pyg-nightly 2.7.0.dev20250415__tar.gz → 2.7.0.dev20250417__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/__init__.py +1 -1
- pyg_nightly-2.7.0.dev20250417/torch_geometric/explain/algorithm/pg_explainer.py +516 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/gpse.py +5 -3
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/add_gpse.py +4 -3
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/__init__.py +2 -1
- pyg_nightly-2.7.0.dev20250417/torch_geometric/utils/embedding.py +141 -0
- pyg_nightly-2.7.0.dev20250415/torch_geometric/explain/algorithm/pg_explainer.py +0 -258
- pyg_nightly-2.7.0.dev20250415/torch_geometric/utils/embedding.py +0 -54
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/hash_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/attention/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/attract_repel.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/nlp/llm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250417
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250417'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -0,0 +1,516 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Dict, Optional, Tuple, Union, overload
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import Tensor
|
6
|
+
from torch.nn import ReLU, Sequential
|
7
|
+
|
8
|
+
from torch_geometric.explain import Explanation, HeteroExplanation
|
9
|
+
from torch_geometric.explain.algorithm import ExplainerAlgorithm
|
10
|
+
from torch_geometric.explain.algorithm.utils import (
|
11
|
+
clear_masks,
|
12
|
+
set_hetero_masks,
|
13
|
+
set_masks,
|
14
|
+
)
|
15
|
+
from torch_geometric.explain.config import (
|
16
|
+
ExplanationType,
|
17
|
+
ModelMode,
|
18
|
+
ModelTaskLevel,
|
19
|
+
)
|
20
|
+
from torch_geometric.nn import HANConv, HeteroConv, HGTConv, Linear
|
21
|
+
from torch_geometric.nn.inits import reset
|
22
|
+
from torch_geometric.typing import EdgeType, NodeType
|
23
|
+
from torch_geometric.utils import get_embeddings, get_embeddings_hetero
|
24
|
+
|
25
|
+
|
26
|
+
class PGExplainer(ExplainerAlgorithm):
|
27
|
+
r"""The PGExplainer model from the `"Parameterized Explainer for Graph
|
28
|
+
Neural Network" <https://arxiv.org/abs/2011.04573>`_ paper.
|
29
|
+
|
30
|
+
Internally, it utilizes a neural network to identify subgraph structures
|
31
|
+
that play a crucial role in the predictions made by a GNN.
|
32
|
+
Importantly, the :class:`PGExplainer` needs to be trained via
|
33
|
+
:meth:`~PGExplainer.train` before being able to generate explanations:
|
34
|
+
|
35
|
+
.. code-block:: python
|
36
|
+
|
37
|
+
explainer = Explainer(
|
38
|
+
model=model,
|
39
|
+
algorithm=PGExplainer(epochs=30, lr=0.003),
|
40
|
+
explanation_type='phenomenon',
|
41
|
+
edge_mask_type='object',
|
42
|
+
model_config=ModelConfig(...),
|
43
|
+
)
|
44
|
+
|
45
|
+
# Train against a variety of node-level or graph-level predictions:
|
46
|
+
for epoch in range(30):
|
47
|
+
for index in [...]: # Indices to train against.
|
48
|
+
loss = explainer.algorithm.train(epoch, model, x, edge_index,
|
49
|
+
target=target, index=index)
|
50
|
+
|
51
|
+
# Get the final explanations:
|
52
|
+
explanation = explainer(x, edge_index, target=target, index=0)
|
53
|
+
|
54
|
+
Args:
|
55
|
+
epochs (int): The number of epochs to train.
|
56
|
+
lr (float, optional): The learning rate to apply.
|
57
|
+
(default: :obj:`0.003`).
|
58
|
+
**kwargs (optional): Additional hyper-parameters to override default
|
59
|
+
settings in
|
60
|
+
:attr:`~torch_geometric.explain.algorithm.PGExplainer.coeffs`.
|
61
|
+
"""
|
62
|
+
|
63
|
+
coeffs = {
|
64
|
+
'edge_size': 0.05,
|
65
|
+
'edge_ent': 1.0,
|
66
|
+
'temp': [5.0, 2.0],
|
67
|
+
'bias': 0.01,
|
68
|
+
}
|
69
|
+
|
70
|
+
# NOTE: Add more in the future as needed.
|
71
|
+
SUPPORTED_HETERO_MODELS = [
|
72
|
+
HGTConv,
|
73
|
+
HANConv,
|
74
|
+
HeteroConv,
|
75
|
+
]
|
76
|
+
|
77
|
+
def __init__(self, epochs: int, lr: float = 0.003, **kwargs):
|
78
|
+
super().__init__()
|
79
|
+
self.epochs = epochs
|
80
|
+
self.lr = lr
|
81
|
+
self.coeffs.update(kwargs)
|
82
|
+
|
83
|
+
self.mlp = Sequential(
|
84
|
+
Linear(-1, 64),
|
85
|
+
ReLU(),
|
86
|
+
Linear(64, 1),
|
87
|
+
)
|
88
|
+
self.optimizer = torch.optim.Adam(self.mlp.parameters(), lr=lr)
|
89
|
+
self._curr_epoch = -1
|
90
|
+
self.is_hetero = False
|
91
|
+
|
92
|
+
def reset_parameters(self):
|
93
|
+
r"""Resets all learnable parameters of the module."""
|
94
|
+
reset(self.mlp)
|
95
|
+
|
96
|
+
@overload
|
97
|
+
def train(
|
98
|
+
self,
|
99
|
+
epoch: int,
|
100
|
+
model: torch.nn.Module,
|
101
|
+
x: Tensor,
|
102
|
+
edge_index: Tensor,
|
103
|
+
*,
|
104
|
+
target: Tensor,
|
105
|
+
index: Optional[Union[int, Tensor]] = None,
|
106
|
+
**kwargs,
|
107
|
+
) -> float:
|
108
|
+
...
|
109
|
+
|
110
|
+
@overload
|
111
|
+
def train(
|
112
|
+
self,
|
113
|
+
epoch: int,
|
114
|
+
model: torch.nn.Module,
|
115
|
+
x: Dict[NodeType, Tensor],
|
116
|
+
edge_index: Dict[EdgeType, Tensor],
|
117
|
+
*,
|
118
|
+
target: Tensor,
|
119
|
+
index: Optional[Union[int, Tensor]] = None,
|
120
|
+
**kwargs,
|
121
|
+
) -> float:
|
122
|
+
...
|
123
|
+
|
124
|
+
def train(
|
125
|
+
self,
|
126
|
+
epoch: int,
|
127
|
+
model: torch.nn.Module,
|
128
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
129
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
130
|
+
*,
|
131
|
+
target: Tensor,
|
132
|
+
index: Optional[Union[int, Tensor]] = None,
|
133
|
+
**kwargs,
|
134
|
+
) -> float:
|
135
|
+
r"""Trains the underlying explainer model.
|
136
|
+
Needs to be called before being able to make predictions.
|
137
|
+
|
138
|
+
Args:
|
139
|
+
epoch (int): The current epoch of the training phase.
|
140
|
+
model (torch.nn.Module): The model to explain.
|
141
|
+
x (torch.Tensor or Dict[str, torch.Tensor]): The input node
|
142
|
+
features. Can be either homogeneous or heterogeneous.
|
143
|
+
edge_index (torch.Tensor or Dict[Tuple[str, str, str]): The input
|
144
|
+
edge indices. Can be either homogeneous or heterogeneous.
|
145
|
+
target (torch.Tensor): The target of the model.
|
146
|
+
index (int or torch.Tensor, optional): The index of the model
|
147
|
+
output to explain. Needs to be a single index.
|
148
|
+
(default: :obj:`None`)
|
149
|
+
**kwargs (optional): Additional keyword arguments passed to
|
150
|
+
:obj:`model`.
|
151
|
+
"""
|
152
|
+
self.is_hetero = isinstance(x, dict)
|
153
|
+
if self.is_hetero:
|
154
|
+
assert isinstance(edge_index, dict)
|
155
|
+
|
156
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
157
|
+
if index is None:
|
158
|
+
raise ValueError(f"The 'index' argument needs to be provided "
|
159
|
+
f"in '{self.__class__.__name__}' for "
|
160
|
+
f"node-level explanations")
|
161
|
+
if isinstance(index, Tensor) and index.numel() > 1:
|
162
|
+
raise ValueError(f"Only scalars are supported for the 'index' "
|
163
|
+
f"argument in '{self.__class__.__name__}'")
|
164
|
+
|
165
|
+
# Get embeddings based on whether the graph is homogeneous or
|
166
|
+
# heterogeneous
|
167
|
+
node_embeddings = self._get_embeddings(model, x, edge_index, **kwargs)
|
168
|
+
|
169
|
+
# Train the model
|
170
|
+
self.optimizer.zero_grad()
|
171
|
+
temperature = self._get_temperature(epoch)
|
172
|
+
|
173
|
+
# Process embeddings and generate edge masks
|
174
|
+
edge_mask = self._generate_edge_masks(node_embeddings, edge_index,
|
175
|
+
index, temperature)
|
176
|
+
|
177
|
+
# Apply masks to the model
|
178
|
+
if self.is_hetero:
|
179
|
+
set_hetero_masks(model, edge_mask, edge_index, apply_sigmoid=True)
|
180
|
+
|
181
|
+
# For node-level tasks, we can compute hard masks
|
182
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
183
|
+
# Process each edge type separately
|
184
|
+
for edge_type, mask in edge_mask.items():
|
185
|
+
# Get the edge indices for this edge type
|
186
|
+
edges = edge_index[edge_type]
|
187
|
+
src_type, _, dst_type = edge_type
|
188
|
+
|
189
|
+
# Get hard masks for this specific edge type
|
190
|
+
_, hard_mask = self._get_hard_masks(
|
191
|
+
model, index, edges,
|
192
|
+
num_nodes=max(x[src_type].size(0),
|
193
|
+
x[dst_type].size(0)))
|
194
|
+
|
195
|
+
edge_mask[edge_type] = mask[hard_mask]
|
196
|
+
else:
|
197
|
+
# Apply masks for homogeneous graphs
|
198
|
+
set_masks(model, edge_mask, edge_index, apply_sigmoid=True)
|
199
|
+
|
200
|
+
# For node-level tasks, we may need to apply hard masks
|
201
|
+
hard_edge_mask = None
|
202
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
203
|
+
_, hard_edge_mask = self._get_hard_masks(
|
204
|
+
model, index, edge_index, num_nodes=x.size(0))
|
205
|
+
edge_mask = edge_mask[hard_edge_mask]
|
206
|
+
|
207
|
+
# Forward pass with masks applied
|
208
|
+
y_hat, y = model(x, edge_index, **kwargs), target
|
209
|
+
|
210
|
+
if index is not None:
|
211
|
+
y_hat, y = y_hat[index], y[index]
|
212
|
+
|
213
|
+
# Calculate loss
|
214
|
+
loss = self._loss(y_hat, y, edge_mask)
|
215
|
+
|
216
|
+
# Backward pass and optimization
|
217
|
+
loss.backward()
|
218
|
+
self.optimizer.step()
|
219
|
+
|
220
|
+
# Clean up
|
221
|
+
clear_masks(model)
|
222
|
+
self._curr_epoch = epoch
|
223
|
+
|
224
|
+
return float(loss)
|
225
|
+
|
226
|
+
@overload
|
227
|
+
def forward(
|
228
|
+
self,
|
229
|
+
model: torch.nn.Module,
|
230
|
+
x: Tensor,
|
231
|
+
edge_index: Tensor,
|
232
|
+
*,
|
233
|
+
target: Tensor,
|
234
|
+
index: Optional[Union[int, Tensor]] = None,
|
235
|
+
**kwargs,
|
236
|
+
) -> Explanation:
|
237
|
+
...
|
238
|
+
|
239
|
+
@overload
|
240
|
+
def forward(
|
241
|
+
self,
|
242
|
+
model: torch.nn.Module,
|
243
|
+
x: Dict[NodeType, Tensor],
|
244
|
+
edge_index: Dict[EdgeType, Tensor],
|
245
|
+
*,
|
246
|
+
target: Tensor,
|
247
|
+
index: Optional[Union[int, Tensor]] = None,
|
248
|
+
**kwargs,
|
249
|
+
) -> HeteroExplanation:
|
250
|
+
...
|
251
|
+
|
252
|
+
def forward(
|
253
|
+
self,
|
254
|
+
model: torch.nn.Module,
|
255
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
256
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
257
|
+
*,
|
258
|
+
target: Tensor,
|
259
|
+
index: Optional[Union[int, Tensor]] = None,
|
260
|
+
**kwargs,
|
261
|
+
) -> Union[Explanation, HeteroExplanation]:
|
262
|
+
self.is_hetero = isinstance(x, dict)
|
263
|
+
|
264
|
+
if self._curr_epoch < self.epochs - 1: # Safety check:
|
265
|
+
raise ValueError(f"'{self.__class__.__name__}' is not yet fully "
|
266
|
+
f"trained (got {self._curr_epoch + 1} epochs "
|
267
|
+
f"from {self.epochs} epochs). Please first train "
|
268
|
+
f"the underlying explainer model by running "
|
269
|
+
f"`explainer.algorithm.train(...)`.")
|
270
|
+
|
271
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
272
|
+
if index is None:
|
273
|
+
raise ValueError(f"The 'index' argument needs to be provided "
|
274
|
+
f"in '{self.__class__.__name__}' for "
|
275
|
+
f"node-level explanations")
|
276
|
+
if isinstance(index, Tensor) and index.numel() > 1:
|
277
|
+
raise ValueError(f"Only scalars are supported for the 'index' "
|
278
|
+
f"argument in '{self.__class__.__name__}'")
|
279
|
+
|
280
|
+
# Get embeddings
|
281
|
+
node_embeddings = self._get_embeddings(model, x, edge_index, **kwargs)
|
282
|
+
|
283
|
+
# Generate explanations
|
284
|
+
if self.is_hetero:
|
285
|
+
# Generate edge masks for each edge type
|
286
|
+
edge_masks = {}
|
287
|
+
|
288
|
+
# Generate masks for each edge type
|
289
|
+
for edge_type, edge_idx in edge_index.items():
|
290
|
+
src_node_type, _, dst_node_type = edge_type
|
291
|
+
|
292
|
+
assert src_node_type in node_embeddings
|
293
|
+
assert dst_node_type in node_embeddings
|
294
|
+
|
295
|
+
inputs = self._get_inputs_hetero(node_embeddings, edge_type,
|
296
|
+
edge_idx, index)
|
297
|
+
logits = self.mlp(inputs).view(-1)
|
298
|
+
|
299
|
+
# For node-level explanations, get hard masks for this
|
300
|
+
# specific edge type
|
301
|
+
hard_edge_mask = None
|
302
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
303
|
+
_, hard_edge_mask = self._get_hard_masks(
|
304
|
+
model, index, edge_idx,
|
305
|
+
num_nodes=max(x[src_node_type].size(0),
|
306
|
+
x[dst_node_type].size(0)))
|
307
|
+
|
308
|
+
# Apply hard mask if available and it has any True values
|
309
|
+
edge_masks[edge_type] = self._post_process_mask(
|
310
|
+
logits, hard_edge_mask, apply_sigmoid=True)
|
311
|
+
|
312
|
+
explanation = HeteroExplanation()
|
313
|
+
explanation.set_value_dict('edge_mask', edge_masks)
|
314
|
+
return explanation
|
315
|
+
else:
|
316
|
+
hard_edge_mask = None
|
317
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
318
|
+
# We need to compute hard masks to properly clean up edges
|
319
|
+
_, hard_edge_mask = self._get_hard_masks(
|
320
|
+
model, index, edge_index, num_nodes=x.size(0))
|
321
|
+
|
322
|
+
inputs = self._get_inputs(node_embeddings, edge_index, index)
|
323
|
+
logits = self.mlp(inputs).view(-1)
|
324
|
+
|
325
|
+
edge_mask = self._post_process_mask(logits, hard_edge_mask,
|
326
|
+
apply_sigmoid=True)
|
327
|
+
|
328
|
+
return Explanation(edge_mask=edge_mask)
|
329
|
+
|
330
|
+
def supports(self) -> bool:
|
331
|
+
explanation_type = self.explainer_config.explanation_type
|
332
|
+
if explanation_type != ExplanationType.phenomenon:
|
333
|
+
logging.error(f"'{self.__class__.__name__}' only supports "
|
334
|
+
f"phenomenon explanations "
|
335
|
+
f"got (`explanation_type={explanation_type.value}`)")
|
336
|
+
return False
|
337
|
+
|
338
|
+
task_level = self.model_config.task_level
|
339
|
+
if task_level not in {ModelTaskLevel.node, ModelTaskLevel.graph}:
|
340
|
+
logging.error(f"'{self.__class__.__name__}' only supports "
|
341
|
+
f"node-level or graph-level explanations "
|
342
|
+
f"got (`task_level={task_level.value}`)")
|
343
|
+
return False
|
344
|
+
|
345
|
+
node_mask_type = self.explainer_config.node_mask_type
|
346
|
+
if node_mask_type is not None:
|
347
|
+
logging.error(f"'{self.__class__.__name__}' does not support "
|
348
|
+
f"explaining input node features "
|
349
|
+
f"got (`node_mask_type={node_mask_type.value}`)")
|
350
|
+
return False
|
351
|
+
|
352
|
+
return True
|
353
|
+
|
354
|
+
###########################################################################
|
355
|
+
|
356
|
+
def _get_embeddings(self, model: torch.nn.Module, x: Union[Tensor,
|
357
|
+
Dict[NodeType,
|
358
|
+
Tensor]],
|
359
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
360
|
+
**kwargs) -> Union[Tensor, Dict[NodeType, Tensor]]:
|
361
|
+
"""Get embeddings from the model based on input type."""
|
362
|
+
if self.is_hetero:
|
363
|
+
# For heterogeneous graphs, get embeddings for each node type
|
364
|
+
embeddings_dict = get_embeddings_hetero(
|
365
|
+
model,
|
366
|
+
self.SUPPORTED_HETERO_MODELS,
|
367
|
+
x,
|
368
|
+
edge_index,
|
369
|
+
**kwargs,
|
370
|
+
)
|
371
|
+
|
372
|
+
# Use the last layer's embeddings for each node type
|
373
|
+
last_embedding_dict = {
|
374
|
+
node_type: embs[-1] if embs and len(embs) > 0 else None
|
375
|
+
for node_type, embs in embeddings_dict.items()
|
376
|
+
}
|
377
|
+
|
378
|
+
# Skip if no embeddings were captured
|
379
|
+
if not any(emb is not None
|
380
|
+
for emb in last_embedding_dict.values()):
|
381
|
+
raise ValueError(
|
382
|
+
"No embeddings were captured from the model. "
|
383
|
+
"Please check if the model architecture is supported.")
|
384
|
+
|
385
|
+
return last_embedding_dict
|
386
|
+
else:
|
387
|
+
# For homogeneous graphs, get embeddings directly
|
388
|
+
return get_embeddings(model, x, edge_index, **kwargs)[-1]
|
389
|
+
|
390
|
+
def _generate_edge_masks(
|
391
|
+
self, emb: Union[Tensor, Dict[NodeType, Tensor]],
|
392
|
+
edge_index: Union[Tensor,
|
393
|
+
Dict[EdgeType,
|
394
|
+
Tensor]], index: Optional[Union[int,
|
395
|
+
Tensor]],
|
396
|
+
temperature: float) -> Union[Tensor, Dict[EdgeType, Tensor]]:
|
397
|
+
"""Generate edge masks based on embeddings."""
|
398
|
+
if self.is_hetero:
|
399
|
+
# For heterogeneous graphs, generate masks for each edge type
|
400
|
+
edge_masks = {}
|
401
|
+
|
402
|
+
for edge_type, edge_idx in edge_index.items():
|
403
|
+
src, _, dst = edge_type
|
404
|
+
|
405
|
+
assert src in emb and dst in emb
|
406
|
+
# Generate inputs for this edge type
|
407
|
+
inputs = self._get_inputs_hetero(emb, edge_type, edge_idx,
|
408
|
+
index)
|
409
|
+
logits = self.mlp(inputs).view(-1)
|
410
|
+
edge_masks[edge_type] = self._concrete_sample(
|
411
|
+
logits, temperature)
|
412
|
+
|
413
|
+
# Ensure we have at least one valid edge mask
|
414
|
+
if not edge_masks:
|
415
|
+
raise ValueError(
|
416
|
+
"Could not generate edge masks for any edge type. "
|
417
|
+
"Please ensure the model architecture is supported.")
|
418
|
+
|
419
|
+
return edge_masks
|
420
|
+
else:
|
421
|
+
# For homogeneous graphs, generate a single mask
|
422
|
+
inputs = self._get_inputs(emb, edge_index, index)
|
423
|
+
logits = self.mlp(inputs).view(-1)
|
424
|
+
return self._concrete_sample(logits, temperature)
|
425
|
+
|
426
|
+
def _get_inputs(self, embedding: Tensor, edge_index: Tensor,
|
427
|
+
index: Optional[int] = None) -> Tensor:
|
428
|
+
zs = [embedding[edge_index[0]], embedding[edge_index[1]]]
|
429
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
430
|
+
assert index is not None
|
431
|
+
zs.append(embedding[index].view(1, -1).repeat(zs[0].size(0), 1))
|
432
|
+
return torch.cat(zs, dim=-1)
|
433
|
+
|
434
|
+
def _get_inputs_hetero(self, embedding_dict: Dict[NodeType, Tensor],
|
435
|
+
edge_type: Tuple[str, str, str], edge_index: Tensor,
|
436
|
+
index: Optional[int] = None) -> Tensor:
|
437
|
+
src, _, dst = edge_type
|
438
|
+
|
439
|
+
# Get embeddings for source and destination nodes
|
440
|
+
src_emb = embedding_dict[src]
|
441
|
+
dst_emb = embedding_dict[dst]
|
442
|
+
|
443
|
+
# Source and destination node embeddings
|
444
|
+
zs = [src_emb[edge_index[0]], dst_emb[edge_index[1]]]
|
445
|
+
|
446
|
+
# For node-level explanations, add the target node embedding
|
447
|
+
if self.model_config.task_level == ModelTaskLevel.node:
|
448
|
+
assert index is not None
|
449
|
+
# Assuming index refers to a node of type 'src'
|
450
|
+
target_emb = src_emb[index].view(1, -1).repeat(zs[0].size(0), 1)
|
451
|
+
zs.append(target_emb)
|
452
|
+
|
453
|
+
return torch.cat(zs, dim=-1)
|
454
|
+
|
455
|
+
def _get_temperature(self, epoch: int) -> float:
|
456
|
+
temp = self.coeffs['temp']
|
457
|
+
return temp[0] * pow(temp[1] / temp[0], epoch / self.epochs)
|
458
|
+
|
459
|
+
def _concrete_sample(self, logits: Tensor,
|
460
|
+
temperature: float = 1.0) -> Tensor:
|
461
|
+
bias = self.coeffs['bias']
|
462
|
+
eps = (1 - 2 * bias) * torch.rand_like(logits) + bias
|
463
|
+
return (eps.log() - (1 - eps).log() + logits) / temperature
|
464
|
+
|
465
|
+
def _loss(self, y_hat: Tensor, y: Tensor,
|
466
|
+
edge_mask: Union[Tensor, Dict[EdgeType, Tensor]]) -> Tensor:
|
467
|
+
# Calculate base loss based on model configuration
|
468
|
+
loss = self._calculate_base_loss(y_hat, y)
|
469
|
+
|
470
|
+
# Apply regularization based on graph type
|
471
|
+
if self.is_hetero:
|
472
|
+
loss = self._apply_hetero_regularization(loss, edge_mask)
|
473
|
+
else:
|
474
|
+
loss = self._apply_homo_regularization(loss, edge_mask)
|
475
|
+
|
476
|
+
return loss
|
477
|
+
|
478
|
+
def _calculate_base_loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
|
479
|
+
"""Calculate base loss based on model configuration."""
|
480
|
+
if self.model_config.mode == ModelMode.binary_classification:
|
481
|
+
return self._loss_binary_classification(y_hat, y)
|
482
|
+
elif self.model_config.mode == ModelMode.multiclass_classification:
|
483
|
+
return self._loss_multiclass_classification(y_hat, y)
|
484
|
+
elif self.model_config.mode == ModelMode.regression:
|
485
|
+
return self._loss_regression(y_hat, y)
|
486
|
+
else:
|
487
|
+
raise ValueError(
|
488
|
+
f"Unsupported model mode: {self.model_config.mode}")
|
489
|
+
|
490
|
+
def _apply_hetero_regularization(
|
491
|
+
self, loss: Tensor, edge_mask: Dict[EdgeType, Tensor]) -> Tensor:
|
492
|
+
"""Apply regularization for heterogeneous graph."""
|
493
|
+
for _, mask in edge_mask.items():
|
494
|
+
loss = self._add_mask_regularization(loss, mask)
|
495
|
+
|
496
|
+
return loss
|
497
|
+
|
498
|
+
def _apply_homo_regularization(self, loss: Tensor,
|
499
|
+
edge_mask: Tensor) -> Tensor:
|
500
|
+
"""Apply regularization for homogeneous graph."""
|
501
|
+
return self._add_mask_regularization(loss, edge_mask)
|
502
|
+
|
503
|
+
def _add_mask_regularization(self, loss: Tensor, mask: Tensor) -> Tensor:
|
504
|
+
"""Add size and entropy regularization for a mask."""
|
505
|
+
# Apply sigmoid for mask values
|
506
|
+
mask = mask.sigmoid()
|
507
|
+
|
508
|
+
# Size regularization
|
509
|
+
size_loss = mask.sum() * self.coeffs['edge_size']
|
510
|
+
|
511
|
+
# Entropy regularization
|
512
|
+
masked = 0.99 * mask + 0.005
|
513
|
+
mask_ent = -masked * masked.log() - (1 - masked) * (1 - masked).log()
|
514
|
+
mask_ent_loss = mask_ent.mean() * self.coeffs['edge_ent']
|
515
|
+
|
516
|
+
return loss + size_loss + mask_ent_loss
|
{pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/nn/models/gpse.py
RENAMED
@@ -9,6 +9,7 @@ import numpy as np
|
|
9
9
|
import torch
|
10
10
|
import torch.nn as nn
|
11
11
|
import torch.nn.functional as F
|
12
|
+
from torch.nn import Module
|
12
13
|
from tqdm import trange
|
13
14
|
|
14
15
|
import torch_geometric.transforms as T
|
@@ -715,8 +716,9 @@ class GPSENodeEncoder(torch.nn.Module):
|
|
715
716
|
|
716
717
|
|
717
718
|
@torch.no_grad()
|
718
|
-
def gpse_process(model:
|
719
|
-
|
719
|
+
def gpse_process(model: Module, data: Data, rand_type: str,
|
720
|
+
use_vn: bool = True, bernoulli_thresh: float = 0.5,
|
721
|
+
neighbor_loader: bool = False,
|
720
722
|
num_neighbors: List[int] = [30, 20, 10], fillval: int = 5,
|
721
723
|
layers_mp: int = None, **kwargs) -> torch.Tensor:
|
722
724
|
r"""Processes the data using the :class:`GPSE` model to generate and append
|
@@ -731,7 +733,7 @@ def gpse_process(model: GPSE, data: Data, rand_type: str, use_vn: bool = True,
|
|
731
733
|
:obj:`precompute_GPSE` on your whole dataset is advised instead.
|
732
734
|
|
733
735
|
Args:
|
734
|
-
model (
|
736
|
+
model (Module): The :class:`GPSE` model.
|
735
737
|
data (torch_geometric.data.Data): A :class:`~torch_geometric.data.Data`
|
736
738
|
object.
|
737
739
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -1,6 +1,7 @@
|
|
1
|
+
from torch.nn import Module
|
2
|
+
|
1
3
|
from torch_geometric.data import Data
|
2
4
|
from torch_geometric.data.datapipes import functional_transform
|
3
|
-
from torch_geometric.nn.models.gpse import GPSE
|
4
5
|
from torch_geometric.transforms import BaseTransform, VirtualNode
|
5
6
|
|
6
7
|
|
@@ -13,7 +14,7 @@ class AddGPSE(BaseTransform):
|
|
13
14
|
the actual encodings.
|
14
15
|
|
15
16
|
Args:
|
16
|
-
model (
|
17
|
+
model (Module): The pre-trained GPSE model.
|
17
18
|
use_vn (bool, optional): Whether to use virtual nodes.
|
18
19
|
(default: :obj:`True`)
|
19
20
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -21,7 +22,7 @@ class AddGPSE(BaseTransform):
|
|
21
22
|
(default: :obj:`NormalSE`)
|
22
23
|
|
23
24
|
"""
|
24
|
-
def __init__(self, model:
|
25
|
+
def __init__(self, model: Module, use_vn: bool = True,
|
25
26
|
rand_type: str = 'NormalSE'):
|
26
27
|
self.model = model
|
27
28
|
self.use_vn = use_vn
|
{pyg_nightly-2.7.0.dev20250415 → pyg_nightly-2.7.0.dev20250417}/torch_geometric/utils/__init__.py
RENAMED
@@ -53,7 +53,7 @@ from ._negative_sampling import (negative_sampling, batched_negative_sampling,
|
|
53
53
|
structured_negative_sampling_feasible)
|
54
54
|
from .augmentation import shuffle_node, mask_feature, add_random_edge
|
55
55
|
from ._tree_decomposition import tree_decomposition
|
56
|
-
from .embedding import get_embeddings
|
56
|
+
from .embedding import get_embeddings, get_embeddings_hetero
|
57
57
|
from ._trim_to_layer import trim_to_layer
|
58
58
|
from .ppr import get_ppr
|
59
59
|
from ._train_test_split_edges import train_test_split_edges
|
@@ -145,6 +145,7 @@ __all__ = [
|
|
145
145
|
'add_random_edge',
|
146
146
|
'tree_decomposition',
|
147
147
|
'get_embeddings',
|
148
|
+
'get_embeddings_hetero',
|
148
149
|
'trim_to_layer',
|
149
150
|
'get_ppr',
|
150
151
|
'train_test_split_edges',
|