pyg-nightly 2.7.0.dev20250406__tar.gz → 2.7.0.dev20250407__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/__init__.py +1 -1
- pyg_nightly-2.7.0.dev20250407/torch_geometric/explain/algorithm/gnn_explainer.py +674 -0
- pyg_nightly-2.7.0.dev20250406/torch_geometric/explain/algorithm/gnn_explainer.py +0 -338
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/instruct_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/hash_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/attention/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/attract_repel.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/sgformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/nlp/llm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/add_gpse.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250406 → pyg_nightly-2.7.0.dev20250407}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250407
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250407'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -0,0 +1,674 @@
|
|
1
|
+
from math import sqrt
|
2
|
+
from typing import Dict, Optional, Tuple, Union, overload
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import Tensor
|
6
|
+
from torch.nn.parameter import Parameter
|
7
|
+
|
8
|
+
from torch_geometric.explain import (
|
9
|
+
ExplainerConfig,
|
10
|
+
Explanation,
|
11
|
+
HeteroExplanation,
|
12
|
+
ModelConfig,
|
13
|
+
)
|
14
|
+
from torch_geometric.explain.algorithm import ExplainerAlgorithm
|
15
|
+
from torch_geometric.explain.algorithm.utils import (
|
16
|
+
clear_masks,
|
17
|
+
set_hetero_masks,
|
18
|
+
set_masks,
|
19
|
+
)
|
20
|
+
from torch_geometric.explain.config import MaskType, ModelMode, ModelTaskLevel
|
21
|
+
from torch_geometric.typing import EdgeType, NodeType
|
22
|
+
|
23
|
+
|
24
|
+
class GNNExplainer(ExplainerAlgorithm):
|
25
|
+
r"""The GNN-Explainer model from the `"GNNExplainer: Generating
|
26
|
+
Explanations for Graph Neural Networks"
|
27
|
+
<https://arxiv.org/abs/1903.03894>`_ paper for identifying compact subgraph
|
28
|
+
structures and node features that play a crucial role in the predictions
|
29
|
+
made by a GNN.
|
30
|
+
|
31
|
+
.. note::
|
32
|
+
|
33
|
+
For an example of using :class:`GNNExplainer`, see
|
34
|
+
`examples/explain/gnn_explainer.py <https://github.com/pyg-team/
|
35
|
+
pytorch_geometric/blob/master/examples/explain/gnn_explainer.py>`_,
|
36
|
+
`examples/explain/gnn_explainer_ba_shapes.py <https://github.com/
|
37
|
+
pyg-team/pytorch_geometric/blob/master/examples/
|
38
|
+
explain/gnn_explainer_ba_shapes.py>`_, and `examples/explain/
|
39
|
+
gnn_explainer_link_pred.py <https://github.com/pyg-team/
|
40
|
+
pytorch_geometric/blob/master/examples/explain/gnn_explainer_link_pred.py>`_.
|
41
|
+
|
42
|
+
.. note::
|
43
|
+
|
44
|
+
The :obj:`edge_size` coefficient is multiplied by the number of nodes
|
45
|
+
in the explanation at every iteration, and the resulting value is added
|
46
|
+
to the loss as a regularization term, with the goal of producing
|
47
|
+
compact explanations.
|
48
|
+
A higher value will push the algorithm towards explanations with less
|
49
|
+
elements.
|
50
|
+
Consider adjusting the :obj:`edge_size` coefficient according to the
|
51
|
+
average node degree in the dataset, especially if this value is bigger
|
52
|
+
than in the datasets used in the original paper.
|
53
|
+
|
54
|
+
Args:
|
55
|
+
epochs (int, optional): The number of epochs to train.
|
56
|
+
(default: :obj:`100`)
|
57
|
+
lr (float, optional): The learning rate to apply.
|
58
|
+
(default: :obj:`0.01`)
|
59
|
+
**kwargs (optional): Additional hyper-parameters to override default
|
60
|
+
settings in
|
61
|
+
:attr:`~torch_geometric.explain.algorithm.GNNExplainer.coeffs`.
|
62
|
+
"""
|
63
|
+
|
64
|
+
coeffs = {
|
65
|
+
'edge_size': 0.005,
|
66
|
+
'edge_reduction': 'sum',
|
67
|
+
'node_feat_size': 1.0,
|
68
|
+
'node_feat_reduction': 'mean',
|
69
|
+
'edge_ent': 1.0,
|
70
|
+
'node_feat_ent': 0.1,
|
71
|
+
'EPS': 1e-15,
|
72
|
+
}
|
73
|
+
|
74
|
+
def __init__(self, epochs: int = 100, lr: float = 0.01, **kwargs):
|
75
|
+
super().__init__()
|
76
|
+
self.epochs = epochs
|
77
|
+
self.lr = lr
|
78
|
+
self.coeffs.update(kwargs)
|
79
|
+
|
80
|
+
self.node_mask = self.hard_node_mask = None
|
81
|
+
self.edge_mask = self.hard_edge_mask = None
|
82
|
+
self.is_hetero = False
|
83
|
+
|
84
|
+
@overload
|
85
|
+
def forward(
|
86
|
+
self,
|
87
|
+
model: torch.nn.Module,
|
88
|
+
x: Tensor,
|
89
|
+
edge_index: Tensor,
|
90
|
+
*,
|
91
|
+
target: Tensor,
|
92
|
+
index: Optional[Union[int, Tensor]] = None,
|
93
|
+
**kwargs,
|
94
|
+
) -> Explanation:
|
95
|
+
...
|
96
|
+
|
97
|
+
@overload
|
98
|
+
def forward(
|
99
|
+
self,
|
100
|
+
model: torch.nn.Module,
|
101
|
+
x: Dict[NodeType, Tensor],
|
102
|
+
edge_index: Dict[EdgeType, Tensor],
|
103
|
+
*,
|
104
|
+
target: Tensor,
|
105
|
+
index: Optional[Union[int, Tensor]] = None,
|
106
|
+
**kwargs,
|
107
|
+
) -> HeteroExplanation:
|
108
|
+
...
|
109
|
+
|
110
|
+
def forward(
|
111
|
+
self,
|
112
|
+
model: torch.nn.Module,
|
113
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
114
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
115
|
+
*,
|
116
|
+
target: Tensor,
|
117
|
+
index: Optional[Union[int, Tensor]] = None,
|
118
|
+
**kwargs,
|
119
|
+
) -> Union[Explanation, HeteroExplanation]:
|
120
|
+
self.is_hetero = isinstance(x, dict)
|
121
|
+
self._train(model, x, edge_index, target=target, index=index, **kwargs)
|
122
|
+
explanation = self._create_explanation()
|
123
|
+
self._clean_model(model)
|
124
|
+
return explanation
|
125
|
+
|
126
|
+
def _create_explanation(self) -> Union[Explanation, HeteroExplanation]:
|
127
|
+
"""Create an explanation object from the current masks."""
|
128
|
+
if self.is_hetero:
|
129
|
+
# For heterogeneous graphs, process each type separately
|
130
|
+
node_mask_dict = {}
|
131
|
+
edge_mask_dict = {}
|
132
|
+
|
133
|
+
for node_type, mask in self.node_mask.items():
|
134
|
+
if mask is not None:
|
135
|
+
node_mask_dict[node_type] = self._post_process_mask(
|
136
|
+
mask,
|
137
|
+
self.hard_node_mask[node_type],
|
138
|
+
apply_sigmoid=True,
|
139
|
+
)
|
140
|
+
|
141
|
+
for edge_type, mask in self.edge_mask.items():
|
142
|
+
if mask is not None:
|
143
|
+
edge_mask_dict[edge_type] = self._post_process_mask(
|
144
|
+
mask,
|
145
|
+
self.hard_edge_mask[edge_type],
|
146
|
+
apply_sigmoid=True,
|
147
|
+
)
|
148
|
+
|
149
|
+
# Create heterogeneous explanation
|
150
|
+
explanation = HeteroExplanation()
|
151
|
+
explanation.set_value_dict('node_mask', node_mask_dict)
|
152
|
+
explanation.set_value_dict('edge_mask', edge_mask_dict)
|
153
|
+
|
154
|
+
else:
|
155
|
+
# For homogeneous graphs, process single masks
|
156
|
+
node_mask = self._post_process_mask(
|
157
|
+
self.node_mask,
|
158
|
+
self.hard_node_mask,
|
159
|
+
apply_sigmoid=True,
|
160
|
+
)
|
161
|
+
edge_mask = self._post_process_mask(
|
162
|
+
self.edge_mask,
|
163
|
+
self.hard_edge_mask,
|
164
|
+
apply_sigmoid=True,
|
165
|
+
)
|
166
|
+
|
167
|
+
# Create homogeneous explanation
|
168
|
+
explanation = Explanation(node_mask=node_mask, edge_mask=edge_mask)
|
169
|
+
|
170
|
+
return explanation
|
171
|
+
|
172
|
+
def supports(self) -> bool:
|
173
|
+
return True
|
174
|
+
|
175
|
+
@overload
|
176
|
+
def _train(
|
177
|
+
self,
|
178
|
+
model: torch.nn.Module,
|
179
|
+
x: Tensor,
|
180
|
+
edge_index: Tensor,
|
181
|
+
*,
|
182
|
+
target: Tensor,
|
183
|
+
index: Optional[Union[int, Tensor]] = None,
|
184
|
+
**kwargs,
|
185
|
+
) -> None:
|
186
|
+
...
|
187
|
+
|
188
|
+
@overload
|
189
|
+
def _train(
|
190
|
+
self,
|
191
|
+
model: torch.nn.Module,
|
192
|
+
x: Dict[NodeType, Tensor],
|
193
|
+
edge_index: Dict[EdgeType, Tensor],
|
194
|
+
*,
|
195
|
+
target: Tensor,
|
196
|
+
index: Optional[Union[int, Tensor]] = None,
|
197
|
+
**kwargs,
|
198
|
+
) -> None:
|
199
|
+
...
|
200
|
+
|
201
|
+
def _train(
|
202
|
+
self,
|
203
|
+
model: torch.nn.Module,
|
204
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
205
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
206
|
+
*,
|
207
|
+
target: Tensor,
|
208
|
+
index: Optional[Union[int, Tensor]] = None,
|
209
|
+
**kwargs,
|
210
|
+
) -> None:
|
211
|
+
# Initialize masks based on input type
|
212
|
+
self._initialize_masks(x, edge_index)
|
213
|
+
|
214
|
+
# Collect parameters for optimization
|
215
|
+
parameters = self._collect_parameters(model, edge_index)
|
216
|
+
|
217
|
+
# Create optimizer
|
218
|
+
optimizer = torch.optim.Adam(parameters, lr=self.lr)
|
219
|
+
|
220
|
+
# Training loop
|
221
|
+
for i in range(self.epochs):
|
222
|
+
optimizer.zero_grad()
|
223
|
+
|
224
|
+
# Forward pass with masked inputs
|
225
|
+
y_hat = self._forward_with_masks(model, x, edge_index, **kwargs)
|
226
|
+
y = target
|
227
|
+
|
228
|
+
# Handle index if provided
|
229
|
+
if index is not None:
|
230
|
+
y_hat, y = y_hat[index], y[index]
|
231
|
+
|
232
|
+
# Calculate loss
|
233
|
+
loss = self._loss(y_hat, y)
|
234
|
+
|
235
|
+
# Backward pass
|
236
|
+
loss.backward()
|
237
|
+
optimizer.step()
|
238
|
+
|
239
|
+
# In the first iteration, collect gradients to identify important
|
240
|
+
# nodes/edges
|
241
|
+
if i == 0:
|
242
|
+
self._collect_gradients()
|
243
|
+
|
244
|
+
def _collect_parameters(self, model, edge_index):
|
245
|
+
"""Collect parameters for optimization."""
|
246
|
+
parameters = []
|
247
|
+
|
248
|
+
if self.is_hetero:
|
249
|
+
# For heterogeneous graphs, collect parameters from all types
|
250
|
+
for mask in self.node_mask.values():
|
251
|
+
if mask is not None:
|
252
|
+
parameters.append(mask)
|
253
|
+
if any(v is not None for v in self.edge_mask.values()):
|
254
|
+
set_hetero_masks(model, self.edge_mask, edge_index)
|
255
|
+
for mask in self.edge_mask.values():
|
256
|
+
if mask is not None:
|
257
|
+
parameters.append(mask)
|
258
|
+
else:
|
259
|
+
# For homogeneous graphs, collect single parameters
|
260
|
+
if self.node_mask is not None:
|
261
|
+
parameters.append(self.node_mask)
|
262
|
+
if self.edge_mask is not None:
|
263
|
+
set_masks(model, self.edge_mask, edge_index,
|
264
|
+
apply_sigmoid=True)
|
265
|
+
parameters.append(self.edge_mask)
|
266
|
+
|
267
|
+
return parameters
|
268
|
+
|
269
|
+
@overload
|
270
|
+
def _forward_with_masks(
|
271
|
+
self,
|
272
|
+
model: torch.nn.Module,
|
273
|
+
x: Tensor,
|
274
|
+
edge_index: Tensor,
|
275
|
+
**kwargs,
|
276
|
+
) -> Tensor:
|
277
|
+
...
|
278
|
+
|
279
|
+
@overload
|
280
|
+
def _forward_with_masks(
|
281
|
+
self,
|
282
|
+
model: torch.nn.Module,
|
283
|
+
x: Dict[NodeType, Tensor],
|
284
|
+
edge_index: Dict[EdgeType, Tensor],
|
285
|
+
**kwargs,
|
286
|
+
) -> Tensor:
|
287
|
+
...
|
288
|
+
|
289
|
+
def _forward_with_masks(
|
290
|
+
self,
|
291
|
+
model: torch.nn.Module,
|
292
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
293
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
294
|
+
**kwargs,
|
295
|
+
) -> Tensor:
|
296
|
+
"""Forward pass with masked inputs."""
|
297
|
+
if self.is_hetero:
|
298
|
+
# Apply masks to heterogeneous inputs
|
299
|
+
h_dict = {}
|
300
|
+
for node_type, features in x.items():
|
301
|
+
if node_type in self.node_mask and self.node_mask[
|
302
|
+
node_type] is not None:
|
303
|
+
h_dict[node_type] = features * self.node_mask[
|
304
|
+
node_type].sigmoid()
|
305
|
+
else:
|
306
|
+
h_dict[node_type] = features
|
307
|
+
|
308
|
+
# Forward pass with masked features
|
309
|
+
return model(h_dict, edge_index, **kwargs)
|
310
|
+
else:
|
311
|
+
# Apply mask to homogeneous input
|
312
|
+
h = x if self.node_mask is None else x * self.node_mask.sigmoid()
|
313
|
+
|
314
|
+
# Forward pass with masked features
|
315
|
+
return model(h, edge_index, **kwargs)
|
316
|
+
|
317
|
+
def _initialize_masks(
|
318
|
+
self,
|
319
|
+
x: Union[Tensor, Dict[NodeType, Tensor]],
|
320
|
+
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
|
321
|
+
) -> None:
|
322
|
+
node_mask_type = self.explainer_config.node_mask_type
|
323
|
+
edge_mask_type = self.explainer_config.edge_mask_type
|
324
|
+
|
325
|
+
if self.is_hetero:
|
326
|
+
# Initialize dictionaries for heterogeneous masks
|
327
|
+
self.node_mask = {}
|
328
|
+
self.hard_node_mask = {}
|
329
|
+
self.edge_mask = {}
|
330
|
+
self.hard_edge_mask = {}
|
331
|
+
|
332
|
+
# Initialize node masks for each node type
|
333
|
+
for node_type, features in x.items():
|
334
|
+
device = features.device
|
335
|
+
N, F = features.size()
|
336
|
+
self._initialize_node_mask(node_mask_type, node_type, N, F,
|
337
|
+
device)
|
338
|
+
|
339
|
+
# Initialize edge masks for each edge type
|
340
|
+
for edge_type, indices in edge_index.items():
|
341
|
+
device = indices.device
|
342
|
+
E = indices.size(1)
|
343
|
+
N = max(indices.max().item() + 1,
|
344
|
+
max(feat.size(0) for feat in x.values()))
|
345
|
+
self._initialize_edge_mask(edge_mask_type, edge_type, E, N,
|
346
|
+
device)
|
347
|
+
else:
|
348
|
+
# Initialize masks for homogeneous graph
|
349
|
+
device = x.device
|
350
|
+
(N, F), E = x.size(), edge_index.size(1)
|
351
|
+
|
352
|
+
# Initialize homogeneous node and edge masks
|
353
|
+
self._initialize_homogeneous_masks(node_mask_type, edge_mask_type,
|
354
|
+
N, F, E, device)
|
355
|
+
|
356
|
+
def _initialize_node_mask(
|
357
|
+
self,
|
358
|
+
node_mask_type,
|
359
|
+
node_type,
|
360
|
+
N,
|
361
|
+
F,
|
362
|
+
device,
|
363
|
+
) -> None:
|
364
|
+
"""Initialize node mask for a specific node type."""
|
365
|
+
std = 0.1
|
366
|
+
if node_mask_type is None:
|
367
|
+
self.node_mask[node_type] = None
|
368
|
+
self.hard_node_mask[node_type] = None
|
369
|
+
elif node_mask_type == MaskType.object:
|
370
|
+
self.node_mask[node_type] = Parameter(
|
371
|
+
torch.randn(N, 1, device=device) * std)
|
372
|
+
self.hard_node_mask[node_type] = None
|
373
|
+
elif node_mask_type == MaskType.attributes:
|
374
|
+
self.node_mask[node_type] = Parameter(
|
375
|
+
torch.randn(N, F, device=device) * std)
|
376
|
+
self.hard_node_mask[node_type] = None
|
377
|
+
elif node_mask_type == MaskType.common_attributes:
|
378
|
+
self.node_mask[node_type] = Parameter(
|
379
|
+
torch.randn(1, F, device=device) * std)
|
380
|
+
self.hard_node_mask[node_type] = None
|
381
|
+
else:
|
382
|
+
raise ValueError(f"Invalid node mask type: {node_mask_type}")
|
383
|
+
|
384
|
+
def _initialize_edge_mask(self, edge_mask_type, edge_type, E, N, device):
|
385
|
+
"""Initialize edge mask for a specific edge type."""
|
386
|
+
if edge_mask_type is None:
|
387
|
+
self.edge_mask[edge_type] = None
|
388
|
+
self.hard_edge_mask[edge_type] = None
|
389
|
+
elif edge_mask_type == MaskType.object:
|
390
|
+
std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
|
391
|
+
self.edge_mask[edge_type] = Parameter(
|
392
|
+
torch.randn(E, device=device) * std)
|
393
|
+
self.hard_edge_mask[edge_type] = None
|
394
|
+
else:
|
395
|
+
raise ValueError(f"Invalid edge mask type: {edge_mask_type}")
|
396
|
+
|
397
|
+
def _initialize_homogeneous_masks(self, node_mask_type, edge_mask_type, N,
|
398
|
+
F, E, device):
|
399
|
+
"""Initialize masks for homogeneous graph."""
|
400
|
+
# Initialize node mask
|
401
|
+
std = 0.1
|
402
|
+
if node_mask_type is None:
|
403
|
+
self.node_mask = None
|
404
|
+
elif node_mask_type == MaskType.object:
|
405
|
+
self.node_mask = Parameter(torch.randn(N, 1, device=device) * std)
|
406
|
+
elif node_mask_type == MaskType.attributes:
|
407
|
+
self.node_mask = Parameter(torch.randn(N, F, device=device) * std)
|
408
|
+
elif node_mask_type == MaskType.common_attributes:
|
409
|
+
self.node_mask = Parameter(torch.randn(1, F, device=device) * std)
|
410
|
+
else:
|
411
|
+
raise ValueError(f"Invalid node mask type: {node_mask_type}")
|
412
|
+
|
413
|
+
# Initialize edge mask
|
414
|
+
if edge_mask_type is None:
|
415
|
+
self.edge_mask = None
|
416
|
+
elif edge_mask_type == MaskType.object:
|
417
|
+
std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
|
418
|
+
self.edge_mask = Parameter(torch.randn(E, device=device) * std)
|
419
|
+
else:
|
420
|
+
raise ValueError(f"Invalid edge mask type: {edge_mask_type}")
|
421
|
+
|
422
|
+
def _collect_gradients(self) -> None:
|
423
|
+
if self.is_hetero:
|
424
|
+
self._collect_hetero_gradients()
|
425
|
+
else:
|
426
|
+
self._collect_homo_gradients()
|
427
|
+
|
428
|
+
def _collect_hetero_gradients(self):
|
429
|
+
"""Collect gradients for heterogeneous graph."""
|
430
|
+
for node_type, mask in self.node_mask.items():
|
431
|
+
if mask is not None:
|
432
|
+
if mask.grad is None:
|
433
|
+
raise ValueError(
|
434
|
+
f"Could not compute gradients for node masks of type "
|
435
|
+
f"'{node_type}'. Please make sure that node masks are "
|
436
|
+
f"used inside the model or disable it via "
|
437
|
+
f"`node_mask_type=None`.")
|
438
|
+
|
439
|
+
self.hard_node_mask[node_type] = mask.grad != 0.0
|
440
|
+
|
441
|
+
for edge_type, mask in self.edge_mask.items():
|
442
|
+
if mask is not None:
|
443
|
+
if mask.grad is None:
|
444
|
+
raise ValueError(
|
445
|
+
f"Could not compute gradients for edge masks of type "
|
446
|
+
f"'{edge_type}'. Please make sure that edge masks are "
|
447
|
+
f"used inside the model or disable it via "
|
448
|
+
f"`edge_mask_type=None`.")
|
449
|
+
self.hard_edge_mask[edge_type] = mask.grad != 0.0
|
450
|
+
|
451
|
+
def _collect_homo_gradients(self):
|
452
|
+
"""Collect gradients for homogeneous graph."""
|
453
|
+
if self.node_mask is not None:
|
454
|
+
if self.node_mask.grad is None:
|
455
|
+
raise ValueError("Could not compute gradients for node "
|
456
|
+
"features. Please make sure that node "
|
457
|
+
"features are used inside the model or "
|
458
|
+
"disable it via `node_mask_type=None`.")
|
459
|
+
self.hard_node_mask = self.node_mask.grad != 0.0
|
460
|
+
|
461
|
+
if self.edge_mask is not None:
|
462
|
+
if self.edge_mask.grad is None:
|
463
|
+
raise ValueError("Could not compute gradients for edges. "
|
464
|
+
"Please make sure that edges are used "
|
465
|
+
"via message passing inside the model or "
|
466
|
+
"disable it via `edge_mask_type=None`.")
|
467
|
+
self.hard_edge_mask = self.edge_mask.grad != 0.0
|
468
|
+
|
469
|
+
def _loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
|
470
|
+
# Calculate base loss based on model configuration
|
471
|
+
loss = self._calculate_base_loss(y_hat, y)
|
472
|
+
|
473
|
+
# Apply regularization based on graph type
|
474
|
+
if self.is_hetero:
|
475
|
+
# Apply regularization for heterogeneous graph
|
476
|
+
loss = self._apply_hetero_regularization(loss)
|
477
|
+
else:
|
478
|
+
# Apply regularization for homogeneous graph
|
479
|
+
loss = self._apply_homo_regularization(loss)
|
480
|
+
|
481
|
+
return loss
|
482
|
+
|
483
|
+
def _calculate_base_loss(self, y_hat, y):
|
484
|
+
"""Calculate base loss based on model configuration."""
|
485
|
+
if self.model_config.mode == ModelMode.binary_classification:
|
486
|
+
return self._loss_binary_classification(y_hat, y)
|
487
|
+
elif self.model_config.mode == ModelMode.multiclass_classification:
|
488
|
+
return self._loss_multiclass_classification(y_hat, y)
|
489
|
+
elif self.model_config.mode == ModelMode.regression:
|
490
|
+
return self._loss_regression(y_hat, y)
|
491
|
+
else:
|
492
|
+
raise ValueError(f"Invalid model mode: {self.model_config.mode}")
|
493
|
+
|
494
|
+
def _apply_hetero_regularization(self, loss):
|
495
|
+
"""Apply regularization for heterogeneous graph."""
|
496
|
+
# Apply regularization for each edge type
|
497
|
+
for edge_type, mask in self.edge_mask.items():
|
498
|
+
if (mask is not None
|
499
|
+
and self.hard_edge_mask[edge_type] is not None):
|
500
|
+
loss = self._add_mask_regularization(
|
501
|
+
loss, mask, self.hard_edge_mask[edge_type],
|
502
|
+
self.coeffs['edge_size'], self.coeffs['edge_reduction'],
|
503
|
+
self.coeffs['edge_ent'])
|
504
|
+
|
505
|
+
# Apply regularization for each node type
|
506
|
+
for node_type, mask in self.node_mask.items():
|
507
|
+
if (mask is not None
|
508
|
+
and self.hard_node_mask[node_type] is not None):
|
509
|
+
loss = self._add_mask_regularization(
|
510
|
+
loss, mask, self.hard_node_mask[node_type],
|
511
|
+
self.coeffs['node_feat_size'],
|
512
|
+
self.coeffs['node_feat_reduction'],
|
513
|
+
self.coeffs['node_feat_ent'])
|
514
|
+
|
515
|
+
return loss
|
516
|
+
|
517
|
+
def _apply_homo_regularization(self, loss):
|
518
|
+
"""Apply regularization for homogeneous graph."""
|
519
|
+
# Apply regularization for edge mask
|
520
|
+
if self.hard_edge_mask is not None:
|
521
|
+
assert self.edge_mask is not None
|
522
|
+
loss = self._add_mask_regularization(loss, self.edge_mask,
|
523
|
+
self.hard_edge_mask,
|
524
|
+
self.coeffs['edge_size'],
|
525
|
+
self.coeffs['edge_reduction'],
|
526
|
+
self.coeffs['edge_ent'])
|
527
|
+
|
528
|
+
# Apply regularization for node mask
|
529
|
+
if self.hard_node_mask is not None:
|
530
|
+
assert self.node_mask is not None
|
531
|
+
loss = self._add_mask_regularization(
|
532
|
+
loss, self.node_mask, self.hard_node_mask,
|
533
|
+
self.coeffs['node_feat_size'],
|
534
|
+
self.coeffs['node_feat_reduction'],
|
535
|
+
self.coeffs['node_feat_ent'])
|
536
|
+
|
537
|
+
return loss
|
538
|
+
|
539
|
+
def _add_mask_regularization(self, loss, mask, hard_mask, size_coeff,
|
540
|
+
reduction_name, ent_coeff):
|
541
|
+
"""Add size and entropy regularization for a mask."""
|
542
|
+
m = mask[hard_mask].sigmoid()
|
543
|
+
reduce_fn = getattr(torch, reduction_name)
|
544
|
+
# Add size regularization
|
545
|
+
loss = loss + size_coeff * reduce_fn(m)
|
546
|
+
# Add entropy regularization
|
547
|
+
ent = -m * torch.log(m + self.coeffs['EPS']) - (
|
548
|
+
1 - m) * torch.log(1 - m + self.coeffs['EPS'])
|
549
|
+
loss = loss + ent_coeff * ent.mean()
|
550
|
+
|
551
|
+
return loss
|
552
|
+
|
553
|
+
def _clean_model(self, model):
|
554
|
+
clear_masks(model)
|
555
|
+
self.node_mask = self.hard_node_mask = None
|
556
|
+
self.edge_mask = self.hard_edge_mask = None
|
557
|
+
|
558
|
+
|
559
|
+
class GNNExplainer_:
|
560
|
+
r"""Deprecated version for :class:`GNNExplainer`."""
|
561
|
+
|
562
|
+
coeffs = GNNExplainer.coeffs
|
563
|
+
|
564
|
+
conversion_node_mask_type = {
|
565
|
+
'feature': 'common_attributes',
|
566
|
+
'individual_feature': 'attributes',
|
567
|
+
'scalar': 'object',
|
568
|
+
}
|
569
|
+
|
570
|
+
conversion_return_type = {
|
571
|
+
'log_prob': 'log_probs',
|
572
|
+
'prob': 'probs',
|
573
|
+
'raw': 'raw',
|
574
|
+
'regression': 'raw',
|
575
|
+
}
|
576
|
+
|
577
|
+
def __init__(
|
578
|
+
self,
|
579
|
+
model: torch.nn.Module,
|
580
|
+
epochs: int = 100,
|
581
|
+
lr: float = 0.01,
|
582
|
+
return_type: str = 'log_prob',
|
583
|
+
feat_mask_type: str = 'feature',
|
584
|
+
allow_edge_mask: bool = True,
|
585
|
+
**kwargs,
|
586
|
+
):
|
587
|
+
assert feat_mask_type in ['feature', 'individual_feature', 'scalar']
|
588
|
+
|
589
|
+
explainer_config = ExplainerConfig(
|
590
|
+
explanation_type='model',
|
591
|
+
node_mask_type=self.conversion_node_mask_type[feat_mask_type],
|
592
|
+
edge_mask_type=MaskType.object if allow_edge_mask else None,
|
593
|
+
)
|
594
|
+
model_config = ModelConfig(
|
595
|
+
mode='regression'
|
596
|
+
if return_type == 'regression' else 'multiclass_classification',
|
597
|
+
task_level=ModelTaskLevel.node,
|
598
|
+
return_type=self.conversion_return_type[return_type],
|
599
|
+
)
|
600
|
+
|
601
|
+
self.model = model
|
602
|
+
self._explainer = GNNExplainer(epochs=epochs, lr=lr, **kwargs)
|
603
|
+
self._explainer.connect(explainer_config, model_config)
|
604
|
+
|
605
|
+
@torch.no_grad()
|
606
|
+
def get_initial_prediction(self, *args, **kwargs) -> Tensor:
|
607
|
+
|
608
|
+
training = self.model.training
|
609
|
+
self.model.eval()
|
610
|
+
|
611
|
+
out = self.model(*args, **kwargs)
|
612
|
+
if (self._explainer.model_config.mode ==
|
613
|
+
ModelMode.multiclass_classification):
|
614
|
+
out = out.argmax(dim=-1)
|
615
|
+
|
616
|
+
self.model.train(training)
|
617
|
+
|
618
|
+
return out
|
619
|
+
|
620
|
+
def explain_graph(
|
621
|
+
self,
|
622
|
+
x: Tensor,
|
623
|
+
edge_index: Tensor,
|
624
|
+
**kwargs,
|
625
|
+
) -> Tuple[Tensor, Tensor]:
|
626
|
+
self._explainer.model_config.task_level = ModelTaskLevel.graph
|
627
|
+
|
628
|
+
explanation = self._explainer(
|
629
|
+
self.model,
|
630
|
+
x,
|
631
|
+
edge_index,
|
632
|
+
target=self.get_initial_prediction(x, edge_index, **kwargs),
|
633
|
+
**kwargs,
|
634
|
+
)
|
635
|
+
return self._convert_output(explanation, edge_index)
|
636
|
+
|
637
|
+
def explain_node(
|
638
|
+
self,
|
639
|
+
node_idx: int,
|
640
|
+
x: Tensor,
|
641
|
+
edge_index: Tensor,
|
642
|
+
**kwargs,
|
643
|
+
) -> Tuple[Tensor, Tensor]:
|
644
|
+
self._explainer.model_config.task_level = ModelTaskLevel.node
|
645
|
+
explanation = self._explainer(
|
646
|
+
self.model,
|
647
|
+
x,
|
648
|
+
edge_index,
|
649
|
+
target=self.get_initial_prediction(x, edge_index, **kwargs),
|
650
|
+
index=node_idx,
|
651
|
+
**kwargs,
|
652
|
+
)
|
653
|
+
return self._convert_output(explanation, edge_index, index=node_idx,
|
654
|
+
x=x)
|
655
|
+
|
656
|
+
def _convert_output(self, explanation, edge_index, index=None, x=None):
|
657
|
+
node_mask = explanation.get('node_mask')
|
658
|
+
edge_mask = explanation.get('edge_mask')
|
659
|
+
|
660
|
+
if node_mask is not None:
|
661
|
+
node_mask_type = self._explainer.explainer_config.node_mask_type
|
662
|
+
if node_mask_type in {MaskType.object, MaskType.common_attributes}:
|
663
|
+
node_mask = node_mask.view(-1)
|
664
|
+
|
665
|
+
if edge_mask is None:
|
666
|
+
if index is not None:
|
667
|
+
_, edge_mask = self._explainer._get_hard_masks(
|
668
|
+
self.model, index, edge_index, num_nodes=x.size(0))
|
669
|
+
edge_mask = edge_mask.to(x.dtype)
|
670
|
+
else:
|
671
|
+
edge_mask = torch.ones(edge_index.size(1),
|
672
|
+
device=edge_index.device)
|
673
|
+
|
674
|
+
return node_mask, edge_mask
|