pyg-nightly 2.7.0.dev20250114__tar.gz → 2.7.0.dev20250116__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/PKG-INFO +1 -1
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/pyproject.toml +1 -1
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/__init__.py +1 -1
- pyg_nightly-2.7.0.dev20250116/torch_geometric/metrics/link_pred.py +515 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/nlp/llm.py +10 -3
- pyg_nightly-2.7.0.dev20250114/torch_geometric/metrics/link_pred.py +0 -343
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/README.md +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/large_graph_indexer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/git_mol_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/molecule_gpt_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/tag_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/web_qsp_dataset.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/rag_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/attention/qformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/g_retriever.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/git_mol.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/glem.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/molecule_gpt.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/nlp/vision_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/cluster_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/edge_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/nvtx.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250116
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250116'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -0,0 +1,515 @@
|
|
1
|
+
from dataclasses import dataclass
|
2
|
+
from typing import Dict, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import Tensor
|
6
|
+
|
7
|
+
from torch_geometric.utils import cumsum, scatter
|
8
|
+
|
9
|
+
try:
|
10
|
+
import torchmetrics # noqa
|
11
|
+
WITH_TORCHMETRICS = True
|
12
|
+
BaseMetric = torchmetrics.Metric
|
13
|
+
except Exception:
|
14
|
+
WITH_TORCHMETRICS = False
|
15
|
+
BaseMetric = torch.nn.Module # type: ignore
|
16
|
+
|
17
|
+
|
18
|
+
@dataclass(repr=False)
|
19
|
+
class LinkPredMetricData:
|
20
|
+
pred_index_mat: Tensor
|
21
|
+
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]]
|
22
|
+
edge_label_weight: Optional[Tensor] = None
|
23
|
+
|
24
|
+
@property
|
25
|
+
def pred_rel_mat(self) -> Tensor:
|
26
|
+
r"""Returns a matrix indicating the relevance of the `k`-th prediction.
|
27
|
+
If :obj:`edge_label_weight` is not given, relevance will be denoted as
|
28
|
+
binary.
|
29
|
+
"""
|
30
|
+
if hasattr(self, '_pred_rel_mat'):
|
31
|
+
return self._pred_rel_mat # type: ignore
|
32
|
+
|
33
|
+
# Flatten both prediction and ground-truth indices, and determine
|
34
|
+
# overlaps afterwards via `torch.searchsorted`.
|
35
|
+
max_index = max( # type: ignore
|
36
|
+
self.pred_index_mat.max()
|
37
|
+
if self.pred_index_mat.numel() > 0 else 0,
|
38
|
+
self.edge_label_index[1].max()
|
39
|
+
if self.edge_label_index[1].numel() > 0 else 0,
|
40
|
+
) + 1
|
41
|
+
arange = torch.arange(
|
42
|
+
start=0,
|
43
|
+
end=max_index * self.pred_index_mat.size(0), # type: ignore
|
44
|
+
step=max_index, # type: ignore
|
45
|
+
device=self.pred_index_mat.device,
|
46
|
+
).view(-1, 1)
|
47
|
+
flat_pred_index = (self.pred_index_mat + arange).view(-1)
|
48
|
+
flat_label_index = max_index * self.edge_label_index[0]
|
49
|
+
flat_label_index = flat_label_index + self.edge_label_index[1]
|
50
|
+
flat_label_index, perm = flat_label_index.sort()
|
51
|
+
edge_label_weight = self.edge_label_weight
|
52
|
+
if edge_label_weight is not None:
|
53
|
+
assert edge_label_weight.size() == self.edge_label_index[0].size()
|
54
|
+
edge_label_weight = edge_label_weight[perm]
|
55
|
+
|
56
|
+
pos = torch.searchsorted(flat_label_index, flat_pred_index)
|
57
|
+
pos = pos.clamp(max=flat_label_index.size(0) - 1) # Out-of-bounds.
|
58
|
+
|
59
|
+
pred_rel_mat = flat_label_index[pos] == flat_pred_index # Find matches
|
60
|
+
if edge_label_weight is not None:
|
61
|
+
pred_rel_mat = edge_label_weight[pos].where(
|
62
|
+
pred_rel_mat,
|
63
|
+
pred_rel_mat.new_zeros(1),
|
64
|
+
)
|
65
|
+
pred_rel_mat = pred_rel_mat.view(self.pred_index_mat.size())
|
66
|
+
|
67
|
+
self._pred_rel_mat = pred_rel_mat
|
68
|
+
return pred_rel_mat
|
69
|
+
|
70
|
+
@property
|
71
|
+
def label_count(self) -> Tensor:
|
72
|
+
r"""The number of ground-truth labels for every example."""
|
73
|
+
if hasattr(self, '_label_count'):
|
74
|
+
return self._label_count # type: ignore
|
75
|
+
|
76
|
+
label_count = scatter(
|
77
|
+
torch.ones_like(self.edge_label_index[0]),
|
78
|
+
self.edge_label_index[0],
|
79
|
+
dim=0,
|
80
|
+
dim_size=self.pred_index_mat.size(0),
|
81
|
+
reduce='sum',
|
82
|
+
)
|
83
|
+
|
84
|
+
self._label_count = label_count
|
85
|
+
return label_count
|
86
|
+
|
87
|
+
@property
|
88
|
+
def label_weight_sum(self) -> Tensor:
|
89
|
+
r"""The sum of edge label weights for every example."""
|
90
|
+
if self.edge_label_weight is None:
|
91
|
+
return self.label_count
|
92
|
+
|
93
|
+
if hasattr(self, '_label_weight_sum'):
|
94
|
+
return self._label_weight_sum # type: ignore
|
95
|
+
|
96
|
+
label_weight_sum = scatter(
|
97
|
+
self.edge_label_weight,
|
98
|
+
self.edge_label_index[0],
|
99
|
+
dim=0,
|
100
|
+
dim_size=self.pred_index_mat.size(0),
|
101
|
+
reduce='sum',
|
102
|
+
)
|
103
|
+
|
104
|
+
self._label_weight_sum = label_weight_sum
|
105
|
+
return label_weight_sum
|
106
|
+
|
107
|
+
@property
|
108
|
+
def edge_label_weight_pos(self) -> Optional[Tensor]:
|
109
|
+
r"""Returns the position of edge label weights in descending order
|
110
|
+
within example-wise buckets.
|
111
|
+
"""
|
112
|
+
if self.edge_label_weight is None:
|
113
|
+
return None
|
114
|
+
|
115
|
+
if hasattr(self, '_edge_label_weight_pos'):
|
116
|
+
return self._edge_label_weight_pos # type: ignore
|
117
|
+
|
118
|
+
# Get the permutation via two sorts: One globally on the weights,
|
119
|
+
# followed by a (stable) sort on the example indices.
|
120
|
+
perm1 = self.edge_label_weight.argsort(descending=True)
|
121
|
+
perm2 = self.edge_label_index[0][perm1].argsort(stable=True)
|
122
|
+
perm = perm1[perm2]
|
123
|
+
# Invert the permutation to get the final position:
|
124
|
+
pos = torch.empty_like(perm)
|
125
|
+
pos[perm] = torch.arange(perm.size(0), device=perm.device)
|
126
|
+
# Normalize position to zero within all buckets:
|
127
|
+
pos = pos - cumsum(self.label_count)[self.edge_label_index[0]]
|
128
|
+
|
129
|
+
self._edge_label_weight_pos = pos
|
130
|
+
return pos
|
131
|
+
|
132
|
+
|
133
|
+
class LinkPredMetric(BaseMetric):
|
134
|
+
r"""An abstract class for computing link prediction retrieval metrics.
|
135
|
+
|
136
|
+
Args:
|
137
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
138
|
+
"""
|
139
|
+
is_differentiable: bool = False
|
140
|
+
full_state_update: bool = False
|
141
|
+
higher_is_better: Optional[bool] = None
|
142
|
+
weighted: bool = False
|
143
|
+
|
144
|
+
def __init__(self, k: int) -> None:
|
145
|
+
super().__init__()
|
146
|
+
|
147
|
+
if k <= 0:
|
148
|
+
raise ValueError(f"'k' needs to be a positive integer in "
|
149
|
+
f"'{self.__class__.__name__}' (got {k})")
|
150
|
+
|
151
|
+
self.k = k
|
152
|
+
|
153
|
+
self.accum: Tensor
|
154
|
+
self.total: Tensor
|
155
|
+
|
156
|
+
if WITH_TORCHMETRICS:
|
157
|
+
self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
|
158
|
+
self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
|
159
|
+
else:
|
160
|
+
self.register_buffer('accum', torch.tensor(0.))
|
161
|
+
self.register_buffer('total', torch.tensor(0))
|
162
|
+
|
163
|
+
def update(
|
164
|
+
self,
|
165
|
+
pred_index_mat: Tensor,
|
166
|
+
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]],
|
167
|
+
edge_label_weight: Optional[Tensor] = None,
|
168
|
+
) -> None:
|
169
|
+
r"""Updates the state variables based on the current mini-batch
|
170
|
+
prediction.
|
171
|
+
|
172
|
+
:meth:`update` can be repeated multiple times to accumulate the results
|
173
|
+
of successive predictions, *e.g.*, inside a mini-batch training or
|
174
|
+
evaluation loop.
|
175
|
+
|
176
|
+
Args:
|
177
|
+
pred_index_mat (torch.Tensor): The top-:math:`k` predictions of
|
178
|
+
every example in the mini-batch with shape
|
179
|
+
:obj:`[batch_size, k]`.
|
180
|
+
edge_label_index (torch.Tensor): The ground-truth indices for every
|
181
|
+
example in the mini-batch, given in COO format of shape
|
182
|
+
:obj:`[2, num_ground_truth_indices]`.
|
183
|
+
edge_label_weight (torch.Tensor, optional): The weight of the
|
184
|
+
ground-truth indices for every example in the mini-batch of
|
185
|
+
shape :obj:`[num_ground_truth_indices]`. If given, needs to be
|
186
|
+
a vector of positive values. Required for weighted metrics,
|
187
|
+
ignored otherwise. (default: :obj:`None`)
|
188
|
+
"""
|
189
|
+
if self.weighted and edge_label_weight is None:
|
190
|
+
raise ValueError(f"'edge_label_weight' is a required argument for "
|
191
|
+
f"weighted '{self.__class__.__name__}' metrics")
|
192
|
+
if not self.weighted:
|
193
|
+
edge_label_weight = None
|
194
|
+
|
195
|
+
data = LinkPredMetricData(
|
196
|
+
pred_index_mat=pred_index_mat,
|
197
|
+
edge_label_index=edge_label_index,
|
198
|
+
edge_label_weight=edge_label_weight,
|
199
|
+
)
|
200
|
+
self._update(data)
|
201
|
+
|
202
|
+
def _update(self, data: LinkPredMetricData) -> None:
|
203
|
+
metric = self._compute(data)
|
204
|
+
|
205
|
+
self.accum += metric.sum()
|
206
|
+
self.total += (data.label_count > 0).sum()
|
207
|
+
|
208
|
+
def compute(self) -> Tensor:
|
209
|
+
r"""Computes the final metric value."""
|
210
|
+
if self.total == 0:
|
211
|
+
return torch.zeros_like(self.accum)
|
212
|
+
return self.accum / self.total
|
213
|
+
|
214
|
+
def reset(self) -> None:
|
215
|
+
r"""Resets metric state variables to their default value."""
|
216
|
+
if WITH_TORCHMETRICS:
|
217
|
+
super().reset()
|
218
|
+
else:
|
219
|
+
self.accum.zero_()
|
220
|
+
self.total.zero_()
|
221
|
+
|
222
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
223
|
+
r"""Computes the specific metric.
|
224
|
+
To be implemented separately for each metric class.
|
225
|
+
|
226
|
+
Args:
|
227
|
+
data (LinkPredMetricData): The mini-batch data for computing a link
|
228
|
+
prediction metric per example.
|
229
|
+
"""
|
230
|
+
raise NotImplementedError
|
231
|
+
|
232
|
+
def __repr__(self) -> str:
|
233
|
+
weighted_repr = ', weighted=True' if self.weighted else ''
|
234
|
+
return f'{self.__class__.__name__}(k={self.k}{weighted_repr})'
|
235
|
+
|
236
|
+
|
237
|
+
class LinkPredMetricCollection(torch.nn.ModuleDict):
|
238
|
+
r"""A collection of metrics to reduce and speed-up computation of link
|
239
|
+
prediction metrics.
|
240
|
+
|
241
|
+
.. code-block:: python
|
242
|
+
|
243
|
+
from torch_geometric.metrics import (
|
244
|
+
LinkPredMAP,
|
245
|
+
LinkPredMetricCollection,
|
246
|
+
LinkPredPrecision,
|
247
|
+
LinkPredRecall,
|
248
|
+
)
|
249
|
+
|
250
|
+
metrics = LinkPredMetricCollection([
|
251
|
+
LinkPredMAP(k=10),
|
252
|
+
LinkPredPrecision(k=100),
|
253
|
+
LinkPredRecall(k=50),
|
254
|
+
])
|
255
|
+
|
256
|
+
metrics.update(pred_index_mat, edge_label_index)
|
257
|
+
out = metrics.compute()
|
258
|
+
metrics.reset()
|
259
|
+
|
260
|
+
print(out)
|
261
|
+
>>> {'LinkPredMAP@10': tensor(0.375),
|
262
|
+
... 'LinkPredPrecision@100': tensor(0.127),
|
263
|
+
... 'LinkPredRecall@50': tensor(0.483)}
|
264
|
+
|
265
|
+
Args:
|
266
|
+
metrics: The link prediction metrics.
|
267
|
+
"""
|
268
|
+
def __init__(
|
269
|
+
self,
|
270
|
+
metrics: Union[
|
271
|
+
List[LinkPredMetric],
|
272
|
+
Dict[str, LinkPredMetric],
|
273
|
+
],
|
274
|
+
) -> None:
|
275
|
+
super().__init__()
|
276
|
+
|
277
|
+
if isinstance(metrics, (list, tuple)):
|
278
|
+
metrics = {
|
279
|
+
(f'{"Weighted" if metric.weighted else ""}'
|
280
|
+
f'{metric.__class__.__name__}@{metric.k}'):
|
281
|
+
metric
|
282
|
+
for metric in metrics
|
283
|
+
}
|
284
|
+
assert len(metrics) > 0
|
285
|
+
assert isinstance(metrics, dict)
|
286
|
+
|
287
|
+
for name, metric in metrics.items():
|
288
|
+
self[name] = metric
|
289
|
+
|
290
|
+
@property
|
291
|
+
def max_k(self) -> int:
|
292
|
+
r"""The maximum number of top-:math:`k` predictions to evaluate
|
293
|
+
against.
|
294
|
+
"""
|
295
|
+
return max([metric.k for metric in self.values()])
|
296
|
+
|
297
|
+
@property
|
298
|
+
def weighted(self) -> bool:
|
299
|
+
r"""Returns :obj:`True` in case the collection holds at least one
|
300
|
+
weighted link prediction metric.
|
301
|
+
"""
|
302
|
+
return any([metric.weighted for metric in self.values()])
|
303
|
+
|
304
|
+
def update( # type: ignore
|
305
|
+
self,
|
306
|
+
pred_index_mat: Tensor,
|
307
|
+
edge_label_index: Union[Tensor, Tuple[Tensor, Tensor]],
|
308
|
+
edge_label_weight: Optional[Tensor] = None,
|
309
|
+
) -> None:
|
310
|
+
r"""Updates the state variables based on the current mini-batch
|
311
|
+
prediction.
|
312
|
+
|
313
|
+
:meth:`update` can be repeated multiple times to accumulate the results
|
314
|
+
of successive predictions, *e.g.*, inside a mini-batch training or
|
315
|
+
evaluation loop.
|
316
|
+
|
317
|
+
Args:
|
318
|
+
pred_index_mat (torch.Tensor): The top-:math:`k` predictions of
|
319
|
+
every example in the mini-batch with shape
|
320
|
+
:obj:`[batch_size, k]`.
|
321
|
+
edge_label_index (torch.Tensor): The ground-truth indices for every
|
322
|
+
example in the mini-batch, given in COO format of shape
|
323
|
+
:obj:`[2, num_ground_truth_indices]`.
|
324
|
+
edge_label_weight (torch.Tensor, optional): The weight of the
|
325
|
+
ground-truth indices for every example in the mini-batch of
|
326
|
+
shape :obj:`[num_ground_truth_indices]`. If given, needs to be
|
327
|
+
a vector of positive values. Required for weighted metrics,
|
328
|
+
ignored otherwise. (default: :obj:`None`)
|
329
|
+
"""
|
330
|
+
if self.weighted and edge_label_weight is None:
|
331
|
+
raise ValueError(f"'edge_label_weight' is a required argument for "
|
332
|
+
f"weighted '{self.__class__.__name__}' metrics")
|
333
|
+
if not self.weighted:
|
334
|
+
edge_label_weight = None
|
335
|
+
|
336
|
+
data = LinkPredMetricData( # Share metric data across metrics.
|
337
|
+
pred_index_mat=pred_index_mat,
|
338
|
+
edge_label_index=edge_label_index,
|
339
|
+
edge_label_weight=edge_label_weight,
|
340
|
+
)
|
341
|
+
|
342
|
+
for metric in self.values():
|
343
|
+
if metric.weighted:
|
344
|
+
metric._update(data)
|
345
|
+
if WITH_TORCHMETRICS:
|
346
|
+
metric._update_count += 1
|
347
|
+
|
348
|
+
data.edge_label_weight = None
|
349
|
+
if hasattr(data, '_pred_rel_mat'):
|
350
|
+
data._pred_rel_mat = data._pred_rel_mat != 0.0
|
351
|
+
if hasattr(data, '_label_weight_sum'):
|
352
|
+
del data._label_weight_sum
|
353
|
+
if hasattr(data, '_edge_label_weight_pos'):
|
354
|
+
del data._edge_label_weight_pos
|
355
|
+
|
356
|
+
for metric in self.values():
|
357
|
+
if not metric.weighted:
|
358
|
+
metric._update(data)
|
359
|
+
if WITH_TORCHMETRICS:
|
360
|
+
metric._update_count += 1
|
361
|
+
|
362
|
+
def compute(self) -> Dict[str, Tensor]:
|
363
|
+
r"""Computes the final metric values."""
|
364
|
+
return {name: metric.compute() for name, metric in self.items()}
|
365
|
+
|
366
|
+
def reset(self) -> None:
|
367
|
+
r"""Reset metric state variables to their default value."""
|
368
|
+
for metric in self.values():
|
369
|
+
metric.reset()
|
370
|
+
|
371
|
+
def __repr__(self) -> str:
|
372
|
+
names = [f' {name}: {metric},\n' for name, metric in self.items()]
|
373
|
+
return f'{self.__class__.__name__}([\n{"".join(names)}])'
|
374
|
+
|
375
|
+
|
376
|
+
class LinkPredPrecision(LinkPredMetric):
|
377
|
+
r"""A link prediction metric to compute Precision @ :math:`k`.
|
378
|
+
|
379
|
+
Args:
|
380
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
381
|
+
"""
|
382
|
+
higher_is_better: bool = True
|
383
|
+
weighted: bool = False
|
384
|
+
|
385
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
386
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
387
|
+
return pred_rel_mat.sum(dim=-1) / self.k
|
388
|
+
|
389
|
+
|
390
|
+
class LinkPredRecall(LinkPredMetric):
|
391
|
+
r"""A link prediction metric to compute Recall @ :math:`k`.
|
392
|
+
|
393
|
+
Args:
|
394
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
395
|
+
"""
|
396
|
+
higher_is_better: bool = True
|
397
|
+
|
398
|
+
def __init__(self, k: int, weighted: bool = False):
|
399
|
+
super().__init__(k=k)
|
400
|
+
self.weighted = weighted
|
401
|
+
|
402
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
403
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
404
|
+
return pred_rel_mat.sum(dim=-1) / data.label_weight_sum.clamp(min=1e-7)
|
405
|
+
|
406
|
+
|
407
|
+
class LinkPredF1(LinkPredMetric):
|
408
|
+
r"""A link prediction metric to compute F1 @ :math:`k`.
|
409
|
+
|
410
|
+
Args:
|
411
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
412
|
+
"""
|
413
|
+
higher_is_better: bool = True
|
414
|
+
weighted: bool = False
|
415
|
+
|
416
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
417
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
418
|
+
isin_count = pred_rel_mat.sum(dim=-1)
|
419
|
+
precision = isin_count / self.k
|
420
|
+
recall = isin_count / data.label_count.clamp(min=1e-7)
|
421
|
+
return 2 * precision * recall / (precision + recall).clamp(min=1e-7)
|
422
|
+
|
423
|
+
|
424
|
+
class LinkPredMAP(LinkPredMetric):
|
425
|
+
r"""A link prediction metric to compute MAP @ :math:`k` (Mean Average
|
426
|
+
Precision).
|
427
|
+
|
428
|
+
Args:
|
429
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
430
|
+
"""
|
431
|
+
higher_is_better: bool = True
|
432
|
+
weighted: bool = False
|
433
|
+
|
434
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
435
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
436
|
+
device = pred_rel_mat.device
|
437
|
+
arange = torch.arange(1, pred_rel_mat.size(1) + 1, device=device)
|
438
|
+
cum_precision = pred_rel_mat.cumsum(dim=1) / arange
|
439
|
+
return ((cum_precision * pred_rel_mat).sum(dim=-1) /
|
440
|
+
data.label_count.clamp(min=1e-7, max=self.k))
|
441
|
+
|
442
|
+
|
443
|
+
class LinkPredNDCG(LinkPredMetric):
|
444
|
+
r"""A link prediction metric to compute the NDCG @ :math:`k` (Normalized
|
445
|
+
Discounted Cumulative Gain).
|
446
|
+
|
447
|
+
Args:
|
448
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
449
|
+
weighted (bool, optional): If set to :obj:`True`, assumes sorted lists
|
450
|
+
of ground-truth items according to a relevance score as given by
|
451
|
+
:obj:`edge_label_weight`. (default: :obj:`False`)
|
452
|
+
"""
|
453
|
+
higher_is_better: bool = True
|
454
|
+
|
455
|
+
def __init__(self, k: int, weighted: bool = False):
|
456
|
+
super().__init__(k=k)
|
457
|
+
self.weighted = weighted
|
458
|
+
|
459
|
+
dtype = torch.get_default_dtype()
|
460
|
+
discount = torch.arange(2, k + 2, dtype=dtype).log2()
|
461
|
+
|
462
|
+
self.discount: Tensor
|
463
|
+
self.register_buffer('discount', discount)
|
464
|
+
|
465
|
+
if not weighted:
|
466
|
+
self.register_buffer('idcg', cumsum(1.0 / discount))
|
467
|
+
else:
|
468
|
+
self.idcg = None
|
469
|
+
|
470
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
471
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
472
|
+
discount = self.discount[:pred_rel_mat.size(1)].view(1, -1)
|
473
|
+
dcg = (pred_rel_mat / discount).sum(dim=-1)
|
474
|
+
|
475
|
+
if not self.weighted:
|
476
|
+
assert self.idcg is not None
|
477
|
+
idcg = self.idcg[data.label_count.clamp(max=self.k)]
|
478
|
+
else:
|
479
|
+
assert data.edge_label_weight is not None
|
480
|
+
pos = data.edge_label_weight_pos
|
481
|
+
assert pos is not None
|
482
|
+
|
483
|
+
discount = torch.cat([
|
484
|
+
self.discount,
|
485
|
+
self.discount.new_full((1, ), fill_value=float('inf')),
|
486
|
+
])
|
487
|
+
discount = discount[pos.clamp(max=self.k + 1)]
|
488
|
+
|
489
|
+
idcg = scatter( # Apply discount and aggregate:
|
490
|
+
data.edge_label_weight / discount,
|
491
|
+
data.edge_label_index[0],
|
492
|
+
dim_size=data.pred_index_mat.size(0),
|
493
|
+
reduce='sum',
|
494
|
+
)
|
495
|
+
|
496
|
+
out = dcg / idcg
|
497
|
+
out[out.isnan() | out.isinf()] = 0.0
|
498
|
+
return out
|
499
|
+
|
500
|
+
|
501
|
+
class LinkPredMRR(LinkPredMetric):
|
502
|
+
r"""A link prediction metric to compute the MRR @ :math:`k` (Mean
|
503
|
+
Reciprocal Rank).
|
504
|
+
|
505
|
+
Args:
|
506
|
+
k (int): The number of top-:math:`k` predictions to evaluate against.
|
507
|
+
"""
|
508
|
+
higher_is_better: bool = True
|
509
|
+
weighted: bool = False
|
510
|
+
|
511
|
+
def _compute(self, data: LinkPredMetricData) -> Tensor:
|
512
|
+
pred_rel_mat = data.pred_rel_mat[:, :self.k]
|
513
|
+
device = pred_rel_mat.device
|
514
|
+
arange = torch.arange(1, pred_rel_mat.size(1) + 1, device=device)
|
515
|
+
return (pred_rel_mat / arange).max(dim=-1)[0]
|
{pyg_nightly-2.7.0.dev20250114 → pyg_nightly-2.7.0.dev20250116}/torch_geometric/nn/nlp/llm.py
RENAMED
@@ -51,17 +51,18 @@ class LLM(torch.nn.Module):
|
|
51
51
|
|
52
52
|
model_name (str): The HuggingFace model name, *e.g.*, :obj:`"llama2"` or
|
53
53
|
:obj:`"gemma"`.
|
54
|
-
num_params (int): An integer representing how many parameters the
|
54
|
+
num_params (int, optional): An integer representing how many parameters the
|
55
55
|
HuggingFace model has, in billions. This is used to automatically
|
56
56
|
allocate the correct number of GPUs needed, given the available GPU
|
57
|
-
memory of your GPUs.
|
57
|
+
memory of your GPUs. If not specified, the number of parameters
|
58
|
+
is determined using the `huggingface_hub` module.
|
58
59
|
dtype (torch.dtype, optional): The data type to use for the LLM.
|
59
60
|
(default :obj: `torch.bfloat16`)
|
60
61
|
"""
|
61
62
|
def __init__(
|
62
63
|
self,
|
63
64
|
model_name: str,
|
64
|
-
num_params: int,
|
65
|
+
num_params: int = None,
|
65
66
|
dtype=torch.bfloat16,
|
66
67
|
) -> None:
|
67
68
|
super().__init__()
|
@@ -70,6 +71,12 @@ class LLM(torch.nn.Module):
|
|
70
71
|
|
71
72
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72
73
|
|
74
|
+
if num_params is None:
|
75
|
+
from huggingface_hub import get_safetensors_metadata
|
76
|
+
safetensors_metadata = get_safetensors_metadata(model_name)
|
77
|
+
param_count = safetensors_metadata.parameter_count
|
78
|
+
num_params = list(param_count.values())[0] // 10**9
|
79
|
+
|
73
80
|
# A rough heuristic on GPU memory requirements, e.g., we found that
|
74
81
|
# LLAMA2 (7B parameters) fits on a 85GB GPU.
|
75
82
|
required_memory = 85 * num_params / 7
|