pyg-nightly 2.6.0.dev20240909__tar.gz → 2.6.0.dev20240911__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/PKG-INFO +1 -1
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/pyproject.toml +1 -1
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/__init__.py +1 -1
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/__init__.py +2 -0
- pyg_nightly-2.6.0.dev20240911/torch_geometric/nn/models/g_retriever.py +205 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/nlp/llm.py +152 -115
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/__init__.py +7 -5
- pyg_nightly-2.6.0.dev20240911/torch_geometric/nn/pool/cluster_pool.py +145 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/edge_pool.py +1 -1
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/README.md +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/_compile.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/_onnx.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/backend.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/config_mixin.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/config_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/datasets/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/explain/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/nn/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/nn/models/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/contrib/transforms/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/batch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/collate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/data.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/database.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/datapipes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/download.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/extract.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/feature_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/graph_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/hetero_data.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/hypergraph_data.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/in_memory_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/lightning/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/lightning/datamodule.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/makedirs.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/on_disk_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/remote_backend_utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/separate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/storage.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/summary.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/temporal.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/data/view.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/actor.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/airfrans.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/airports.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/amazon.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/amazon_book.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/amazon_products.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/aminer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/aqsol.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ba_shapes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/bitcoin_otc.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/brca_tgca.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/citation_full.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/coauthor.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/coma.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/cornell.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/dblp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/dbp15k.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/deezer_europe.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/dgraph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/dynamic_faust.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/elliptic.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/elliptic_temporal.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/email_eu_core.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/entities.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/explainer_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/facebook.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/fake.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/faust.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/flickr.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/freebase.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/gdelt.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/gdelt_lite.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ged_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/gemsec.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/geometry.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/github.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/hgb_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/hm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/hydro_net.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/icews.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/igmc_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/imdb.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/infection_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/jodie.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/karate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/last_fm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/lastfm_asia.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/linkx_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/lrgb.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/malnet_tiny.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/md17.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/mnist_superpixels.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/modelnet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/molecule_net.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/custom.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/grid.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/motif_generator/house.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/movie_lens.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/movie_lens_100k.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/movie_lens_1m.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/myket.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/nell.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/neurograph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ogb_mag.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/omdb.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/opf.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ose_gvcs.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/particle.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/pascal.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/pascal_pf.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/pcqm4m.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/planetoid.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/polblogs.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/ppi.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/qm7.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/qm9.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/rcdd.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/reddit.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/reddit2.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/s3dis.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/sbm_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/shapenet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/shrec2016.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/snap_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/suite_sparse.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/taobao.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/tosca.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/tu_dataset.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/twitch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/upfd.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/utils/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/webkb.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/wikics.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/wikidata.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/wikipedia_network.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/willow_object_class.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/word_net.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/yelp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/datasets/zinc.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/debug.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/deprecation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/device.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/dist_context.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/dist_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/event_loop.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/local_feature_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/local_graph_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/partition.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/rpc.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/distributed/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/edge_index.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/experimental.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/captum.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/algorithm/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/config.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/explainer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/explanation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/metric/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/metric/basic.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/metric/faithfulness.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/explain/metric/fidelity.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/benchmark.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/checkpoint.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/cmd_args.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/config.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/imports.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/init.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/logger.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/loss.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/model_builder.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/act.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/encoder.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/gnn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/head.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/layer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/pooling.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/models/transform.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/optim.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/register.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/train.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/LICENSE +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/device.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/epoch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/io.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/plot.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/graphgym/utils/tools.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/home.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/index.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/inspector.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/fs.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/npz.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/obj.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/off.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/planetoid.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/ply.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/sdf.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/tu.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/io/txt_array.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/isinstance.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/lazy_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/cache.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/cluster.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/data_list_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/dataloader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/dense_data_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/graph_saint.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/hgt_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/ibmb_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/imbalanced_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/link_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/link_neighbor_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/mixin.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/neighbor_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/neighbor_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/node_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/prefetch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/random_node_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/shadow.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/temporal_dataloader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/loader/zip_loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/logging.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/metrics/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/metrics/link_pred.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/attention.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/basic.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/deep_sets.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/equilibrium.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/fused.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/gmt.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/gru.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/lcm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/lstm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/mlp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/multi.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/quantile.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/scaler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/set2set.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/set_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/sort.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/attention/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/attention/performer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/agnn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/appnp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/arma_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cg_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cheb_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/collect.jinja +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cugraph/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/dna_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/edge_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/eg_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/fa_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/feast_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/film_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gcn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gen_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/general_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gin_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gmm_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gps_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/graph_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/han_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/heat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/hetero_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/hgt_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/le_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/lg_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/message_passing.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/mf_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/nn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/pan_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/pdn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/pna_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/point_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/ppf_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/propagate.jinja +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/rgat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/sage_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/sg_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/signed_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/simple_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/spline_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/ssg_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/supergat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/tag_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/transformer_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/utils/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/wl_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/conv/x_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/data_parallel.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/diff_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/dmon_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/linear.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/dense/mincut_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/encoding.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/functional/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/functional/bro.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/functional/gini.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/fx.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/glob.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/inits.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/complex.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/distmult.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/loader.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/rotate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/kge/transe.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/lr_scheduler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/model_hub.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/attentive_fp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/autoencoder.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/basic_gnn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/captum.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/deepgcn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/dimenet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/dimenet_utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/gnnff.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/graph_mixer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/graph_unet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/label_prop.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/lightgcn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/linkx.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/mask_label.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/meta.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/metapath2vec.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/mlp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/node2vec.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/pmlp.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/re_net.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/rect.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/rev_gnn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/schnet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/signed_gcn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/tgn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/models/visnet.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/module_dict.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/nlp/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/batch_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/graph_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/instance_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/layer_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/msg_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/norm/pair_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/parameter_dict.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/approx_knn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/asap.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/avg_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/connect/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/connect/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/consecutive.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/decimation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/glob.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/graclus.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/knn.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/max_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/mem_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/pan_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/sag_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/select/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/select/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/select/topk.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/topk_pool.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/voxel_grid.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/reshape.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/resolver.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/sequential.jinja +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/sequential.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/summary.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/to_hetero_module.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/to_hetero_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/unpool/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/profile/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/profile/benchmark.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/profile/profile.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/profile/profiler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/profile/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/resolver.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/sampler/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/sampler/base.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/sampler/hgt_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/sampler/neighbor_sampler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/sampler/utils.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/seed.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/template.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/asserts.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/data.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/decorators.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/distributed.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/feature_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/testing/graph_store.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/add_metapaths.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/add_positional_encoding.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/add_self_loops.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/base_transform.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/cartesian.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/center.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/compose.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/constant.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/delaunay.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/distance.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/face_to_edge.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/feature_propagation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/fixed_points.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/gcn_norm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/gdc.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/grid_sampling.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/half_hop.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/knn_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/largest_connected_components.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/line_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/linear_transformation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/local_cartesian.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/local_degree_profile.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/mask.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/node_property_split.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/normalize_features.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/normalize_rotation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/normalize_scale.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/one_hot_degree.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/pad.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/point_pair_features.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/polar.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/radius_graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_flip.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_jitter.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_link_split.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_node_split.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_rotate.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_scale.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/random_shear.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/remove_self_loops.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/remove_training_classes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/rooted_subgraph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/sample_points.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/sign.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/spherical.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/target_indegree.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/to_dense.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/to_device.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/to_superpixels.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/to_undirected.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/two_hop.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/transforms/virtual_node.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/typing.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_assortativity.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_coalesce.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_degree.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_grid.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_homophily.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_index_sort.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_lexsort.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_negative_sampling.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_normalize_edge_index.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_normalized_cut.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_one_hot.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_scatter.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_segment.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_select.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_softmax.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_sort_edge_index.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_spmm.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_subgraph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_to_dense_adj.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_to_dense_batch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_train_test_split_edges.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_tree_decomposition.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_trim_to_layer.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/_unbatch.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/augmentation.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/convert.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/cross_entropy.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/dropout.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/embedding.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/functions.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/geodesic.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/hetero.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/isolated.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/laplacian.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/loop.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/map.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/mask.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/mesh_laplacian.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/mixin.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/nested.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/noise_scheduler.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/num_nodes.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/ppr.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/random.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/repeat.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/smiles.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/sparse.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/utils/undirected.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/visualization/__init__.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/visualization/graph.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/visualization/influence.py +0 -0
- {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.6.0.
|
3
|
+
Version: 2.6.0.dev20240911
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.6.0.
|
33
|
+
__version__ = '2.6.0.dev20240911'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -28,6 +28,7 @@ from .gnnff import GNNFF
|
|
28
28
|
from .pmlp import PMLP
|
29
29
|
from .neural_fingerprint import NeuralFingerprint
|
30
30
|
from .visnet import ViSNet
|
31
|
+
from .g_retriever import GRetriever
|
31
32
|
|
32
33
|
# Deprecated:
|
33
34
|
from torch_geometric.explain.algorithm.captum import (to_captum_input,
|
@@ -75,4 +76,5 @@ __all__ = classes = [
|
|
75
76
|
'PMLP',
|
76
77
|
'NeuralFingerprint',
|
77
78
|
'ViSNet',
|
79
|
+
'GRetriever',
|
78
80
|
]
|
@@ -0,0 +1,205 @@
|
|
1
|
+
from typing import List, Optional
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import Tensor
|
5
|
+
|
6
|
+
from torch_geometric.nn.models import GAT
|
7
|
+
from torch_geometric.nn.nlp.llm import BOS, LLM, MAX_NEW_TOKENS
|
8
|
+
from torch_geometric.utils import scatter
|
9
|
+
|
10
|
+
|
11
|
+
class GRetriever(torch.nn.Module):
|
12
|
+
r"""The G-Retriever model from the `"G-Retriever: Retrieval-Augmented
|
13
|
+
Generation for Textual Graph Understanding and Question Answering"
|
14
|
+
<https://arxiv.org/abs/2402.07630>`_ paper.
|
15
|
+
|
16
|
+
Args:
|
17
|
+
llm (LLM): The LLM to use.
|
18
|
+
gnn (torch.nn.Module): The GNN to use.
|
19
|
+
use_lora (bool, optional): If set to :obj:`True`, will use LORA from
|
20
|
+
:obj:`peft` for training the LLM, see
|
21
|
+
`here <https://huggingface.co/docs/peft/en/index>`_ for details.
|
22
|
+
(default: :obj:`False`)
|
23
|
+
mlp_out_channels (int, optional): The size of each graph embedding
|
24
|
+
after projection. (default: :obj:`4096`)
|
25
|
+
|
26
|
+
.. warning::
|
27
|
+
This module has been tested with the following HuggingFace models
|
28
|
+
|
29
|
+
* :obj:`llm_to_use="meta-llama/Llama-2-7b-chat-hf"`
|
30
|
+
* :obj:`llm_to_use="google/gemma-7b"`
|
31
|
+
|
32
|
+
and may not work with other models. See other models at `HuggingFace
|
33
|
+
Models <https://huggingface.co/models>`_ and let us know if you
|
34
|
+
encounter any issues.
|
35
|
+
|
36
|
+
.. note::
|
37
|
+
For an example of using :class:`GRetriever`, see
|
38
|
+
`examples/llm/g_retriever.py <https://github.com/pyg-team/
|
39
|
+
pytorch_geometric/blob/master/examples/llm/g_retriever.py>`_.
|
40
|
+
"""
|
41
|
+
def __init__(
|
42
|
+
self,
|
43
|
+
llm: LLM,
|
44
|
+
gnn: torch.nn.Module,
|
45
|
+
use_lora: bool = False,
|
46
|
+
gnn_to_use=GAT,
|
47
|
+
mlp_out_channels: int = 4096,
|
48
|
+
) -> None:
|
49
|
+
super().__init__()
|
50
|
+
|
51
|
+
self.llm = llm
|
52
|
+
self.gnn = gnn.to(self.llm.device)
|
53
|
+
|
54
|
+
self.word_embedding = self.llm.word_embedding
|
55
|
+
self.llm_generator = self.llm.llm
|
56
|
+
if use_lora:
|
57
|
+
from peft import (
|
58
|
+
LoraConfig,
|
59
|
+
get_peft_model,
|
60
|
+
prepare_model_for_kbit_training,
|
61
|
+
)
|
62
|
+
self.llm_generator = prepare_model_for_kbit_training(
|
63
|
+
self.llm_generator)
|
64
|
+
lora_r: int = 8
|
65
|
+
lora_alpha: int = 16
|
66
|
+
lora_dropout: float = 0.05
|
67
|
+
lora_target_modules = ['q_proj', 'v_proj']
|
68
|
+
config = LoraConfig(
|
69
|
+
r=lora_r,
|
70
|
+
lora_alpha=lora_alpha,
|
71
|
+
target_modules=lora_target_modules,
|
72
|
+
lora_dropout=lora_dropout,
|
73
|
+
bias='none',
|
74
|
+
task_type='CAUSAL_LM',
|
75
|
+
)
|
76
|
+
self.llm_generator = get_peft_model(self.llm_generator, config)
|
77
|
+
|
78
|
+
mlp_hidden_channels = self.gnn.out_channels
|
79
|
+
self.projector = torch.nn.Sequential(
|
80
|
+
torch.nn.Linear(mlp_hidden_channels, mlp_hidden_channels),
|
81
|
+
torch.nn.Sigmoid(),
|
82
|
+
torch.nn.Linear(mlp_hidden_channels, mlp_out_channels),
|
83
|
+
).to(self.llm.device)
|
84
|
+
|
85
|
+
def encode(
|
86
|
+
self,
|
87
|
+
x: Tensor,
|
88
|
+
edge_index: Tensor,
|
89
|
+
batch: Tensor,
|
90
|
+
edge_attr: Optional[Tensor],
|
91
|
+
) -> Tensor:
|
92
|
+
x = x.to(self.llm.device)
|
93
|
+
edge_index = edge_index.to(self.llm.device)
|
94
|
+
if edge_attr is not None:
|
95
|
+
edge_attr = edge_attr.to(self.llm.device)
|
96
|
+
batch = batch.to(self.llm.device)
|
97
|
+
|
98
|
+
out = self.gnn(x, edge_index, edge_attr=edge_attr)
|
99
|
+
return scatter(out, batch, dim=0, reduce='mean')
|
100
|
+
|
101
|
+
def forward(
|
102
|
+
self,
|
103
|
+
question: List[str],
|
104
|
+
x: Tensor,
|
105
|
+
edge_index: Tensor,
|
106
|
+
batch: Tensor,
|
107
|
+
label: List[str],
|
108
|
+
edge_attr: Optional[Tensor] = None,
|
109
|
+
additional_text_context: Optional[List[str]] = None,
|
110
|
+
):
|
111
|
+
r"""The forward pass.
|
112
|
+
|
113
|
+
Args:
|
114
|
+
question (List[str]): The questions/prompts.
|
115
|
+
x (torch.Tensor): The input node features.
|
116
|
+
edge_index (torch.Tensor): The edge indices.
|
117
|
+
batch (torch.Tensor): The batch vector
|
118
|
+
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
|
119
|
+
each element to a specific example.
|
120
|
+
label (List[str]): The answers/labels.
|
121
|
+
edge_attr (torch.Tensor, optional): The edge features (if supported
|
122
|
+
by the GNN). (default: :obj:`None`)
|
123
|
+
additional_text_context (List[str], optional): Additional context
|
124
|
+
to give to the LLM, such as textified knowledge graphs.
|
125
|
+
(default: :obj:`None`)
|
126
|
+
"""
|
127
|
+
x = self.encode(x, edge_index, batch, edge_attr)
|
128
|
+
x = self.projector(x)
|
129
|
+
xs = x.split(x.size(0), dim=0)
|
130
|
+
|
131
|
+
(
|
132
|
+
inputs_embeds,
|
133
|
+
attention_mask,
|
134
|
+
label_input_ids,
|
135
|
+
) = self.llm._get_embeds(question, additional_text_context, xs, label)
|
136
|
+
|
137
|
+
with self.llm.autocast_context:
|
138
|
+
outputs = self.llm_generator(
|
139
|
+
inputs_embeds=inputs_embeds,
|
140
|
+
attention_mask=attention_mask,
|
141
|
+
return_dict=True,
|
142
|
+
labels=label_input_ids,
|
143
|
+
)
|
144
|
+
|
145
|
+
return outputs.loss
|
146
|
+
|
147
|
+
@torch.no_grad()
|
148
|
+
def inference(
|
149
|
+
self,
|
150
|
+
question: List[str],
|
151
|
+
x: Tensor,
|
152
|
+
edge_index: Tensor,
|
153
|
+
batch: Tensor,
|
154
|
+
edge_attr: Optional[Tensor] = None,
|
155
|
+
additional_text_context: Optional[List[str]] = None,
|
156
|
+
max_out_tokens: Optional[int] = MAX_NEW_TOKENS,
|
157
|
+
):
|
158
|
+
r"""The inference pass.
|
159
|
+
|
160
|
+
Args:
|
161
|
+
question (List[str]): The questions/prompts.
|
162
|
+
x (torch.Tensor): The input node features.
|
163
|
+
edge_index (torch.Tensor): The edge indices.
|
164
|
+
batch (torch.Tensor): The batch vector
|
165
|
+
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
|
166
|
+
each element to a specific example.
|
167
|
+
edge_attr (torch.Tensor, optional): The edge features (if supported
|
168
|
+
by the GNN). (default: :obj:`None`)
|
169
|
+
additional_text_context (List[str], optional): Additional context
|
170
|
+
to give to the LLM, such as textified knowledge graphs.
|
171
|
+
(default: :obj:`None`)
|
172
|
+
max_out_tokens (int, optional): How many tokens for the LLM to
|
173
|
+
generate. (default: :obj:`32`)
|
174
|
+
"""
|
175
|
+
x = self.encode(x, edge_index, batch, edge_attr)
|
176
|
+
x = self.projector(x)
|
177
|
+
xs = x.split(x.size(0), dim=0)
|
178
|
+
|
179
|
+
inputs_embeds, attention_mask, _ = self.llm._get_embeds(
|
180
|
+
question, additional_text_context, xs)
|
181
|
+
|
182
|
+
bos_token = self.llm.tokenizer(
|
183
|
+
BOS,
|
184
|
+
add_special_tokens=False,
|
185
|
+
).input_ids[0]
|
186
|
+
|
187
|
+
with self.llm.autocast_context:
|
188
|
+
outputs = self.llm_generator.generate(
|
189
|
+
inputs_embeds=inputs_embeds,
|
190
|
+
max_new_tokens=max_out_tokens,
|
191
|
+
attention_mask=attention_mask,
|
192
|
+
bos_token_id=bos_token,
|
193
|
+
use_cache=True # Important to set!
|
194
|
+
)
|
195
|
+
|
196
|
+
return self.llm.tokenizer.batch_decode(
|
197
|
+
outputs,
|
198
|
+
skip_special_tokens=True,
|
199
|
+
)
|
200
|
+
|
201
|
+
def __repr__(self) -> str:
|
202
|
+
return (f'{self.__class__.__name__}(\n'
|
203
|
+
f' llm={self.llm},\n'
|
204
|
+
f' gnn={self.gnn},\n'
|
205
|
+
f')')
|
{pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/nlp/llm.py
RENAMED
@@ -1,10 +1,14 @@
|
|
1
|
-
import warnings
|
2
1
|
from contextlib import nullcontext
|
3
2
|
from typing import Any, Dict, List, Optional
|
4
3
|
|
5
4
|
import torch
|
6
5
|
from torch import Tensor
|
7
6
|
|
7
|
+
try:
|
8
|
+
from transformers.tokenization_utils_base import BatchEncoding
|
9
|
+
except ImportError:
|
10
|
+
BatchEncoding = Dict
|
11
|
+
|
8
12
|
BOS = '<s>[INST]'
|
9
13
|
EOS_USER = '[/INST]'
|
10
14
|
EOS = '[/s]'
|
@@ -61,23 +65,16 @@ class LLM(torch.nn.Module):
|
|
61
65
|
) -> None:
|
62
66
|
super().__init__()
|
63
67
|
|
64
|
-
|
68
|
+
self.model_name = model_name
|
65
69
|
|
66
|
-
|
67
|
-
pretty_model_name = 'LLAMA2'
|
68
|
-
model_name = 'meta-llama/Llama-2-7b-chat-hf'
|
69
|
-
elif model_name == 'gemma':
|
70
|
-
pretty_model_name = 'GEMMA'
|
71
|
-
model_name = 'google/gemma-7b'
|
72
|
-
else:
|
73
|
-
pretty_model_name = model_name
|
70
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
74
71
|
|
75
72
|
# A rough heuristic on GPU memory requirements, e.g., we found that
|
76
73
|
# LLAMA2 (7B parameters) fits on a 85GB GPU.
|
77
74
|
required_memory = 85 * num_params / 7
|
78
75
|
kwargs = get_llm_kwargs(required_memory, dtype)
|
79
76
|
|
80
|
-
print(f"Setting up '{
|
77
|
+
print(f"Setting up '{model_name}' with configuration: {kwargs}")
|
81
78
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
82
79
|
model_name,
|
83
80
|
use_fast=False,
|
@@ -88,17 +85,17 @@ class LLM(torch.nn.Module):
|
|
88
85
|
self.word_embedding = self.llm.model.get_input_embeddings()
|
89
86
|
|
90
87
|
if 'max_memory' not in kwargs: # Pure CPU:
|
91
|
-
self.
|
88
|
+
self.device = torch.device('cpu')
|
92
89
|
self.autocast_context = nullcontext()
|
93
90
|
else:
|
94
|
-
self.
|
91
|
+
self.device = self.llm.device
|
95
92
|
self.autocast_context = torch.cuda.amp.autocast(dtype=dtype)
|
96
93
|
|
97
94
|
def _encode_inputs(
|
98
95
|
self,
|
99
96
|
question: List[str],
|
100
97
|
context: Optional[List[str]] = None,
|
101
|
-
) ->
|
98
|
+
) -> tuple:
|
102
99
|
batch_size = len(question)
|
103
100
|
questions = self.tokenizer(question, add_special_tokens=False)
|
104
101
|
if context is not None:
|
@@ -109,14 +106,144 @@ class LLM(torch.nn.Module):
|
|
109
106
|
BOS,
|
110
107
|
add_special_tokens=False,
|
111
108
|
return_tensors='pt',
|
112
|
-
).input_ids[0].to(self.
|
109
|
+
).input_ids[0].to(self.device)
|
113
110
|
bos_embeds = self.word_embedding(bos_token)
|
114
111
|
pad_token = torch.tensor(self.tokenizer.pad_token_id,
|
115
|
-
device=self.
|
112
|
+
device=self.device)
|
116
113
|
pad_embeds = self.word_embedding(pad_token).unsqueeze(0)
|
117
114
|
return (batch_size, questions, context, eos_user_tokens, bos_embeds,
|
118
115
|
pad_embeds)
|
119
116
|
|
117
|
+
def _label_input_ids(
|
118
|
+
self,
|
119
|
+
i: int,
|
120
|
+
label: BatchEncoding,
|
121
|
+
eos_tokens: BatchEncoding,
|
122
|
+
) -> List[int]:
|
123
|
+
label_input_ids = label.input_ids[i][:MAX_NEW_TOKENS]
|
124
|
+
label_input_ids = label_input_ids + eos_tokens.input_ids
|
125
|
+
return label_input_ids
|
126
|
+
|
127
|
+
def _input_ids(
|
128
|
+
self,
|
129
|
+
i: int,
|
130
|
+
context: BatchEncoding,
|
131
|
+
question: BatchEncoding,
|
132
|
+
eos_user_tokens: BatchEncoding,
|
133
|
+
) -> List[int]:
|
134
|
+
input_ids: List[int] = []
|
135
|
+
if context is not None:
|
136
|
+
input_ids += context.input_ids[i][:MAX_TXT_LEN]
|
137
|
+
input_ids += question.input_ids[i]
|
138
|
+
input_ids += eos_user_tokens.input_ids
|
139
|
+
return input_ids
|
140
|
+
|
141
|
+
def _inputs_embeds(
|
142
|
+
self,
|
143
|
+
i: int,
|
144
|
+
input_ids: List[int],
|
145
|
+
bos_embeds: Tensor,
|
146
|
+
embedding: Optional[List[Tensor]] = None,
|
147
|
+
) -> Tensor:
|
148
|
+
inputs_embeds = self.word_embedding(
|
149
|
+
torch.tensor(input_ids, device=self.device))
|
150
|
+
|
151
|
+
to_cat = [bos_embeds]
|
152
|
+
if embedding is not None and embedding[i] is not None:
|
153
|
+
to_cat.append(embedding[i])
|
154
|
+
to_cat.append(inputs_embeds)
|
155
|
+
return torch.cat(to_cat, dim=0).to(self.device)
|
156
|
+
|
157
|
+
def _append_embeds(
|
158
|
+
self,
|
159
|
+
inputs_embeds: Tensor,
|
160
|
+
batch_inputs_embeds: List[Tensor],
|
161
|
+
batch_attention_mask: List[List[int]],
|
162
|
+
label_input_ids: List[int] = None,
|
163
|
+
batch_label_input_ids: Optional[List[List[int]]] = None,
|
164
|
+
) -> tuple:
|
165
|
+
batch_inputs_embeds.append(inputs_embeds)
|
166
|
+
batch_attention_mask.append([1] * inputs_embeds.size(0))
|
167
|
+
if label_input_ids is not None:
|
168
|
+
pad = inputs_embeds.size(0) - len(label_input_ids)
|
169
|
+
label_input_ids = [IGNORE_INDEX] * pad + label_input_ids
|
170
|
+
batch_label_input_ids.append(label_input_ids)
|
171
|
+
return batch_inputs_embeds, batch_attention_mask, batch_label_input_ids
|
172
|
+
|
173
|
+
def _pad_embeds(
|
174
|
+
self,
|
175
|
+
pad_embeds: Tensor,
|
176
|
+
batch_inputs_embeds: List[Tensor],
|
177
|
+
batch_attention_mask: List[List[int]],
|
178
|
+
batch_label_input_ids: Optional[List[List[int]]] = None,
|
179
|
+
) -> tuple:
|
180
|
+
max_length = max([x.size(0) for x in batch_inputs_embeds])
|
181
|
+
batch_size = len(batch_inputs_embeds)
|
182
|
+
for i in range(batch_size):
|
183
|
+
pad = max_length - batch_inputs_embeds[i].size(0)
|
184
|
+
batch_inputs_embeds[i] = torch.cat([
|
185
|
+
pad_embeds.repeat(pad, 1),
|
186
|
+
batch_inputs_embeds[i],
|
187
|
+
])
|
188
|
+
batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
|
189
|
+
if batch_label_input_ids is not None:
|
190
|
+
tmp = [IGNORE_INDEX] * pad + batch_label_input_ids[i]
|
191
|
+
batch_label_input_ids[i] = tmp
|
192
|
+
inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
|
193
|
+
attention_mask = torch.tensor(batch_attention_mask, device=self.device)
|
194
|
+
label_input_ids = None
|
195
|
+
if batch_label_input_ids is not None:
|
196
|
+
label_input_ids = torch.tensor(batch_label_input_ids,
|
197
|
+
device=self.device)
|
198
|
+
return inputs_embeds, attention_mask, label_input_ids
|
199
|
+
|
200
|
+
def _get_embeds(
|
201
|
+
self,
|
202
|
+
question: List[str],
|
203
|
+
context: Optional[List[str]] = None,
|
204
|
+
embedding: Optional[List[Tensor]] = None,
|
205
|
+
answer: Optional[List[str]] = None,
|
206
|
+
) -> tuple:
|
207
|
+
(batch_size, question, context, eos_user_tokens, bos_embeds,
|
208
|
+
pad_embeds) = self._encode_inputs(question, context)
|
209
|
+
|
210
|
+
batch_label_input_ids = None
|
211
|
+
if answer is not None:
|
212
|
+
label = self.tokenizer(answer, add_special_tokens=False)
|
213
|
+
eos_tokens = self.tokenizer(EOS, add_special_tokens=False)
|
214
|
+
batch_label_input_ids = []
|
215
|
+
|
216
|
+
batch_inputs_embeds = []
|
217
|
+
batch_attention_mask = []
|
218
|
+
for i in range(batch_size):
|
219
|
+
input_ids = self._input_ids(i, context, question, eos_user_tokens)
|
220
|
+
if answer is not None:
|
221
|
+
label_input_ids = self._label_input_ids(i, label, eos_tokens)
|
222
|
+
input_ids += label_input_ids
|
223
|
+
else:
|
224
|
+
label_input_ids = None
|
225
|
+
|
226
|
+
inputs_embeds = self._inputs_embeds(i, input_ids, bos_embeds,
|
227
|
+
embedding)
|
228
|
+
|
229
|
+
(
|
230
|
+
batch_inputs_embeds,
|
231
|
+
batch_attention_mask,
|
232
|
+
batch_label_input_ids,
|
233
|
+
) = self._append_embeds(
|
234
|
+
inputs_embeds,
|
235
|
+
batch_inputs_embeds,
|
236
|
+
batch_attention_mask,
|
237
|
+
label_input_ids,
|
238
|
+
batch_label_input_ids,
|
239
|
+
)
|
240
|
+
|
241
|
+
inputs_embeds, attention_mask, label_input_ids = self._pad_embeds(
|
242
|
+
pad_embeds, batch_inputs_embeds, batch_attention_mask,
|
243
|
+
batch_label_input_ids)
|
244
|
+
|
245
|
+
return inputs_embeds, attention_mask, label_input_ids
|
246
|
+
|
120
247
|
def forward(
|
121
248
|
self,
|
122
249
|
question: List[str],
|
@@ -133,65 +260,11 @@ class LLM(torch.nn.Module):
|
|
133
260
|
LLM, such as textified knowledge graphs. (default: :obj:`None`)
|
134
261
|
embedding (list[torch.Tensor], optional): RAG embedding
|
135
262
|
tensors, *i.e.* the embedded form of :obj:`context`. Either
|
136
|
-
:obj:`context` or :obj:`
|
263
|
+
:obj:`context` or :obj:`embedding` should be used, not
|
137
264
|
both. (default: :obj:`None`)
|
138
265
|
"""
|
139
|
-
|
140
|
-
|
141
|
-
"compute and memory")
|
142
|
-
|
143
|
-
(batch_size, question, context, eos_user_tokens, bos_embeds,
|
144
|
-
pad_embeds) = self._encode_inputs(question, context)
|
145
|
-
|
146
|
-
label = self.tokenizer(answer, add_special_tokens=False)
|
147
|
-
eos_tokens = self.tokenizer(EOS, add_special_tokens=False)
|
148
|
-
|
149
|
-
batch_inputs_embeds = []
|
150
|
-
batch_attention_mask = []
|
151
|
-
batch_label_input_ids = []
|
152
|
-
for i in range(batch_size):
|
153
|
-
label_input_ids = label.input_ids[i][:MAX_NEW_TOKENS]
|
154
|
-
label_input_ids += eos_tokens.input_ids # Add EOS token.
|
155
|
-
|
156
|
-
input_ids: List[int] = []
|
157
|
-
if context is not None:
|
158
|
-
input_ids += context.input_ids[i][:MAX_TXT_LEN]
|
159
|
-
input_ids += question.input_ids[i]
|
160
|
-
input_ids += eos_user_tokens.input_ids
|
161
|
-
input_ids += label_input_ids
|
162
|
-
|
163
|
-
inputs_embeds = self.word_embedding(
|
164
|
-
torch.tensor(input_ids, device=self.llm_device))
|
165
|
-
|
166
|
-
to_cat = [bos_embeds]
|
167
|
-
if embedding is not None:
|
168
|
-
to_cat.append(embedding[i])
|
169
|
-
to_cat.append(inputs_embeds)
|
170
|
-
inputs_embeds = torch.cat(to_cat, dim=0)
|
171
|
-
|
172
|
-
batch_inputs_embeds.append(inputs_embeds)
|
173
|
-
batch_attention_mask.append([1] * inputs_embeds.size(0))
|
174
|
-
label_input_ids = [IGNORE_INDEX] * (
|
175
|
-
inputs_embeds.size(0) - len(label_input_ids)) + label_input_ids
|
176
|
-
batch_label_input_ids.append(label_input_ids)
|
177
|
-
|
178
|
-
# Pad input embeddings:
|
179
|
-
max_length = max([x.size(0) for x in batch_inputs_embeds])
|
180
|
-
for i in range(batch_size):
|
181
|
-
pad = max_length - batch_inputs_embeds[i].size(0)
|
182
|
-
batch_inputs_embeds[i] = torch.cat([
|
183
|
-
pad_embeds.repeat(pad, 1),
|
184
|
-
batch_inputs_embeds[i],
|
185
|
-
])
|
186
|
-
batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
|
187
|
-
batch_label_input_ids[i] = ([IGNORE_INDEX] * pad +
|
188
|
-
batch_label_input_ids[i])
|
189
|
-
|
190
|
-
inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
|
191
|
-
attention_mask = torch.tensor(batch_attention_mask,
|
192
|
-
device=self.llm_device)
|
193
|
-
label_input_ids = torch.tensor(batch_label_input_ids,
|
194
|
-
device=self.llm_device)
|
266
|
+
inputs_embeds, attention_mask, label_input_ids = self._get_embeds(
|
267
|
+
question, context, embedding, answer)
|
195
268
|
|
196
269
|
with self.autocast_context:
|
197
270
|
outputs = self.llm(
|
@@ -219,52 +292,13 @@ class LLM(torch.nn.Module):
|
|
219
292
|
LLM, such as textified knowledge graphs. (default: :obj:`None`)
|
220
293
|
embedding (list[torch.Tensor], optional): RAG embedding
|
221
294
|
tensors, *i.e.* the embedded form of :obj:`context`. Either
|
222
|
-
:obj:`context` or :obj:`
|
295
|
+
:obj:`context` or :obj:`embedding` should be used, not
|
223
296
|
both. (default: :obj:`None`)
|
224
297
|
max_tokens (int, optional): How many tokens for the LLM to
|
225
298
|
generate. (default: :obj:`32`)
|
226
299
|
"""
|
227
|
-
|
228
|
-
|
229
|
-
"compute and memory")
|
230
|
-
|
231
|
-
(batch_size, question, context, eos_user_tokens, bos_embeds,
|
232
|
-
pad_embeds) = self._encode_inputs(question, context)
|
233
|
-
|
234
|
-
batch_inputs_embeds = []
|
235
|
-
batch_attention_mask = []
|
236
|
-
for i in range(batch_size):
|
237
|
-
input_ids: List[int] = []
|
238
|
-
if context is not None:
|
239
|
-
input_ids = context.input_ids[i][:MAX_TXT_LEN]
|
240
|
-
input_ids += question.input_ids[i]
|
241
|
-
input_ids += eos_user_tokens.input_ids
|
242
|
-
|
243
|
-
inputs_embeds = self.word_embedding(
|
244
|
-
torch.tensor(input_ids, device=self.llm_device))
|
245
|
-
|
246
|
-
to_cat = [bos_embeds]
|
247
|
-
if embedding is not None:
|
248
|
-
to_cat.append(embedding[i])
|
249
|
-
to_cat.append(inputs_embeds)
|
250
|
-
inputs_embeds = torch.cat(to_cat, dim=0)
|
251
|
-
|
252
|
-
batch_inputs_embeds.append(inputs_embeds)
|
253
|
-
batch_attention_mask.append([1] * inputs_embeds.size(0))
|
254
|
-
|
255
|
-
# Pad input embeddings:
|
256
|
-
max_length = max([x.size(0) for x in batch_inputs_embeds])
|
257
|
-
for i in range(batch_size):
|
258
|
-
pad = max_length - batch_inputs_embeds[i].size(0)
|
259
|
-
batch_inputs_embeds[i] = torch.cat([
|
260
|
-
pad_embeds.repeat(pad, 1),
|
261
|
-
batch_inputs_embeds[i],
|
262
|
-
])
|
263
|
-
batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
|
264
|
-
|
265
|
-
inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
|
266
|
-
attention_mask = torch.tensor(batch_attention_mask,
|
267
|
-
device=self.llm_device)
|
300
|
+
inputs_embeds, attention_mask, _ = self._get_embeds(
|
301
|
+
question, context, embedding)
|
268
302
|
|
269
303
|
bos_token = self.tokenizer(
|
270
304
|
BOS,
|
@@ -281,3 +315,6 @@ class LLM(torch.nn.Module):
|
|
281
315
|
)
|
282
316
|
|
283
317
|
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
318
|
+
|
319
|
+
def __repr__(self) -> str:
|
320
|
+
return f'{self.__class__.__name__}({self.model_name})'
|
{pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240911}/torch_geometric/nn/pool/__init__.py
RENAMED
@@ -7,18 +7,19 @@ from torch import Tensor
|
|
7
7
|
import torch_geometric.typing
|
8
8
|
from torch_geometric.typing import OptTensor, torch_cluster
|
9
9
|
|
10
|
-
from .asap import ASAPooling
|
11
10
|
from .avg_pool import avg_pool, avg_pool_neighbor_x, avg_pool_x
|
12
|
-
from .edge_pool import EdgePooling
|
13
11
|
from .glob import global_add_pool, global_max_pool, global_mean_pool
|
14
12
|
from .knn import (KNNIndex, L2KNNIndex, MIPSKNNIndex, ApproxL2KNNIndex,
|
15
13
|
ApproxMIPSKNNIndex)
|
16
14
|
from .graclus import graclus
|
17
15
|
from .max_pool import max_pool, max_pool_neighbor_x, max_pool_x
|
18
|
-
from .mem_pool import MemPooling
|
19
|
-
from .pan_pool import PANPooling
|
20
|
-
from .sag_pool import SAGPooling
|
21
16
|
from .topk_pool import TopKPooling
|
17
|
+
from .sag_pool import SAGPooling
|
18
|
+
from .edge_pool import EdgePooling
|
19
|
+
from .cluster_pool import ClusterPooling
|
20
|
+
from .asap import ASAPooling
|
21
|
+
from .pan_pool import PANPooling
|
22
|
+
from .mem_pool import MemPooling
|
22
23
|
from .voxel_grid import voxel_grid
|
23
24
|
from .approx_knn import approx_knn, approx_knn_graph
|
24
25
|
|
@@ -344,6 +345,7 @@ __all__ = [
|
|
344
345
|
'TopKPooling',
|
345
346
|
'SAGPooling',
|
346
347
|
'EdgePooling',
|
348
|
+
'ClusterPooling',
|
347
349
|
'ASAPooling',
|
348
350
|
'PANPooling',
|
349
351
|
'MemPooling',
|