pyg-nightly 2.6.0.dev20240909__tar.gz → 2.6.0.dev20240910__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (622) hide show
  1. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/PKG-INFO +1 -1
  2. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/pyproject.toml +1 -1
  3. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/__init__.py +1 -1
  4. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/__init__.py +2 -0
  5. pyg_nightly-2.6.0.dev20240910/torch_geometric/nn/models/g_retriever.py +205 -0
  6. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/nlp/llm.py +152 -115
  7. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/__init__.py +7 -5
  8. pyg_nightly-2.6.0.dev20240910/torch_geometric/nn/pool/cluster_pool.py +145 -0
  9. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/edge_pool.py +1 -1
  10. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/README.md +0 -0
  11. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/_compile.py +0 -0
  12. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/_onnx.py +0 -0
  13. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/backend.py +0 -0
  14. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/config_mixin.py +0 -0
  15. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/config_store.py +0 -0
  16. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/__init__.py +0 -0
  17. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/datasets/__init__.py +0 -0
  18. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/explain/__init__.py +0 -0
  19. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
  20. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/nn/__init__.py +0 -0
  21. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
  22. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/nn/models/__init__.py +0 -0
  23. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
  24. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/contrib/transforms/__init__.py +0 -0
  25. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/__init__.py +0 -0
  26. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/batch.py +0 -0
  27. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/collate.py +0 -0
  28. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/data.py +0 -0
  29. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/database.py +0 -0
  30. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/datapipes.py +0 -0
  31. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/dataset.py +0 -0
  32. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/download.py +0 -0
  33. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/extract.py +0 -0
  34. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/feature_store.py +0 -0
  35. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/graph_store.py +0 -0
  36. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/hetero_data.py +0 -0
  37. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/hypergraph_data.py +0 -0
  38. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/in_memory_dataset.py +0 -0
  39. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/lightning/__init__.py +0 -0
  40. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/lightning/datamodule.py +0 -0
  41. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/makedirs.py +0 -0
  42. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/on_disk_dataset.py +0 -0
  43. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/remote_backend_utils.py +0 -0
  44. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/separate.py +0 -0
  45. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/storage.py +0 -0
  46. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/summary.py +0 -0
  47. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/temporal.py +0 -0
  48. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/data/view.py +0 -0
  49. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/__init__.py +0 -0
  50. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/actor.py +0 -0
  51. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/airfrans.py +0 -0
  52. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/airports.py +0 -0
  53. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/amazon.py +0 -0
  54. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/amazon_book.py +0 -0
  55. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/amazon_products.py +0 -0
  56. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/aminer.py +0 -0
  57. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/aqsol.py +0 -0
  58. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/attributed_graph_dataset.py +0 -0
  59. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
  60. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ba_multi_shapes.py +0 -0
  61. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ba_shapes.py +0 -0
  62. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/bitcoin_otc.py +0 -0
  63. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/brca_tgca.py +0 -0
  64. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/citation_full.py +0 -0
  65. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/coauthor.py +0 -0
  66. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/coma.py +0 -0
  67. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/cornell.py +0 -0
  68. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/dblp.py +0 -0
  69. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/dbp15k.py +0 -0
  70. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/deezer_europe.py +0 -0
  71. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/dgraph.py +0 -0
  72. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/dynamic_faust.py +0 -0
  73. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/elliptic.py +0 -0
  74. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/elliptic_temporal.py +0 -0
  75. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/email_eu_core.py +0 -0
  76. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/entities.py +0 -0
  77. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/explainer_dataset.py +0 -0
  78. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/facebook.py +0 -0
  79. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/fake.py +0 -0
  80. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/faust.py +0 -0
  81. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/flickr.py +0 -0
  82. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/freebase.py +0 -0
  83. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/gdelt.py +0 -0
  84. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/gdelt_lite.py +0 -0
  85. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ged_dataset.py +0 -0
  86. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/gemsec.py +0 -0
  87. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/geometry.py +0 -0
  88. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/github.py +0 -0
  89. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/gnn_benchmark_dataset.py +0 -0
  90. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
  91. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
  92. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/base.py +0 -0
  93. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
  94. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
  95. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
  96. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
  97. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/hgb_dataset.py +0 -0
  98. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/hm.py +0 -0
  99. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/hydro_net.py +0 -0
  100. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/icews.py +0 -0
  101. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/igmc_dataset.py +0 -0
  102. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/imdb.py +0 -0
  103. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/infection_dataset.py +0 -0
  104. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/jodie.py +0 -0
  105. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/karate.py +0 -0
  106. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/last_fm.py +0 -0
  107. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/lastfm_asia.py +0 -0
  108. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/linkx_dataset.py +0 -0
  109. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/lrgb.py +0 -0
  110. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/malnet_tiny.py +0 -0
  111. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/md17.py +0 -0
  112. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
  113. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/mnist_superpixels.py +0 -0
  114. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/modelnet.py +0 -0
  115. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/molecule_net.py +0 -0
  116. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
  117. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/base.py +0 -0
  118. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/custom.py +0 -0
  119. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
  120. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/grid.py +0 -0
  121. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/motif_generator/house.py +0 -0
  122. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/movie_lens.py +0 -0
  123. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/movie_lens_100k.py +0 -0
  124. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/movie_lens_1m.py +0 -0
  125. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/myket.py +0 -0
  126. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/nell.py +0 -0
  127. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/neurograph.py +0 -0
  128. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ogb_mag.py +0 -0
  129. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/omdb.py +0 -0
  130. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/opf.py +0 -0
  131. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ose_gvcs.py +0 -0
  132. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/particle.py +0 -0
  133. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/pascal.py +0 -0
  134. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/pascal_pf.py +0 -0
  135. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/pcpnet_dataset.py +0 -0
  136. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/pcqm4m.py +0 -0
  137. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/planetoid.py +0 -0
  138. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/polblogs.py +0 -0
  139. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/ppi.py +0 -0
  140. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/qm7.py +0 -0
  141. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/qm9.py +0 -0
  142. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/rcdd.py +0 -0
  143. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/reddit.py +0 -0
  144. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/reddit2.py +0 -0
  145. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/rel_link_pred_dataset.py +0 -0
  146. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/s3dis.py +0 -0
  147. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/sbm_dataset.py +0 -0
  148. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/shapenet.py +0 -0
  149. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/shrec2016.py +0 -0
  150. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/snap_dataset.py +0 -0
  151. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/suite_sparse.py +0 -0
  152. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/taobao.py +0 -0
  153. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/tosca.py +0 -0
  154. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/tu_dataset.py +0 -0
  155. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/twitch.py +0 -0
  156. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/upfd.py +0 -0
  157. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/utils/__init__.py +0 -0
  158. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
  159. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/webkb.py +0 -0
  160. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/wikics.py +0 -0
  161. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/wikidata.py +0 -0
  162. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/wikipedia_network.py +0 -0
  163. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/willow_object_class.py +0 -0
  164. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/word_net.py +0 -0
  165. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/yelp.py +0 -0
  166. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/datasets/zinc.py +0 -0
  167. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/debug.py +0 -0
  168. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/deprecation.py +0 -0
  169. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/device.py +0 -0
  170. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/__init__.py +0 -0
  171. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/dist_context.py +0 -0
  172. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
  173. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/dist_loader.py +0 -0
  174. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
  175. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
  176. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/event_loop.py +0 -0
  177. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/local_feature_store.py +0 -0
  178. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/local_graph_store.py +0 -0
  179. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/partition.py +0 -0
  180. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/rpc.py +0 -0
  181. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/distributed/utils.py +0 -0
  182. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/edge_index.py +0 -0
  183. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/experimental.py +0 -0
  184. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/__init__.py +0 -0
  185. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/__init__.py +0 -0
  186. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
  187. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/base.py +0 -0
  188. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/captum.py +0 -0
  189. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
  190. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
  191. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
  192. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/graphmask_explainer.py +0 -0
  193. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/pg_explainer.py +0 -0
  194. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/algorithm/utils.py +0 -0
  195. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/config.py +0 -0
  196. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/explainer.py +0 -0
  197. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/explanation.py +0 -0
  198. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/metric/__init__.py +0 -0
  199. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/metric/basic.py +0 -0
  200. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/metric/faithfulness.py +0 -0
  201. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/explain/metric/fidelity.py +0 -0
  202. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/__init__.py +0 -0
  203. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/benchmark.py +0 -0
  204. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/checkpoint.py +0 -0
  205. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/cmd_args.py +0 -0
  206. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/config.py +0 -0
  207. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/__init__.py +0 -0
  208. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
  209. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
  210. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
  211. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
  212. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
  213. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
  214. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
  215. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
  216. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
  217. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
  218. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
  219. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
  220. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
  221. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
  222. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/imports.py +0 -0
  223. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/init.py +0 -0
  224. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/loader.py +0 -0
  225. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/logger.py +0 -0
  226. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/loss.py +0 -0
  227. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/model_builder.py +0 -0
  228. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/__init__.py +0 -0
  229. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/act.py +0 -0
  230. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/encoder.py +0 -0
  231. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/gnn.py +0 -0
  232. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/head.py +0 -0
  233. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/layer.py +0 -0
  234. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/pooling.py +0 -0
  235. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/models/transform.py +0 -0
  236. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/optim.py +0 -0
  237. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/register.py +0 -0
  238. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/train.py +0 -0
  239. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/LICENSE +0 -0
  240. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/__init__.py +0 -0
  241. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/agg_runs.py +0 -0
  242. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
  243. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/device.py +0 -0
  244. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/epoch.py +0 -0
  245. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/io.py +0 -0
  246. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/plot.py +0 -0
  247. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/graphgym/utils/tools.py +0 -0
  248. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/home.py +0 -0
  249. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/index.py +0 -0
  250. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/inspector.py +0 -0
  251. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/__init__.py +0 -0
  252. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/fs.py +0 -0
  253. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/npz.py +0 -0
  254. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/obj.py +0 -0
  255. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/off.py +0 -0
  256. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/planetoid.py +0 -0
  257. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/ply.py +0 -0
  258. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/sdf.py +0 -0
  259. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/tu.py +0 -0
  260. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/io/txt_array.py +0 -0
  261. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/isinstance.py +0 -0
  262. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/lazy_loader.py +0 -0
  263. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/__init__.py +0 -0
  264. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/base.py +0 -0
  265. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/cache.py +0 -0
  266. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/cluster.py +0 -0
  267. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/data_list_loader.py +0 -0
  268. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/dataloader.py +0 -0
  269. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/dense_data_loader.py +0 -0
  270. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
  271. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/graph_saint.py +0 -0
  272. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/hgt_loader.py +0 -0
  273. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/ibmb_loader.py +0 -0
  274. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/imbalanced_sampler.py +0 -0
  275. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/link_loader.py +0 -0
  276. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/link_neighbor_loader.py +0 -0
  277. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/mixin.py +0 -0
  278. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/neighbor_loader.py +0 -0
  279. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/neighbor_sampler.py +0 -0
  280. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/node_loader.py +0 -0
  281. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/prefetch.py +0 -0
  282. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/random_node_loader.py +0 -0
  283. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/shadow.py +0 -0
  284. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/temporal_dataloader.py +0 -0
  285. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/utils.py +0 -0
  286. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/loader/zip_loader.py +0 -0
  287. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/logging.py +0 -0
  288. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/metrics/__init__.py +0 -0
  289. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/metrics/link_pred.py +0 -0
  290. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/__init__.py +0 -0
  291. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/__init__.py +0 -0
  292. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/attention.py +0 -0
  293. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/base.py +0 -0
  294. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/basic.py +0 -0
  295. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/deep_sets.py +0 -0
  296. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/equilibrium.py +0 -0
  297. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/fused.py +0 -0
  298. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/gmt.py +0 -0
  299. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/gru.py +0 -0
  300. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/lcm.py +0 -0
  301. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/lstm.py +0 -0
  302. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/mlp.py +0 -0
  303. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/multi.py +0 -0
  304. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/patch_transformer.py +0 -0
  305. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/quantile.py +0 -0
  306. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/scaler.py +0 -0
  307. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/set2set.py +0 -0
  308. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/set_transformer.py +0 -0
  309. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/sort.py +0 -0
  310. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/utils.py +0 -0
  311. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
  312. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/attention/__init__.py +0 -0
  313. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/attention/performer.py +0 -0
  314. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/__init__.py +0 -0
  315. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/agnn_conv.py +0 -0
  316. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
  317. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/appnp.py +0 -0
  318. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/arma_conv.py +0 -0
  319. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cg_conv.py +0 -0
  320. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cheb_conv.py +0 -0
  321. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
  322. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/collect.jinja +0 -0
  323. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
  324. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cugraph/base.py +0 -0
  325. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
  326. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
  327. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
  328. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
  329. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/dna_conv.py +0 -0
  330. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/edge_conv.py +0 -0
  331. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
  332. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/eg_conv.py +0 -0
  333. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/fa_conv.py +0 -0
  334. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/feast_conv.py +0 -0
  335. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/film_conv.py +0 -0
  336. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/fused_gat_conv.py +0 -0
  337. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gat_conv.py +0 -0
  338. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
  339. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gatv2_conv.py +0 -0
  340. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
  341. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gcn_conv.py +0 -0
  342. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gen_conv.py +0 -0
  343. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/general_conv.py +0 -0
  344. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gin_conv.py +0 -0
  345. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gmm_conv.py +0 -0
  346. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gps_conv.py +0 -0
  347. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/graph_conv.py +0 -0
  348. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/gravnet_conv.py +0 -0
  349. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/han_conv.py +0 -0
  350. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/heat_conv.py +0 -0
  351. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/hetero_conv.py +0 -0
  352. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/hgt_conv.py +0 -0
  353. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
  354. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/le_conv.py +0 -0
  355. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/lg_conv.py +0 -0
  356. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/message_passing.py +0 -0
  357. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/mf_conv.py +0 -0
  358. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/mixhop_conv.py +0 -0
  359. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/nn_conv.py +0 -0
  360. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/pan_conv.py +0 -0
  361. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/pdn_conv.py +0 -0
  362. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/pna_conv.py +0 -0
  363. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/point_conv.py +0 -0
  364. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
  365. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
  366. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/ppf_conv.py +0 -0
  367. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/propagate.jinja +0 -0
  368. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
  369. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/rgat_conv.py +0 -0
  370. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/rgcn_conv.py +0 -0
  371. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/sage_conv.py +0 -0
  372. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/sg_conv.py +0 -0
  373. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/signed_conv.py +0 -0
  374. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/simple_conv.py +0 -0
  375. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/spline_conv.py +0 -0
  376. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/ssg_conv.py +0 -0
  377. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/supergat_conv.py +0 -0
  378. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/tag_conv.py +0 -0
  379. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/transformer_conv.py +0 -0
  380. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/utils/__init__.py +0 -0
  381. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
  382. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/wl_conv.py +0 -0
  383. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
  384. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/conv/x_conv.py +0 -0
  385. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/data_parallel.py +0 -0
  386. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/__init__.py +0 -0
  387. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
  388. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
  389. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
  390. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
  391. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
  392. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/diff_pool.py +0 -0
  393. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/dmon_pool.py +0 -0
  394. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/linear.py +0 -0
  395. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/dense/mincut_pool.py +0 -0
  396. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/encoding.py +0 -0
  397. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/functional/__init__.py +0 -0
  398. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/functional/bro.py +0 -0
  399. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/functional/gini.py +0 -0
  400. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/fx.py +0 -0
  401. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/glob.py +0 -0
  402. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/inits.py +0 -0
  403. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/__init__.py +0 -0
  404. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/base.py +0 -0
  405. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/complex.py +0 -0
  406. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/distmult.py +0 -0
  407. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/loader.py +0 -0
  408. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/rotate.py +0 -0
  409. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/kge/transe.py +0 -0
  410. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/lr_scheduler.py +0 -0
  411. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/model_hub.py +0 -0
  412. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/attentive_fp.py +0 -0
  413. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/autoencoder.py +0 -0
  414. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/basic_gnn.py +0 -0
  415. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/captum.py +0 -0
  416. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
  417. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/deep_graph_infomax.py +0 -0
  418. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/deepgcn.py +0 -0
  419. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/dimenet.py +0 -0
  420. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/dimenet_utils.py +0 -0
  421. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/gnnff.py +0 -0
  422. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/graph_mixer.py +0 -0
  423. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/graph_unet.py +0 -0
  424. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/jumping_knowledge.py +0 -0
  425. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/label_prop.py +0 -0
  426. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/lightgcn.py +0 -0
  427. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/linkx.py +0 -0
  428. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/mask_label.py +0 -0
  429. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/meta.py +0 -0
  430. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/metapath2vec.py +0 -0
  431. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/mlp.py +0 -0
  432. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
  433. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/node2vec.py +0 -0
  434. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/pmlp.py +0 -0
  435. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/re_net.py +0 -0
  436. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/rect.py +0 -0
  437. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/rev_gnn.py +0 -0
  438. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/schnet.py +0 -0
  439. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/signed_gcn.py +0 -0
  440. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/tgn.py +0 -0
  441. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/models/visnet.py +0 -0
  442. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/module_dict.py +0 -0
  443. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/nlp/__init__.py +0 -0
  444. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/nlp/sentence_transformer.py +0 -0
  445. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/__init__.py +0 -0
  446. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/batch_norm.py +0 -0
  447. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
  448. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/graph_norm.py +0 -0
  449. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
  450. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/instance_norm.py +0 -0
  451. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/layer_norm.py +0 -0
  452. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
  453. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/msg_norm.py +0 -0
  454. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/norm/pair_norm.py +0 -0
  455. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/parameter_dict.py +0 -0
  456. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/approx_knn.py +0 -0
  457. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/asap.py +0 -0
  458. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/avg_pool.py +0 -0
  459. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/connect/__init__.py +0 -0
  460. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/connect/base.py +0 -0
  461. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
  462. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/consecutive.py +0 -0
  463. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/decimation.py +0 -0
  464. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/glob.py +0 -0
  465. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/graclus.py +0 -0
  466. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/knn.py +0 -0
  467. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/max_pool.py +0 -0
  468. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/mem_pool.py +0 -0
  469. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/pan_pool.py +0 -0
  470. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/pool.py +0 -0
  471. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/sag_pool.py +0 -0
  472. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/select/__init__.py +0 -0
  473. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/select/base.py +0 -0
  474. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/select/topk.py +0 -0
  475. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/topk_pool.py +0 -0
  476. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/pool/voxel_grid.py +0 -0
  477. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/reshape.py +0 -0
  478. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/resolver.py +0 -0
  479. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/sequential.jinja +0 -0
  480. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/sequential.py +0 -0
  481. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/summary.py +0 -0
  482. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
  483. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/to_hetero_module.py +0 -0
  484. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/to_hetero_transformer.py +0 -0
  485. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/to_hetero_with_bases_transformer.py +0 -0
  486. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/unpool/__init__.py +0 -0
  487. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
  488. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/profile/__init__.py +0 -0
  489. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/profile/benchmark.py +0 -0
  490. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/profile/profile.py +0 -0
  491. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/profile/profiler.py +0 -0
  492. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/profile/utils.py +0 -0
  493. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/resolver.py +0 -0
  494. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/sampler/__init__.py +0 -0
  495. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/sampler/base.py +0 -0
  496. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/sampler/hgt_sampler.py +0 -0
  497. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/sampler/neighbor_sampler.py +0 -0
  498. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/sampler/utils.py +0 -0
  499. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/seed.py +0 -0
  500. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/template.py +0 -0
  501. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/__init__.py +0 -0
  502. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/asserts.py +0 -0
  503. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/data.py +0 -0
  504. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/decorators.py +0 -0
  505. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/distributed.py +0 -0
  506. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/feature_store.py +0 -0
  507. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/testing/graph_store.py +0 -0
  508. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/__init__.py +0 -0
  509. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/add_metapaths.py +0 -0
  510. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/add_positional_encoding.py +0 -0
  511. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
  512. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/add_self_loops.py +0 -0
  513. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/base_transform.py +0 -0
  514. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/cartesian.py +0 -0
  515. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/center.py +0 -0
  516. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/compose.py +0 -0
  517. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/constant.py +0 -0
  518. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/delaunay.py +0 -0
  519. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/distance.py +0 -0
  520. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/face_to_edge.py +0 -0
  521. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/feature_propagation.py +0 -0
  522. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/fixed_points.py +0 -0
  523. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/gcn_norm.py +0 -0
  524. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/gdc.py +0 -0
  525. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
  526. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/grid_sampling.py +0 -0
  527. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/half_hop.py +0 -0
  528. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/knn_graph.py +0 -0
  529. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/laplacian_lambda_max.py +0 -0
  530. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/largest_connected_components.py +0 -0
  531. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/line_graph.py +0 -0
  532. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/linear_transformation.py +0 -0
  533. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/local_cartesian.py +0 -0
  534. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/local_degree_profile.py +0 -0
  535. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/mask.py +0 -0
  536. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/node_property_split.py +0 -0
  537. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/normalize_features.py +0 -0
  538. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/normalize_rotation.py +0 -0
  539. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/normalize_scale.py +0 -0
  540. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/one_hot_degree.py +0 -0
  541. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/pad.py +0 -0
  542. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/point_pair_features.py +0 -0
  543. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/polar.py +0 -0
  544. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/radius_graph.py +0 -0
  545. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_flip.py +0 -0
  546. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_jitter.py +0 -0
  547. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_link_split.py +0 -0
  548. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_node_split.py +0 -0
  549. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_rotate.py +0 -0
  550. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_scale.py +0 -0
  551. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/random_shear.py +0 -0
  552. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
  553. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
  554. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/remove_self_loops.py +0 -0
  555. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/remove_training_classes.py +0 -0
  556. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/rooted_subgraph.py +0 -0
  557. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/sample_points.py +0 -0
  558. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/sign.py +0 -0
  559. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/spherical.py +0 -0
  560. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/svd_feature_reduction.py +0 -0
  561. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/target_indegree.py +0 -0
  562. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/to_dense.py +0 -0
  563. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/to_device.py +0 -0
  564. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/to_sparse_tensor.py +0 -0
  565. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/to_superpixels.py +0 -0
  566. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/to_undirected.py +0 -0
  567. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/two_hop.py +0 -0
  568. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/transforms/virtual_node.py +0 -0
  569. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/typing.py +0 -0
  570. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/__init__.py +0 -0
  571. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_assortativity.py +0 -0
  572. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_coalesce.py +0 -0
  573. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_degree.py +0 -0
  574. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_grid.py +0 -0
  575. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_homophily.py +0 -0
  576. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_index_sort.py +0 -0
  577. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_lexsort.py +0 -0
  578. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_negative_sampling.py +0 -0
  579. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_normalize_edge_index.py +0 -0
  580. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_normalized_cut.py +0 -0
  581. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_one_hot.py +0 -0
  582. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_scatter.py +0 -0
  583. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_segment.py +0 -0
  584. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_select.py +0 -0
  585. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_softmax.py +0 -0
  586. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_sort_edge_index.py +0 -0
  587. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_spmm.py +0 -0
  588. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_subgraph.py +0 -0
  589. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_to_dense_adj.py +0 -0
  590. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_to_dense_batch.py +0 -0
  591. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_train_test_split_edges.py +0 -0
  592. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_tree_decomposition.py +0 -0
  593. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_trim_to_layer.py +0 -0
  594. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/_unbatch.py +0 -0
  595. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/augmentation.py +0 -0
  596. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/convert.py +0 -0
  597. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/cross_entropy.py +0 -0
  598. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/dropout.py +0 -0
  599. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/embedding.py +0 -0
  600. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/functions.py +0 -0
  601. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/geodesic.py +0 -0
  602. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/hetero.py +0 -0
  603. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/isolated.py +0 -0
  604. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/laplacian.py +0 -0
  605. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/loop.py +0 -0
  606. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/map.py +0 -0
  607. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/mask.py +0 -0
  608. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/mesh_laplacian.py +0 -0
  609. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/mixin.py +0 -0
  610. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/nested.py +0 -0
  611. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/noise_scheduler.py +0 -0
  612. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/num_nodes.py +0 -0
  613. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/ppr.py +0 -0
  614. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/random.py +0 -0
  615. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/repeat.py +0 -0
  616. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/smiles.py +0 -0
  617. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/sparse.py +0 -0
  618. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/utils/undirected.py +0 -0
  619. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/visualization/__init__.py +0 -0
  620. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/visualization/graph.py +0 -0
  621. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/visualization/influence.py +0 -0
  622. {pyg_nightly-2.6.0.dev20240909 → pyg_nightly-2.6.0.dev20240910}/torch_geometric/warnings.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.6.0.dev20240909
3
+ Version: 2.6.0.dev20240910
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -4,7 +4,7 @@ build-backend="flit_core.buildapi"
4
4
 
5
5
  [project]
6
6
  name="pyg-nightly"
7
- version="2.6.0.dev20240909"
7
+ version="2.6.0.dev20240910"
8
8
  authors=[
9
9
  {name="Matthias Fey", email="matthias@pyg.org"},
10
10
  ]
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.6.0.dev20240909'
33
+ __version__ = '2.6.0.dev20240910'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -28,6 +28,7 @@ from .gnnff import GNNFF
28
28
  from .pmlp import PMLP
29
29
  from .neural_fingerprint import NeuralFingerprint
30
30
  from .visnet import ViSNet
31
+ from .g_retriever import GRetriever
31
32
 
32
33
  # Deprecated:
33
34
  from torch_geometric.explain.algorithm.captum import (to_captum_input,
@@ -75,4 +76,5 @@ __all__ = classes = [
75
76
  'PMLP',
76
77
  'NeuralFingerprint',
77
78
  'ViSNet',
79
+ 'GRetriever',
78
80
  ]
@@ -0,0 +1,205 @@
1
+ from typing import List, Optional
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+ from torch_geometric.nn.models import GAT
7
+ from torch_geometric.nn.nlp.llm import BOS, LLM, MAX_NEW_TOKENS
8
+ from torch_geometric.utils import scatter
9
+
10
+
11
+ class GRetriever(torch.nn.Module):
12
+ r"""The G-Retriever model from the `"G-Retriever: Retrieval-Augmented
13
+ Generation for Textual Graph Understanding and Question Answering"
14
+ <https://arxiv.org/abs/2402.07630>`_ paper.
15
+
16
+ Args:
17
+ llm (LLM): The LLM to use.
18
+ gnn (torch.nn.Module): The GNN to use.
19
+ use_lora (bool, optional): If set to :obj:`True`, will use LORA from
20
+ :obj:`peft` for training the LLM, see
21
+ `here <https://huggingface.co/docs/peft/en/index>`_ for details.
22
+ (default: :obj:`False`)
23
+ mlp_out_channels (int, optional): The size of each graph embedding
24
+ after projection. (default: :obj:`4096`)
25
+
26
+ .. warning::
27
+ This module has been tested with the following HuggingFace models
28
+
29
+ * :obj:`llm_to_use="meta-llama/Llama-2-7b-chat-hf"`
30
+ * :obj:`llm_to_use="google/gemma-7b"`
31
+
32
+ and may not work with other models. See other models at `HuggingFace
33
+ Models <https://huggingface.co/models>`_ and let us know if you
34
+ encounter any issues.
35
+
36
+ .. note::
37
+ For an example of using :class:`GRetriever`, see
38
+ `examples/llm/g_retriever.py <https://github.com/pyg-team/
39
+ pytorch_geometric/blob/master/examples/llm/g_retriever.py>`_.
40
+ """
41
+ def __init__(
42
+ self,
43
+ llm: LLM,
44
+ gnn: torch.nn.Module,
45
+ use_lora: bool = False,
46
+ gnn_to_use=GAT,
47
+ mlp_out_channels: int = 4096,
48
+ ) -> None:
49
+ super().__init__()
50
+
51
+ self.llm = llm
52
+ self.gnn = gnn.to(self.llm.device)
53
+
54
+ self.word_embedding = self.llm.word_embedding
55
+ self.llm_generator = self.llm.llm
56
+ if use_lora:
57
+ from peft import (
58
+ LoraConfig,
59
+ get_peft_model,
60
+ prepare_model_for_kbit_training,
61
+ )
62
+ self.llm_generator = prepare_model_for_kbit_training(
63
+ self.llm_generator)
64
+ lora_r: int = 8
65
+ lora_alpha: int = 16
66
+ lora_dropout: float = 0.05
67
+ lora_target_modules = ['q_proj', 'v_proj']
68
+ config = LoraConfig(
69
+ r=lora_r,
70
+ lora_alpha=lora_alpha,
71
+ target_modules=lora_target_modules,
72
+ lora_dropout=lora_dropout,
73
+ bias='none',
74
+ task_type='CAUSAL_LM',
75
+ )
76
+ self.llm_generator = get_peft_model(self.llm_generator, config)
77
+
78
+ mlp_hidden_channels = self.gnn.out_channels
79
+ self.projector = torch.nn.Sequential(
80
+ torch.nn.Linear(mlp_hidden_channels, mlp_hidden_channels),
81
+ torch.nn.Sigmoid(),
82
+ torch.nn.Linear(mlp_hidden_channels, mlp_out_channels),
83
+ ).to(self.llm.device)
84
+
85
+ def encode(
86
+ self,
87
+ x: Tensor,
88
+ edge_index: Tensor,
89
+ batch: Tensor,
90
+ edge_attr: Optional[Tensor],
91
+ ) -> Tensor:
92
+ x = x.to(self.llm.device)
93
+ edge_index = edge_index.to(self.llm.device)
94
+ if edge_attr is not None:
95
+ edge_attr = edge_attr.to(self.llm.device)
96
+ batch = batch.to(self.llm.device)
97
+
98
+ out = self.gnn(x, edge_index, edge_attr=edge_attr)
99
+ return scatter(out, batch, dim=0, reduce='mean')
100
+
101
+ def forward(
102
+ self,
103
+ question: List[str],
104
+ x: Tensor,
105
+ edge_index: Tensor,
106
+ batch: Tensor,
107
+ label: List[str],
108
+ edge_attr: Optional[Tensor] = None,
109
+ additional_text_context: Optional[List[str]] = None,
110
+ ):
111
+ r"""The forward pass.
112
+
113
+ Args:
114
+ question (List[str]): The questions/prompts.
115
+ x (torch.Tensor): The input node features.
116
+ edge_index (torch.Tensor): The edge indices.
117
+ batch (torch.Tensor): The batch vector
118
+ :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
119
+ each element to a specific example.
120
+ label (List[str]): The answers/labels.
121
+ edge_attr (torch.Tensor, optional): The edge features (if supported
122
+ by the GNN). (default: :obj:`None`)
123
+ additional_text_context (List[str], optional): Additional context
124
+ to give to the LLM, such as textified knowledge graphs.
125
+ (default: :obj:`None`)
126
+ """
127
+ x = self.encode(x, edge_index, batch, edge_attr)
128
+ x = self.projector(x)
129
+ xs = x.split(x.size(0), dim=0)
130
+
131
+ (
132
+ inputs_embeds,
133
+ attention_mask,
134
+ label_input_ids,
135
+ ) = self.llm._get_embeds(question, additional_text_context, xs, label)
136
+
137
+ with self.llm.autocast_context:
138
+ outputs = self.llm_generator(
139
+ inputs_embeds=inputs_embeds,
140
+ attention_mask=attention_mask,
141
+ return_dict=True,
142
+ labels=label_input_ids,
143
+ )
144
+
145
+ return outputs.loss
146
+
147
+ @torch.no_grad()
148
+ def inference(
149
+ self,
150
+ question: List[str],
151
+ x: Tensor,
152
+ edge_index: Tensor,
153
+ batch: Tensor,
154
+ edge_attr: Optional[Tensor] = None,
155
+ additional_text_context: Optional[List[str]] = None,
156
+ max_out_tokens: Optional[int] = MAX_NEW_TOKENS,
157
+ ):
158
+ r"""The inference pass.
159
+
160
+ Args:
161
+ question (List[str]): The questions/prompts.
162
+ x (torch.Tensor): The input node features.
163
+ edge_index (torch.Tensor): The edge indices.
164
+ batch (torch.Tensor): The batch vector
165
+ :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
166
+ each element to a specific example.
167
+ edge_attr (torch.Tensor, optional): The edge features (if supported
168
+ by the GNN). (default: :obj:`None`)
169
+ additional_text_context (List[str], optional): Additional context
170
+ to give to the LLM, such as textified knowledge graphs.
171
+ (default: :obj:`None`)
172
+ max_out_tokens (int, optional): How many tokens for the LLM to
173
+ generate. (default: :obj:`32`)
174
+ """
175
+ x = self.encode(x, edge_index, batch, edge_attr)
176
+ x = self.projector(x)
177
+ xs = x.split(x.size(0), dim=0)
178
+
179
+ inputs_embeds, attention_mask, _ = self.llm._get_embeds(
180
+ question, additional_text_context, xs)
181
+
182
+ bos_token = self.llm.tokenizer(
183
+ BOS,
184
+ add_special_tokens=False,
185
+ ).input_ids[0]
186
+
187
+ with self.llm.autocast_context:
188
+ outputs = self.llm_generator.generate(
189
+ inputs_embeds=inputs_embeds,
190
+ max_new_tokens=max_out_tokens,
191
+ attention_mask=attention_mask,
192
+ bos_token_id=bos_token,
193
+ use_cache=True # Important to set!
194
+ )
195
+
196
+ return self.llm.tokenizer.batch_decode(
197
+ outputs,
198
+ skip_special_tokens=True,
199
+ )
200
+
201
+ def __repr__(self) -> str:
202
+ return (f'{self.__class__.__name__}(\n'
203
+ f' llm={self.llm},\n'
204
+ f' gnn={self.gnn},\n'
205
+ f')')
@@ -1,10 +1,14 @@
1
- import warnings
2
1
  from contextlib import nullcontext
3
2
  from typing import Any, Dict, List, Optional
4
3
 
5
4
  import torch
6
5
  from torch import Tensor
7
6
 
7
+ try:
8
+ from transformers.tokenization_utils_base import BatchEncoding
9
+ except ImportError:
10
+ BatchEncoding = Dict
11
+
8
12
  BOS = '<s>[INST]'
9
13
  EOS_USER = '[/INST]'
10
14
  EOS = '[/s]'
@@ -61,23 +65,16 @@ class LLM(torch.nn.Module):
61
65
  ) -> None:
62
66
  super().__init__()
63
67
 
64
- from transformers import AutoModelForCausalLM, AutoTokenizer
68
+ self.model_name = model_name
65
69
 
66
- if model_name == 'llama2-7b':
67
- pretty_model_name = 'LLAMA2'
68
- model_name = 'meta-llama/Llama-2-7b-chat-hf'
69
- elif model_name == 'gemma':
70
- pretty_model_name = 'GEMMA'
71
- model_name = 'google/gemma-7b'
72
- else:
73
- pretty_model_name = model_name
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
74
71
 
75
72
  # A rough heuristic on GPU memory requirements, e.g., we found that
76
73
  # LLAMA2 (7B parameters) fits on a 85GB GPU.
77
74
  required_memory = 85 * num_params / 7
78
75
  kwargs = get_llm_kwargs(required_memory, dtype)
79
76
 
80
- print(f"Setting up '{pretty_model_name}' with configuration: {kwargs}")
77
+ print(f"Setting up '{model_name}' with configuration: {kwargs}")
81
78
  self.tokenizer = AutoTokenizer.from_pretrained(
82
79
  model_name,
83
80
  use_fast=False,
@@ -88,17 +85,17 @@ class LLM(torch.nn.Module):
88
85
  self.word_embedding = self.llm.model.get_input_embeddings()
89
86
 
90
87
  if 'max_memory' not in kwargs: # Pure CPU:
91
- self.llm_device = torch.device('cpu')
88
+ self.device = torch.device('cpu')
92
89
  self.autocast_context = nullcontext()
93
90
  else:
94
- self.llm_device = self.llm.device
91
+ self.device = self.llm.device
95
92
  self.autocast_context = torch.cuda.amp.autocast(dtype=dtype)
96
93
 
97
94
  def _encode_inputs(
98
95
  self,
99
96
  question: List[str],
100
97
  context: Optional[List[str]] = None,
101
- ) -> None:
98
+ ) -> tuple:
102
99
  batch_size = len(question)
103
100
  questions = self.tokenizer(question, add_special_tokens=False)
104
101
  if context is not None:
@@ -109,14 +106,144 @@ class LLM(torch.nn.Module):
109
106
  BOS,
110
107
  add_special_tokens=False,
111
108
  return_tensors='pt',
112
- ).input_ids[0].to(self.llm_device)
109
+ ).input_ids[0].to(self.device)
113
110
  bos_embeds = self.word_embedding(bos_token)
114
111
  pad_token = torch.tensor(self.tokenizer.pad_token_id,
115
- device=self.llm_device)
112
+ device=self.device)
116
113
  pad_embeds = self.word_embedding(pad_token).unsqueeze(0)
117
114
  return (batch_size, questions, context, eos_user_tokens, bos_embeds,
118
115
  pad_embeds)
119
116
 
117
+ def _label_input_ids(
118
+ self,
119
+ i: int,
120
+ label: BatchEncoding,
121
+ eos_tokens: BatchEncoding,
122
+ ) -> List[int]:
123
+ label_input_ids = label.input_ids[i][:MAX_NEW_TOKENS]
124
+ label_input_ids = label_input_ids + eos_tokens.input_ids
125
+ return label_input_ids
126
+
127
+ def _input_ids(
128
+ self,
129
+ i: int,
130
+ context: BatchEncoding,
131
+ question: BatchEncoding,
132
+ eos_user_tokens: BatchEncoding,
133
+ ) -> List[int]:
134
+ input_ids: List[int] = []
135
+ if context is not None:
136
+ input_ids += context.input_ids[i][:MAX_TXT_LEN]
137
+ input_ids += question.input_ids[i]
138
+ input_ids += eos_user_tokens.input_ids
139
+ return input_ids
140
+
141
+ def _inputs_embeds(
142
+ self,
143
+ i: int,
144
+ input_ids: List[int],
145
+ bos_embeds: Tensor,
146
+ embedding: Optional[List[Tensor]] = None,
147
+ ) -> Tensor:
148
+ inputs_embeds = self.word_embedding(
149
+ torch.tensor(input_ids, device=self.device))
150
+
151
+ to_cat = [bos_embeds]
152
+ if embedding is not None and embedding[i] is not None:
153
+ to_cat.append(embedding[i])
154
+ to_cat.append(inputs_embeds)
155
+ return torch.cat(to_cat, dim=0).to(self.device)
156
+
157
+ def _append_embeds(
158
+ self,
159
+ inputs_embeds: Tensor,
160
+ batch_inputs_embeds: List[Tensor],
161
+ batch_attention_mask: List[List[int]],
162
+ label_input_ids: List[int] = None,
163
+ batch_label_input_ids: Optional[List[List[int]]] = None,
164
+ ) -> tuple:
165
+ batch_inputs_embeds.append(inputs_embeds)
166
+ batch_attention_mask.append([1] * inputs_embeds.size(0))
167
+ if label_input_ids is not None:
168
+ pad = inputs_embeds.size(0) - len(label_input_ids)
169
+ label_input_ids = [IGNORE_INDEX] * pad + label_input_ids
170
+ batch_label_input_ids.append(label_input_ids)
171
+ return batch_inputs_embeds, batch_attention_mask, batch_label_input_ids
172
+
173
+ def _pad_embeds(
174
+ self,
175
+ pad_embeds: Tensor,
176
+ batch_inputs_embeds: List[Tensor],
177
+ batch_attention_mask: List[List[int]],
178
+ batch_label_input_ids: Optional[List[List[int]]] = None,
179
+ ) -> tuple:
180
+ max_length = max([x.size(0) for x in batch_inputs_embeds])
181
+ batch_size = len(batch_inputs_embeds)
182
+ for i in range(batch_size):
183
+ pad = max_length - batch_inputs_embeds[i].size(0)
184
+ batch_inputs_embeds[i] = torch.cat([
185
+ pad_embeds.repeat(pad, 1),
186
+ batch_inputs_embeds[i],
187
+ ])
188
+ batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
189
+ if batch_label_input_ids is not None:
190
+ tmp = [IGNORE_INDEX] * pad + batch_label_input_ids[i]
191
+ batch_label_input_ids[i] = tmp
192
+ inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
193
+ attention_mask = torch.tensor(batch_attention_mask, device=self.device)
194
+ label_input_ids = None
195
+ if batch_label_input_ids is not None:
196
+ label_input_ids = torch.tensor(batch_label_input_ids,
197
+ device=self.device)
198
+ return inputs_embeds, attention_mask, label_input_ids
199
+
200
+ def _get_embeds(
201
+ self,
202
+ question: List[str],
203
+ context: Optional[List[str]] = None,
204
+ embedding: Optional[List[Tensor]] = None,
205
+ answer: Optional[List[str]] = None,
206
+ ) -> tuple:
207
+ (batch_size, question, context, eos_user_tokens, bos_embeds,
208
+ pad_embeds) = self._encode_inputs(question, context)
209
+
210
+ batch_label_input_ids = None
211
+ if answer is not None:
212
+ label = self.tokenizer(answer, add_special_tokens=False)
213
+ eos_tokens = self.tokenizer(EOS, add_special_tokens=False)
214
+ batch_label_input_ids = []
215
+
216
+ batch_inputs_embeds = []
217
+ batch_attention_mask = []
218
+ for i in range(batch_size):
219
+ input_ids = self._input_ids(i, context, question, eos_user_tokens)
220
+ if answer is not None:
221
+ label_input_ids = self._label_input_ids(i, label, eos_tokens)
222
+ input_ids += label_input_ids
223
+ else:
224
+ label_input_ids = None
225
+
226
+ inputs_embeds = self._inputs_embeds(i, input_ids, bos_embeds,
227
+ embedding)
228
+
229
+ (
230
+ batch_inputs_embeds,
231
+ batch_attention_mask,
232
+ batch_label_input_ids,
233
+ ) = self._append_embeds(
234
+ inputs_embeds,
235
+ batch_inputs_embeds,
236
+ batch_attention_mask,
237
+ label_input_ids,
238
+ batch_label_input_ids,
239
+ )
240
+
241
+ inputs_embeds, attention_mask, label_input_ids = self._pad_embeds(
242
+ pad_embeds, batch_inputs_embeds, batch_attention_mask,
243
+ batch_label_input_ids)
244
+
245
+ return inputs_embeds, attention_mask, label_input_ids
246
+
120
247
  def forward(
121
248
  self,
122
249
  question: List[str],
@@ -133,65 +260,11 @@ class LLM(torch.nn.Module):
133
260
  LLM, such as textified knowledge graphs. (default: :obj:`None`)
134
261
  embedding (list[torch.Tensor], optional): RAG embedding
135
262
  tensors, *i.e.* the embedded form of :obj:`context`. Either
136
- :obj:`context` or :obj:`rag_embeddings` should be used, not
263
+ :obj:`context` or :obj:`embedding` should be used, not
137
264
  both. (default: :obj:`None`)
138
265
  """
139
- if context is not None and embedding is not None:
140
- warnings.warn("Using both 'context' and 'embedding' is a waste of "
141
- "compute and memory")
142
-
143
- (batch_size, question, context, eos_user_tokens, bos_embeds,
144
- pad_embeds) = self._encode_inputs(question, context)
145
-
146
- label = self.tokenizer(answer, add_special_tokens=False)
147
- eos_tokens = self.tokenizer(EOS, add_special_tokens=False)
148
-
149
- batch_inputs_embeds = []
150
- batch_attention_mask = []
151
- batch_label_input_ids = []
152
- for i in range(batch_size):
153
- label_input_ids = label.input_ids[i][:MAX_NEW_TOKENS]
154
- label_input_ids += eos_tokens.input_ids # Add EOS token.
155
-
156
- input_ids: List[int] = []
157
- if context is not None:
158
- input_ids += context.input_ids[i][:MAX_TXT_LEN]
159
- input_ids += question.input_ids[i]
160
- input_ids += eos_user_tokens.input_ids
161
- input_ids += label_input_ids
162
-
163
- inputs_embeds = self.word_embedding(
164
- torch.tensor(input_ids, device=self.llm_device))
165
-
166
- to_cat = [bos_embeds]
167
- if embedding is not None:
168
- to_cat.append(embedding[i])
169
- to_cat.append(inputs_embeds)
170
- inputs_embeds = torch.cat(to_cat, dim=0)
171
-
172
- batch_inputs_embeds.append(inputs_embeds)
173
- batch_attention_mask.append([1] * inputs_embeds.size(0))
174
- label_input_ids = [IGNORE_INDEX] * (
175
- inputs_embeds.size(0) - len(label_input_ids)) + label_input_ids
176
- batch_label_input_ids.append(label_input_ids)
177
-
178
- # Pad input embeddings:
179
- max_length = max([x.size(0) for x in batch_inputs_embeds])
180
- for i in range(batch_size):
181
- pad = max_length - batch_inputs_embeds[i].size(0)
182
- batch_inputs_embeds[i] = torch.cat([
183
- pad_embeds.repeat(pad, 1),
184
- batch_inputs_embeds[i],
185
- ])
186
- batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
187
- batch_label_input_ids[i] = ([IGNORE_INDEX] * pad +
188
- batch_label_input_ids[i])
189
-
190
- inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
191
- attention_mask = torch.tensor(batch_attention_mask,
192
- device=self.llm_device)
193
- label_input_ids = torch.tensor(batch_label_input_ids,
194
- device=self.llm_device)
266
+ inputs_embeds, attention_mask, label_input_ids = self._get_embeds(
267
+ question, context, embedding, answer)
195
268
 
196
269
  with self.autocast_context:
197
270
  outputs = self.llm(
@@ -219,52 +292,13 @@ class LLM(torch.nn.Module):
219
292
  LLM, such as textified knowledge graphs. (default: :obj:`None`)
220
293
  embedding (list[torch.Tensor], optional): RAG embedding
221
294
  tensors, *i.e.* the embedded form of :obj:`context`. Either
222
- :obj:`context` or :obj:`rag_embeddings` should be used, not
295
+ :obj:`context` or :obj:`embedding` should be used, not
223
296
  both. (default: :obj:`None`)
224
297
  max_tokens (int, optional): How many tokens for the LLM to
225
298
  generate. (default: :obj:`32`)
226
299
  """
227
- if context is not None and embedding is not None:
228
- warnings.warn("Using both 'context' and 'embedding' is a waste of "
229
- "compute and memory")
230
-
231
- (batch_size, question, context, eos_user_tokens, bos_embeds,
232
- pad_embeds) = self._encode_inputs(question, context)
233
-
234
- batch_inputs_embeds = []
235
- batch_attention_mask = []
236
- for i in range(batch_size):
237
- input_ids: List[int] = []
238
- if context is not None:
239
- input_ids = context.input_ids[i][:MAX_TXT_LEN]
240
- input_ids += question.input_ids[i]
241
- input_ids += eos_user_tokens.input_ids
242
-
243
- inputs_embeds = self.word_embedding(
244
- torch.tensor(input_ids, device=self.llm_device))
245
-
246
- to_cat = [bos_embeds]
247
- if embedding is not None:
248
- to_cat.append(embedding[i])
249
- to_cat.append(inputs_embeds)
250
- inputs_embeds = torch.cat(to_cat, dim=0)
251
-
252
- batch_inputs_embeds.append(inputs_embeds)
253
- batch_attention_mask.append([1] * inputs_embeds.size(0))
254
-
255
- # Pad input embeddings:
256
- max_length = max([x.size(0) for x in batch_inputs_embeds])
257
- for i in range(batch_size):
258
- pad = max_length - batch_inputs_embeds[i].size(0)
259
- batch_inputs_embeds[i] = torch.cat([
260
- pad_embeds.repeat(pad, 1),
261
- batch_inputs_embeds[i],
262
- ])
263
- batch_attention_mask[i] = [0] * pad + batch_attention_mask[i]
264
-
265
- inputs_embeds = torch.stack(batch_inputs_embeds, dim=0)
266
- attention_mask = torch.tensor(batch_attention_mask,
267
- device=self.llm_device)
300
+ inputs_embeds, attention_mask, _ = self._get_embeds(
301
+ question, context, embedding)
268
302
 
269
303
  bos_token = self.tokenizer(
270
304
  BOS,
@@ -281,3 +315,6 @@ class LLM(torch.nn.Module):
281
315
  )
282
316
 
283
317
  return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
318
+
319
+ def __repr__(self) -> str:
320
+ return f'{self.__class__.__name__}({self.model_name})'
@@ -7,18 +7,19 @@ from torch import Tensor
7
7
  import torch_geometric.typing
8
8
  from torch_geometric.typing import OptTensor, torch_cluster
9
9
 
10
- from .asap import ASAPooling
11
10
  from .avg_pool import avg_pool, avg_pool_neighbor_x, avg_pool_x
12
- from .edge_pool import EdgePooling
13
11
  from .glob import global_add_pool, global_max_pool, global_mean_pool
14
12
  from .knn import (KNNIndex, L2KNNIndex, MIPSKNNIndex, ApproxL2KNNIndex,
15
13
  ApproxMIPSKNNIndex)
16
14
  from .graclus import graclus
17
15
  from .max_pool import max_pool, max_pool_neighbor_x, max_pool_x
18
- from .mem_pool import MemPooling
19
- from .pan_pool import PANPooling
20
- from .sag_pool import SAGPooling
21
16
  from .topk_pool import TopKPooling
17
+ from .sag_pool import SAGPooling
18
+ from .edge_pool import EdgePooling
19
+ from .cluster_pool import ClusterPooling
20
+ from .asap import ASAPooling
21
+ from .pan_pool import PANPooling
22
+ from .mem_pool import MemPooling
22
23
  from .voxel_grid import voxel_grid
23
24
  from .approx_knn import approx_knn, approx_knn_graph
24
25
 
@@ -344,6 +345,7 @@ __all__ = [
344
345
  'TopKPooling',
345
346
  'SAGPooling',
346
347
  'EdgePooling',
348
+ 'ClusterPooling',
347
349
  'ASAPooling',
348
350
  'PANPooling',
349
351
  'MemPooling',