104
|
-
|
105
|
-
|
106
|
-
def _visualize_graph_via_networkx(
|
107
|
-
edge_index: Tensor,
|
108
|
-
edge_weight: Tensor,
|
109
|
-
path: Optional[str] = None,
|
110
|
-
node_labels: Optional[List[str]] = None,
|
111
|
-
) -> Any:
|
112
|
-
import matplotlib.pyplot as plt
|
113
|
-
import networkx as nx
|
114
|
-
|
115
|
-
g = nx.DiGraph()
|
116
|
-
node_size = 800
|
117
|
-
|
118
|
-
for node in edge_index.view(-1).unique().tolist():
|
119
|
-
g.add_node(node if node_labels is None else node_labels[node])
|
120
|
-
|
121
|
-
for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
|
122
|
-
if node_labels is not None:
|
123
|
-
src = node_labels[src]
|
124
|
-
dst = node_labels[dst]
|
125
|
-
g.add_edge(src, dst, alpha=w)
|
126
|
-
|
127
|
-
ax = plt.gca()
|
128
|
-
pos = nx.spring_layout(g)
|
129
|
-
for src, dst, data in g.edges(data=True):
|
130
|
-
ax.annotate(
|
131
|
-
'',
|
132
|
-
xy=pos[src],
|
133
|
-
xytext=pos[dst],
|
134
|
-
arrowprops=dict(
|
135
|
-
arrowstyle="<-",
|
136
|
-
alpha=data['alpha'],
|
137
|
-
shrinkA=sqrt(node_size) / 2.0,
|
138
|
-
shrinkB=sqrt(node_size) / 2.0,
|
139
|
-
connectionstyle="arc3,rad=0.1",
|
140
|
-
),
|
141
|
-
)
|
142
|
-
|
143
|
-
nx.draw_networkx_nodes(g, pos, node_size=node_size, node_color='white',
|
144
|
-
margins=0.1, edgecolors='black')
|
145
|
-
nx.draw_networkx_labels(g, pos, font_size=10)
|
146
|
-
|
147
|
-
if path is not None:
|
148
|
-
plt.savefig(path)
|
149
|
-
else:
|
150
|
-
plt.show()
|
151
|
-
|
152
|
-
plt.close()
|
File without changes
|