pyg-nightly 2.6.0.dev20240406__tar.gz → 2.7.0.dev20250114__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (640) hide show
  1. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/PKG-INFO +31 -47
  2. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/README.md +24 -39
  3. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/pyproject.toml +18 -11
  4. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/__init__.py +28 -1
  5. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/_compile.py +8 -1
  6. pyg_nightly-2.7.0.dev20250114/torch_geometric/_onnx.py +14 -0
  7. pyg_nightly-2.7.0.dev20250114/torch_geometric/config_mixin.py +113 -0
  8. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/config_store.py +28 -19
  9. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/__init__.py +24 -1
  10. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/batch.py +2 -2
  11. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/collate.py +8 -2
  12. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/data.py +16 -8
  13. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/database.py +58 -12
  14. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/dataset.py +14 -6
  15. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/feature_store.py +13 -22
  16. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/graph_store.py +1 -5
  17. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/hetero_data.py +18 -9
  18. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/in_memory_dataset.py +2 -4
  19. pyg_nightly-2.7.0.dev20250114/torch_geometric/data/large_graph_indexer.py +677 -0
  20. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/lightning/datamodule.py +4 -4
  21. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/separate.py +6 -1
  22. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/storage.py +17 -7
  23. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/summary.py +14 -4
  24. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/temporal.py +1 -2
  25. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/__init__.py +11 -1
  26. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/actor.py +9 -11
  27. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/airfrans.py +15 -18
  28. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/airports.py +10 -12
  29. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/amazon.py +8 -11
  30. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/amazon_book.py +9 -10
  31. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/amazon_products.py +9 -10
  32. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/aminer.py +8 -9
  33. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/aqsol.py +10 -13
  34. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/attributed_graph_dataset.py +10 -12
  35. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ba_multi_shapes.py +10 -12
  36. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ba_shapes.py +5 -6
  37. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/bitcoin_otc.py +1 -1
  38. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/brca_tgca.py +1 -1
  39. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/dblp.py +2 -1
  40. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/dbp15k.py +2 -2
  41. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/fake.py +1 -3
  42. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/flickr.py +2 -1
  43. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/freebase.py +1 -1
  44. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/gdelt_lite.py +3 -2
  45. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ged_dataset.py +3 -2
  46. pyg_nightly-2.7.0.dev20250114/torch_geometric/datasets/git_mol_dataset.py +263 -0
  47. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/gnn_benchmark_dataset.py +6 -5
  48. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/hgb_dataset.py +8 -8
  49. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/imdb.py +2 -1
  50. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/karate.py +3 -2
  51. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/last_fm.py +2 -1
  52. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/linkx_dataset.py +4 -3
  53. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/lrgb.py +3 -5
  54. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/malnet_tiny.py +4 -3
  55. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/mnist_superpixels.py +2 -3
  56. pyg_nightly-2.7.0.dev20250114/torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
  57. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/molecule_net.py +7 -1
  58. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/base.py +0 -1
  59. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/neurograph.py +1 -3
  60. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ogb_mag.py +1 -1
  61. pyg_nightly-2.7.0.dev20250114/torch_geometric/datasets/opf.py +239 -0
  62. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ose_gvcs.py +1 -1
  63. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/pascal_pf.py +1 -1
  64. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/pcpnet_dataset.py +1 -1
  65. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/pcqm4m.py +2 -1
  66. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ppi.py +1 -1
  67. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/qm9.py +8 -7
  68. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/rcdd.py +4 -4
  69. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/reddit.py +2 -1
  70. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/reddit2.py +2 -1
  71. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
  72. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/s3dis.py +5 -3
  73. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/shapenet.py +3 -3
  74. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/shrec2016.py +2 -2
  75. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/snap_dataset.py +7 -1
  76. pyg_nightly-2.7.0.dev20250114/torch_geometric/datasets/tag_dataset.py +350 -0
  77. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/upfd.py +2 -1
  78. pyg_nightly-2.7.0.dev20250114/torch_geometric/datasets/web_qsp_dataset.py +246 -0
  79. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/webkb.py +2 -2
  80. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/wikics.py +1 -1
  81. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/wikidata.py +3 -2
  82. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/wikipedia_network.py +2 -2
  83. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/word_net.py +2 -2
  84. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/yelp.py +2 -1
  85. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/zinc.py +1 -1
  86. pyg_nightly-2.7.0.dev20250114/torch_geometric/device.py +42 -0
  87. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/local_feature_store.py +3 -2
  88. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/local_graph_store.py +2 -1
  89. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/partition.py +9 -8
  90. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/edge_index.py +616 -438
  91. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/base.py +0 -1
  92. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/graphmask_explainer.py +1 -2
  93. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/pg_explainer.py +1 -1
  94. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/explanation.py +2 -2
  95. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/checkpoint.py +2 -1
  96. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/logger.py +4 -4
  97. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/loss.py +1 -1
  98. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/agg_runs.py +6 -6
  99. pyg_nightly-2.7.0.dev20250114/torch_geometric/index.py +826 -0
  100. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/inspector.py +8 -3
  101. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/fs.py +28 -2
  102. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/npz.py +2 -1
  103. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/off.py +2 -2
  104. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/sdf.py +2 -2
  105. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/tu.py +4 -5
  106. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/__init__.py +4 -0
  107. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/cluster.py +10 -4
  108. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/graph_saint.py +2 -1
  109. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/ibmb_loader.py +12 -4
  110. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/mixin.py +1 -1
  111. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/neighbor_loader.py +1 -1
  112. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/neighbor_sampler.py +2 -2
  113. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/prefetch.py +1 -1
  114. pyg_nightly-2.7.0.dev20250114/torch_geometric/loader/rag_loader.py +107 -0
  115. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/utils.py +8 -7
  116. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/zip_loader.py +10 -0
  117. pyg_nightly-2.7.0.dev20250114/torch_geometric/metrics/__init__.py +23 -0
  118. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/metrics/link_pred.py +159 -34
  119. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/__init__.py +2 -0
  120. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/attention.py +0 -2
  121. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/base.py +2 -4
  122. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/aggr/patch_transformer.py +143 -0
  123. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/set_transformer.py +1 -1
  124. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/attention/__init__.py +7 -0
  125. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/attention/qformer.py +71 -0
  126. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/collect.jinja +7 -4
  127. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cugraph/base.py +8 -12
  128. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/edge_conv.py +3 -2
  129. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/fused_gat_conv.py +1 -1
  130. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gat_conv.py +35 -7
  131. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gatv2_conv.py +36 -6
  132. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/general_conv.py +1 -1
  133. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/graph_conv.py +21 -3
  134. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gravnet_conv.py +3 -2
  135. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/hetero_conv.py +3 -3
  136. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/hgt_conv.py +1 -1
  137. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/message_passing.py +125 -85
  138. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/mixhop_conv.py +1 -1
  139. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/propagate.jinja +9 -1
  140. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/rgcn_conv.py +5 -5
  141. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/spline_conv.py +4 -4
  142. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/x_conv.py +3 -2
  143. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/linear.py +11 -6
  144. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/fx.py +3 -3
  145. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/model_hub.py +3 -1
  146. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/__init__.py +10 -2
  147. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/deep_graph_infomax.py +1 -2
  148. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/dimenet_utils.py +5 -7
  149. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/models/g_retriever.py +230 -0
  150. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/models/git_mol.py +336 -0
  151. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/models/glem.py +385 -0
  152. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/gnnff.py +0 -1
  153. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/graph_unet.py +12 -3
  154. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/jumping_knowledge.py +63 -4
  155. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/lightgcn.py +1 -1
  156. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/metapath2vec.py +4 -5
  157. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/models/molecule_gpt.py +222 -0
  158. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/node2vec.py +2 -3
  159. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/schnet.py +2 -1
  160. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/signed_gcn.py +3 -3
  161. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/module_dict.py +2 -2
  162. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/nlp/__init__.py +9 -0
  163. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/nlp/llm.py +322 -0
  164. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/nlp/sentence_transformer.py +134 -0
  165. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/nlp/vision_transformer.py +33 -0
  166. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/batch_norm.py +1 -1
  167. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/parameter_dict.py +2 -2
  168. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/__init__.py +7 -5
  169. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/pool/cluster_pool.py +145 -0
  170. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/connect/base.py +0 -1
  171. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/edge_pool.py +1 -1
  172. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/graclus.py +4 -2
  173. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/select/base.py +0 -1
  174. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/voxel_grid.py +3 -2
  175. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/resolver.py +1 -1
  176. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/sequential.jinja +22 -0
  177. pyg_nightly-2.7.0.dev20250114/torch_geometric/nn/sequential.py +273 -0
  178. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/summary.py +1 -1
  179. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
  180. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/profile/__init__.py +2 -0
  181. pyg_nightly-2.7.0.dev20250114/torch_geometric/profile/nvtx.py +66 -0
  182. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/profile/profiler.py +30 -19
  183. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/resolver.py +1 -1
  184. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/sampler/base.py +34 -13
  185. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/sampler/neighbor_sampler.py +11 -10
  186. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/sampler/utils.py +1 -1
  187. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/__init__.py +4 -2
  188. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/decorators.py +40 -26
  189. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/__init__.py +2 -0
  190. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/add_metapaths.py +5 -5
  191. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/add_positional_encoding.py +1 -1
  192. pyg_nightly-2.7.0.dev20250114/torch_geometric/transforms/delaunay.py +84 -0
  193. pyg_nightly-2.7.0.dev20250114/torch_geometric/transforms/face_to_edge.py +61 -0
  194. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/gdc.py +7 -6
  195. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/laplacian_lambda_max.py +3 -3
  196. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/mask.py +5 -1
  197. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/node_property_split.py +1 -2
  198. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/pad.py +7 -6
  199. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_link_split.py +1 -1
  200. pyg_nightly-2.7.0.dev20250114/torch_geometric/transforms/remove_self_loops.py +36 -0
  201. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/svd_feature_reduction.py +1 -1
  202. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/to_sparse_tensor.py +1 -1
  203. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/two_hop.py +1 -1
  204. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/virtual_node.py +2 -1
  205. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/typing.py +43 -6
  206. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/__init__.py +5 -1
  207. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_negative_sampling.py +1 -1
  208. pyg_nightly-2.7.0.dev20250114/torch_geometric/utils/_normalize_edge_index.py +46 -0
  209. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_scatter.py +37 -12
  210. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_subgraph.py +4 -0
  211. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_tree_decomposition.py +2 -2
  212. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/augmentation.py +1 -1
  213. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/convert.py +11 -7
  214. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/geodesic.py +24 -22
  215. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/hetero.py +1 -1
  216. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/map.py +1 -1
  217. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/smiles.py +65 -27
  218. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/sparse.py +26 -23
  219. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/visualization/graph.py +3 -4
  220. pyg_nightly-2.6.0.dev20240406/torch_geometric/metrics/__init__.py +0 -14
  221. pyg_nightly-2.6.0.dev20240406/torch_geometric/nn/attention/__init__.py +0 -3
  222. pyg_nightly-2.6.0.dev20240406/torch_geometric/nn/sequential.jinja +0 -35
  223. pyg_nightly-2.6.0.dev20240406/torch_geometric/nn/sequential.py +0 -147
  224. pyg_nightly-2.6.0.dev20240406/torch_geometric/transforms/delaunay.py +0 -33
  225. pyg_nightly-2.6.0.dev20240406/torch_geometric/transforms/face_to_edge.py +0 -32
  226. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/backend.py +0 -0
  227. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/__init__.py +0 -0
  228. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/datasets/__init__.py +0 -0
  229. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/explain/__init__.py +0 -0
  230. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/explain/pgm_explainer.py +0 -0
  231. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/nn/__init__.py +0 -0
  232. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/nn/conv/__init__.py +0 -0
  233. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/nn/models/__init__.py +0 -0
  234. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/nn/models/rbcd_attack.py +0 -0
  235. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/contrib/transforms/__init__.py +0 -0
  236. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/datapipes.py +0 -0
  237. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/download.py +0 -0
  238. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/extract.py +0 -0
  239. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/hypergraph_data.py +0 -0
  240. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/lightning/__init__.py +0 -0
  241. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/makedirs.py +0 -0
  242. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/on_disk_dataset.py +0 -0
  243. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/remote_backend_utils.py +0 -0
  244. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/data/view.py +0 -0
  245. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/ba2motif_dataset.py +0 -0
  246. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/citation_full.py +0 -0
  247. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/coauthor.py +0 -0
  248. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/coma.py +0 -0
  249. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/cornell.py +0 -0
  250. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/deezer_europe.py +0 -0
  251. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/dgraph.py +0 -0
  252. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/dynamic_faust.py +0 -0
  253. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/elliptic.py +0 -0
  254. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/elliptic_temporal.py +0 -0
  255. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/email_eu_core.py +0 -0
  256. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/entities.py +0 -0
  257. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/explainer_dataset.py +0 -0
  258. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/facebook.py +0 -0
  259. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/faust.py +0 -0
  260. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/gdelt.py +0 -0
  261. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/gemsec.py +0 -0
  262. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/geometry.py +0 -0
  263. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/github.py +0 -0
  264. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/__init__.py +0 -0
  265. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/ba_graph.py +0 -0
  266. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/base.py +0 -0
  267. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/er_graph.py +0 -0
  268. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/grid_graph.py +0 -0
  269. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/graph_generator/tree_graph.py +0 -0
  270. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/heterophilous_graph_dataset.py +0 -0
  271. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/hm.py +0 -0
  272. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/hydro_net.py +0 -0
  273. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/icews.py +0 -0
  274. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/igmc_dataset.py +0 -0
  275. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/infection_dataset.py +0 -0
  276. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/jodie.py +0 -0
  277. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/lastfm_asia.py +0 -0
  278. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/md17.py +0 -0
  279. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/mixhop_synthetic_dataset.py +0 -0
  280. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/modelnet.py +0 -0
  281. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/__init__.py +0 -0
  282. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/custom.py +0 -0
  283. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/cycle.py +0 -0
  284. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/grid.py +0 -0
  285. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/motif_generator/house.py +0 -0
  286. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/movie_lens.py +0 -0
  287. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/movie_lens_100k.py +0 -0
  288. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/movie_lens_1m.py +0 -0
  289. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/myket.py +0 -0
  290. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/nell.py +0 -0
  291. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/omdb.py +0 -0
  292. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/particle.py +0 -0
  293. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/pascal.py +0 -0
  294. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/planetoid.py +0 -0
  295. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/polblogs.py +0 -0
  296. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/qm7.py +0 -0
  297. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/sbm_dataset.py +0 -0
  298. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/suite_sparse.py +0 -0
  299. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/taobao.py +0 -0
  300. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/tosca.py +0 -0
  301. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/tu_dataset.py +0 -0
  302. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/twitch.py +0 -0
  303. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/utils/__init__.py +0 -0
  304. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/utils/cheatsheet.py +0 -0
  305. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/datasets/willow_object_class.py +0 -0
  306. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/debug.py +0 -0
  307. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/deprecation.py +0 -0
  308. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/__init__.py +0 -0
  309. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/dist_context.py +0 -0
  310. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/dist_link_neighbor_loader.py +0 -0
  311. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/dist_loader.py +0 -0
  312. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/dist_neighbor_loader.py +0 -0
  313. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/dist_neighbor_sampler.py +0 -0
  314. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/event_loop.py +0 -0
  315. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/rpc.py +0 -0
  316. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/distributed/utils.py +0 -0
  317. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/experimental.py +0 -0
  318. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/__init__.py +0 -0
  319. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/__init__.py +0 -0
  320. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/attention_explainer.py +0 -0
  321. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/captum.py +0 -0
  322. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/captum_explainer.py +0 -0
  323. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/dummy_explainer.py +0 -0
  324. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/gnn_explainer.py +0 -0
  325. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/algorithm/utils.py +0 -0
  326. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/config.py +0 -0
  327. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/explainer.py +0 -0
  328. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/metric/__init__.py +0 -0
  329. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/metric/basic.py +0 -0
  330. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/metric/faithfulness.py +0 -0
  331. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/explain/metric/fidelity.py +0 -0
  332. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/__init__.py +0 -0
  333. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/benchmark.py +0 -0
  334. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/cmd_args.py +0 -0
  335. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/config.py +0 -0
  336. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/__init__.py +0 -0
  337. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/act/__init__.py +0 -0
  338. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/config/__init__.py +0 -0
  339. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/encoder/__init__.py +0 -0
  340. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/head/__init__.py +0 -0
  341. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/layer/__init__.py +0 -0
  342. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/layer/generalconv.py +0 -0
  343. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/loader/__init__.py +0 -0
  344. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/loss/__init__.py +0 -0
  345. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/network/__init__.py +0 -0
  346. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/optimizer/__init__.py +0 -0
  347. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/pooling/__init__.py +0 -0
  348. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/stage/__init__.py +0 -0
  349. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/train/__init__.py +0 -0
  350. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/contrib/transform/__init__.py +0 -0
  351. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/imports.py +0 -0
  352. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/init.py +0 -0
  353. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/loader.py +0 -0
  354. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/model_builder.py +0 -0
  355. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/__init__.py +0 -0
  356. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/act.py +0 -0
  357. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/encoder.py +0 -0
  358. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/gnn.py +0 -0
  359. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/head.py +0 -0
  360. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/layer.py +0 -0
  361. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/pooling.py +0 -0
  362. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/models/transform.py +0 -0
  363. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/optim.py +0 -0
  364. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/register.py +0 -0
  365. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/train.py +0 -0
  366. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/LICENSE +0 -0
  367. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/__init__.py +0 -0
  368. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/comp_budget.py +0 -0
  369. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/device.py +0 -0
  370. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/epoch.py +0 -0
  371. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/io.py +0 -0
  372. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/plot.py +0 -0
  373. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/graphgym/utils/tools.py +0 -0
  374. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/home.py +0 -0
  375. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/__init__.py +0 -0
  376. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/obj.py +0 -0
  377. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/planetoid.py +0 -0
  378. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/ply.py +0 -0
  379. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/io/txt_array.py +0 -0
  380. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/isinstance.py +0 -0
  381. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/lazy_loader.py +0 -0
  382. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/base.py +0 -0
  383. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/cache.py +0 -0
  384. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/data_list_loader.py +0 -0
  385. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/dataloader.py +0 -0
  386. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/dense_data_loader.py +0 -0
  387. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/dynamic_batch_sampler.py +0 -0
  388. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/hgt_loader.py +0 -0
  389. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/imbalanced_sampler.py +0 -0
  390. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/link_loader.py +0 -0
  391. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/link_neighbor_loader.py +0 -0
  392. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/node_loader.py +0 -0
  393. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/random_node_loader.py +0 -0
  394. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/shadow.py +0 -0
  395. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/loader/temporal_dataloader.py +0 -0
  396. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/logging.py +0 -0
  397. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/__init__.py +0 -0
  398. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/basic.py +0 -0
  399. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/deep_sets.py +0 -0
  400. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/equilibrium.py +0 -0
  401. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/fused.py +0 -0
  402. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/gmt.py +0 -0
  403. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/gru.py +0 -0
  404. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/lcm.py +0 -0
  405. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/lstm.py +0 -0
  406. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/mlp.py +0 -0
  407. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/multi.py +0 -0
  408. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/quantile.py +0 -0
  409. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/scaler.py +0 -0
  410. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/set2set.py +0 -0
  411. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/sort.py +0 -0
  412. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/utils.py +0 -0
  413. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/aggr/variance_preserving.py +0 -0
  414. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/attention/performer.py +0 -0
  415. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/__init__.py +0 -0
  416. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/agnn_conv.py +0 -0
  417. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/antisymmetric_conv.py +0 -0
  418. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/appnp.py +0 -0
  419. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/arma_conv.py +0 -0
  420. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cg_conv.py +0 -0
  421. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cheb_conv.py +0 -0
  422. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cluster_gcn_conv.py +0 -0
  423. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cugraph/__init__.py +0 -0
  424. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cugraph/gat_conv.py +0 -0
  425. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cugraph/rgcn_conv.py +0 -0
  426. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/cugraph/sage_conv.py +0 -0
  427. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/dir_gnn_conv.py +0 -0
  428. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/dna_conv.py +0 -0
  429. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/edge_updater.jinja +0 -0
  430. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/eg_conv.py +0 -0
  431. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/fa_conv.py +0 -0
  432. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/feast_conv.py +0 -0
  433. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/film_conv.py +0 -0
  434. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gated_graph_conv.py +0 -0
  435. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gcn2_conv.py +0 -0
  436. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gcn_conv.py +0 -0
  437. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gen_conv.py +0 -0
  438. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gin_conv.py +0 -0
  439. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gmm_conv.py +0 -0
  440. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/gps_conv.py +0 -0
  441. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/han_conv.py +0 -0
  442. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/heat_conv.py +0 -0
  443. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/hypergraph_conv.py +0 -0
  444. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/le_conv.py +0 -0
  445. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/lg_conv.py +0 -0
  446. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/mf_conv.py +0 -0
  447. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/nn_conv.py +0 -0
  448. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/pan_conv.py +0 -0
  449. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/pdn_conv.py +0 -0
  450. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/pna_conv.py +0 -0
  451. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/point_conv.py +0 -0
  452. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/point_gnn_conv.py +0 -0
  453. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/point_transformer_conv.py +0 -0
  454. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/ppf_conv.py +0 -0
  455. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/res_gated_graph_conv.py +0 -0
  456. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/rgat_conv.py +0 -0
  457. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/sage_conv.py +0 -0
  458. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/sg_conv.py +0 -0
  459. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/signed_conv.py +0 -0
  460. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/simple_conv.py +0 -0
  461. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/ssg_conv.py +0 -0
  462. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/supergat_conv.py +0 -0
  463. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/tag_conv.py +0 -0
  464. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/transformer_conv.py +0 -0
  465. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/utils/__init__.py +0 -0
  466. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/utils/cheatsheet.py +0 -0
  467. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/wl_conv.py +0 -0
  468. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/conv/wl_conv_continuous.py +0 -0
  469. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/data_parallel.py +0 -0
  470. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/__init__.py +0 -0
  471. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dense_gat_conv.py +0 -0
  472. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dense_gcn_conv.py +0 -0
  473. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dense_gin_conv.py +0 -0
  474. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dense_graph_conv.py +0 -0
  475. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dense_sage_conv.py +0 -0
  476. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/diff_pool.py +0 -0
  477. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/dmon_pool.py +0 -0
  478. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/dense/mincut_pool.py +0 -0
  479. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/encoding.py +0 -0
  480. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/functional/__init__.py +0 -0
  481. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/functional/bro.py +0 -0
  482. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/functional/gini.py +0 -0
  483. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/glob.py +0 -0
  484. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/inits.py +0 -0
  485. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/__init__.py +0 -0
  486. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/base.py +0 -0
  487. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/complex.py +0 -0
  488. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/distmult.py +0 -0
  489. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/loader.py +0 -0
  490. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/rotate.py +0 -0
  491. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/kge/transe.py +0 -0
  492. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/lr_scheduler.py +0 -0
  493. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/attentive_fp.py +0 -0
  494. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/autoencoder.py +0 -0
  495. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/basic_gnn.py +0 -0
  496. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/captum.py +0 -0
  497. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/correct_and_smooth.py +0 -0
  498. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/deepgcn.py +0 -0
  499. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/dimenet.py +0 -0
  500. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/graph_mixer.py +0 -0
  501. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/label_prop.py +0 -0
  502. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/linkx.py +0 -0
  503. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/mask_label.py +0 -0
  504. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/meta.py +0 -0
  505. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/mlp.py +0 -0
  506. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/neural_fingerprint.py +0 -0
  507. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/pmlp.py +0 -0
  508. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/re_net.py +0 -0
  509. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/rect.py +0 -0
  510. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/rev_gnn.py +0 -0
  511. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/tgn.py +0 -0
  512. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/models/visnet.py +0 -0
  513. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/__init__.py +0 -0
  514. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/diff_group_norm.py +0 -0
  515. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/graph_norm.py +0 -0
  516. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/graph_size_norm.py +0 -0
  517. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/instance_norm.py +0 -0
  518. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/layer_norm.py +0 -0
  519. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/mean_subtraction_norm.py +0 -0
  520. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/msg_norm.py +0 -0
  521. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/norm/pair_norm.py +0 -0
  522. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/approx_knn.py +0 -0
  523. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/asap.py +0 -0
  524. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/avg_pool.py +0 -0
  525. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/connect/__init__.py +0 -0
  526. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/connect/filter_edges.py +0 -0
  527. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/consecutive.py +0 -0
  528. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/decimation.py +0 -0
  529. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/glob.py +0 -0
  530. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/knn.py +0 -0
  531. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/max_pool.py +0 -0
  532. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/mem_pool.py +0 -0
  533. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/pan_pool.py +0 -0
  534. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/pool.py +0 -0
  535. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/sag_pool.py +0 -0
  536. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/select/__init__.py +0 -0
  537. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/select/topk.py +0 -0
  538. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/pool/topk_pool.py +0 -0
  539. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/reshape.py +0 -0
  540. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/to_fixed_size_transformer.py +0 -0
  541. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/to_hetero_module.py +0 -0
  542. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/to_hetero_transformer.py +0 -0
  543. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/unpool/__init__.py +0 -0
  544. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/nn/unpool/knn_interpolate.py +0 -0
  545. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/profile/benchmark.py +0 -0
  546. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/profile/profile.py +0 -0
  547. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/profile/utils.py +0 -0
  548. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/sampler/__init__.py +0 -0
  549. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/sampler/hgt_sampler.py +0 -0
  550. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/seed.py +0 -0
  551. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/template.py +0 -0
  552. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/asserts.py +0 -0
  553. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/data.py +0 -0
  554. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/distributed.py +0 -0
  555. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/feature_store.py +0 -0
  556. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/testing/graph_store.py +0 -0
  557. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/add_remaining_self_loops.py +0 -0
  558. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/add_self_loops.py +0 -0
  559. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/base_transform.py +0 -0
  560. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/cartesian.py +0 -0
  561. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/center.py +0 -0
  562. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/compose.py +0 -0
  563. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/constant.py +0 -0
  564. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/distance.py +0 -0
  565. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/feature_propagation.py +0 -0
  566. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/fixed_points.py +0 -0
  567. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/gcn_norm.py +0 -0
  568. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/generate_mesh_normals.py +0 -0
  569. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/grid_sampling.py +0 -0
  570. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/half_hop.py +0 -0
  571. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/knn_graph.py +0 -0
  572. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/largest_connected_components.py +0 -0
  573. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/line_graph.py +0 -0
  574. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/linear_transformation.py +0 -0
  575. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/local_cartesian.py +0 -0
  576. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/local_degree_profile.py +0 -0
  577. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/normalize_features.py +0 -0
  578. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/normalize_rotation.py +0 -0
  579. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/normalize_scale.py +0 -0
  580. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/one_hot_degree.py +0 -0
  581. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/point_pair_features.py +0 -0
  582. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/polar.py +0 -0
  583. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/radius_graph.py +0 -0
  584. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_flip.py +0 -0
  585. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_jitter.py +0 -0
  586. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_node_split.py +0 -0
  587. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_rotate.py +0 -0
  588. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_scale.py +0 -0
  589. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/random_shear.py +0 -0
  590. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/remove_duplicated_edges.py +0 -0
  591. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/remove_isolated_nodes.py +0 -0
  592. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/remove_training_classes.py +0 -0
  593. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/rooted_subgraph.py +0 -0
  594. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/sample_points.py +0 -0
  595. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/sign.py +0 -0
  596. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/spherical.py +0 -0
  597. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/target_indegree.py +0 -0
  598. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/to_dense.py +0 -0
  599. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/to_device.py +0 -0
  600. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/to_superpixels.py +0 -0
  601. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/transforms/to_undirected.py +0 -0
  602. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_assortativity.py +0 -0
  603. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_coalesce.py +0 -0
  604. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_degree.py +0 -0
  605. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_grid.py +0 -0
  606. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_homophily.py +0 -0
  607. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_index_sort.py +0 -0
  608. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_lexsort.py +0 -0
  609. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_normalized_cut.py +0 -0
  610. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_one_hot.py +0 -0
  611. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_segment.py +0 -0
  612. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_select.py +0 -0
  613. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_softmax.py +0 -0
  614. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_sort_edge_index.py +0 -0
  615. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_spmm.py +0 -0
  616. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_to_dense_adj.py +0 -0
  617. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_to_dense_batch.py +0 -0
  618. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_train_test_split_edges.py +0 -0
  619. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_trim_to_layer.py +0 -0
  620. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/_unbatch.py +0 -0
  621. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/cross_entropy.py +0 -0
  622. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/dropout.py +0 -0
  623. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/embedding.py +0 -0
  624. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/functions.py +0 -0
  625. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/isolated.py +0 -0
  626. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/laplacian.py +0 -0
  627. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/loop.py +0 -0
  628. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/mask.py +0 -0
  629. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/mesh_laplacian.py +0 -0
  630. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/mixin.py +0 -0
  631. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/nested.py +0 -0
  632. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/noise_scheduler.py +0 -0
  633. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/num_nodes.py +0 -0
  634. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/ppr.py +0 -0
  635. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/random.py +0 -0
  636. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/repeat.py +0 -0
  637. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/utils/undirected.py +0 -0
  638. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/visualization/__init__.py +0 -0
  639. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/visualization/influence.py +0 -0
  640. {pyg_nightly-2.6.0.dev20240406 → pyg_nightly-2.7.0.dev20250114}/torch_geometric/warnings.py +0 -0
@@ -1,15 +1,14 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.6.0.dev20240406
3
+ Version: 2.7.0.dev20250114
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
7
- Requires-Python: >=3.8
7
+ Requires-Python: >=3.9
8
8
  Description-Content-Type: text/markdown
9
9
  Classifier: Development Status :: 5 - Production/Stable
10
10
  Classifier: License :: OSI Approved :: MIT License
11
11
  Classifier: Programming Language :: Python
12
- Classifier: Programming Language :: Python :: 3.8
13
12
  Classifier: Programming Language :: Python :: 3.9
14
13
  Classifier: Programming Language :: Python :: 3.10
15
14
  Classifier: Programming Language :: Python :: 3.11
@@ -22,8 +21,6 @@ Requires-Dist: numpy
22
21
  Requires-Dist: psutil>=5.8.0
23
22
  Requires-Dist: pyparsing
24
23
  Requires-Dist: requests
25
- Requires-Dist: scikit-learn
26
- Requires-Dist: scipy
27
24
  Requires-Dist: tqdm
28
25
  Requires-Dist: matplotlib ; extra == "benchmark"
29
26
  Requires-Dist: networkx ; extra == "benchmark"
@@ -34,13 +31,15 @@ Requires-Dist: ipython ; extra == "dev"
34
31
  Requires-Dist: matplotlib-inline ; extra == "dev"
35
32
  Requires-Dist: pre-commit ; extra == "dev"
36
33
  Requires-Dist: torch_geometric[test] ; extra == "dev"
34
+ Requires-Dist: scipy ; extra == "full"
35
+ Requires-Dist: scikit-learn ; extra == "full"
37
36
  Requires-Dist: ase ; extra == "full"
38
37
  Requires-Dist: captum<0.7.0 ; extra == "full"
39
38
  Requires-Dist: graphviz ; extra == "full"
40
39
  Requires-Dist: h5py ; extra == "full"
41
40
  Requires-Dist: matplotlib ; extra == "full"
42
41
  Requires-Dist: networkx ; extra == "full"
43
- Requires-Dist: numba ; extra == "full"
42
+ Requires-Dist: numba<0.60.0 ; extra == "full"
44
43
  Requires-Dist: opt_einsum ; extra == "full"
45
44
  Requires-Dist: pandas ; extra == "full"
46
45
  Requires-Dist: pgmpy ; extra == "full"
@@ -56,7 +55,7 @@ Requires-Dist: torch_geometric[graphgym, modelhub] ; extra == "full"
56
55
  Requires-Dist: torchmetrics ; extra == "full"
57
56
  Requires-Dist: trimesh ; extra == "full"
58
57
  Requires-Dist: protobuf<4.21 ; extra == "graphgym"
59
- Requires-Dist: pytorch-lightning ; extra == "graphgym"
58
+ Requires-Dist: pytorch-lightning<2.3.0 ; extra == "graphgym"
60
59
  Requires-Dist: yacs ; extra == "graphgym"
61
60
  Requires-Dist: huggingface_hub ; extra == "modelhub"
62
61
  Requires-Dist: onnx ; extra == "test"
@@ -92,7 +91,7 @@ ______________________________________________________________________
92
91
  **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
93
92
 
94
93
  It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers.
95
- In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
94
+ In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
96
95
 
97
96
  **[Click here to join our Slack community!][slack-url]**
98
97
 
@@ -123,7 +122,6 @@ Whether you are a machine learning researcher or first-time user of machine lear
123
122
  Making modifications to existing models or creating new architectures is simple, thanks to its easy-to-use message passing API, and a variety of operators and utility functions.
124
123
  - **Large-scale real-world GNN models**:
125
124
  We focus on the need of GNN applications in challenging real-world scenarios, and support learning on diverse types of graphs, including but not limited to: scalable GNNs for graphs with millions of nodes; dynamic GNNs for node predictions over time; heterogeneous GNNs with multiple node types and edge types.
126
- - **GraphGym integration**: GraphGym lets users easily reproduce GNN experiments, is able to launch and analyze thousands of different GNN configurations, and is customizable by registering new modules to a GNN learning pipeline.
127
125
 
128
126
  ## Quick Tour for New Users
129
127
 
@@ -186,7 +184,7 @@ More information about evaluating final model performance can be found in the co
186
184
  In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
187
185
  For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
188
186
 
189
- $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( \[ ~ x_i, ~ x_j - x_i ~ \] \\right)$$
187
+ $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
190
188
 
191
189
  ```python
192
190
  import torch
@@ -215,20 +213,6 @@ class EdgeConv(MessagePassing):
215
213
  return self.mlp(edge_features) # shape [num_edges, out_channels]
216
214
  ```
217
215
 
218
- ### Manage experiments with GraphGym
219
-
220
- GraphGym allows you to manage and launch GNN experiments, using a highly modularized pipeline (see [here](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) for the accompanying tutorial).
221
-
222
- ```
223
- git clone https://github.com/pyg-team/pytorch_geometric.git
224
- cd pytorch_geometric/graphgym
225
- bash run_single.sh # run a single GNN experiment (node/edge/graph-level)
226
- bash run_batch.sh # run a batch of GNN experiments, using differnt GNN designs/datasets/tasks
227
- ```
228
-
229
- Users are highly encouraged to check out the [documentation](https://pytorch-geometric.readthedocs.io/en/latest), which contains additional tutorials on the essential functionalities of PyG, including data handling, creation of datasets and a full list of implemented methods, transforms, and datasets.
230
- For a quick start, check out our [examples](https://github.com/pyg-team/pytorch_geometric/tree/master/examples) in `examples/`.
231
-
232
216
  ## Architecture Overview
233
217
 
234
218
  PyG provides a multi-layer framework that enables users to build Graph Neural Network solutions on both low and high levels.
@@ -267,7 +251,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
267
251
  - **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
268
252
  - **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
269
253
  - **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
270
- - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
254
+ - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
271
255
  - **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
272
256
  - **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
273
257
  - **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
@@ -410,7 +394,7 @@ Such application is challenging since the entire graph, its associated features
410
394
  Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
411
395
  These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
412
396
 
413
- - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_gat.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
397
+ - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
414
398
  - **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
415
399
  - **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
416
400
 
@@ -425,7 +409,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
425
409
 
426
410
  ## Installation
427
411
 
428
- PyG is available for Python 3.8 to Python 3.12.
412
+ PyG is available for Python 3.9 to Python 3.12.
429
413
 
430
414
  ### Anaconda
431
415
 
@@ -462,39 +446,39 @@ We recommend to start with a minimal installation, and install additional depend
462
446
 
463
447
  For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
464
448
 
465
- #### PyTorch 2.2
449
+ #### PyTorch 2.5
466
450
 
467
- To install the binaries for PyTorch 2.2.0, simply run
451
+ To install the binaries for PyTorch 2.5.0, simply run
468
452
 
469
453
  ```
470
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.2.0+${CUDA}.html
454
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
471
455
  ```
472
456
 
473
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
457
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
474
458
 
475
- | | `cpu` | `cu118` | `cu121` |
476
- | ----------- | ----- | ------- | ------- |
477
- | **Linux** | ✅ | ✅ | ✅ |
478
- | **Windows** | ✅ | ✅ | ✅ |
479
- | **macOS** | ✅ | | |
459
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
460
+ | ----------- | ----- | ------- | ------- | ------- |
461
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
462
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
463
+ | **macOS** | ✅ | | | |
480
464
 
481
- #### PyTorch 2.1
465
+ #### PyTorch 2.4
482
466
 
483
- To install the binaries for PyTorch 2.1.0, simply run
467
+ To install the binaries for PyTorch 2.4.0, simply run
484
468
 
485
469
  ```
486
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+${CUDA}.html
470
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+${CUDA}.html
487
471
  ```
488
472
 
489
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
473
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
490
474
 
491
- | | `cpu` | `cu118` | `cu121` |
492
- | ----------- | ----- | ------- | ------- |
493
- | **Linux** | ✅ | ✅ | ✅ |
494
- | **Windows** | ✅ | ✅ | ✅ |
495
- | **macOS** | ✅ | | |
475
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
476
+ | ----------- | ----- | ------- | ------- | ------- |
477
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
478
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
479
+ | **macOS** | ✅ | | | |
496
480
 
497
- **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, and PyTorch 2.0.0 (following the same procedure).
481
+ **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, and PyTorch 2.3.0/2.3.1 (following the same procedure).
498
482
  **For older versions, you might need to explicitly specify the latest supported version number** or install via `pip install --no-index` in order to prevent a manual installation from source.
499
483
  You can look up the latest supported version number [here](https://data.pyg.org/whl).
500
484
 
@@ -16,7 +16,7 @@ ______________________________________________________________________
16
16
  **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
17
17
 
18
18
  It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers.
19
- In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
19
+ In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
20
20
 
21
21
  **[Click here to join our Slack community!][slack-url]**
22
22
 
@@ -47,7 +47,6 @@ Whether you are a machine learning researcher or first-time user of machine lear
47
47
  Making modifications to existing models or creating new architectures is simple, thanks to its easy-to-use message passing API, and a variety of operators and utility functions.
48
48
  - **Large-scale real-world GNN models**:
49
49
  We focus on the need of GNN applications in challenging real-world scenarios, and support learning on diverse types of graphs, including but not limited to: scalable GNNs for graphs with millions of nodes; dynamic GNNs for node predictions over time; heterogeneous GNNs with multiple node types and edge types.
50
- - **GraphGym integration**: GraphGym lets users easily reproduce GNN experiments, is able to launch and analyze thousands of different GNN configurations, and is customizable by registering new modules to a GNN learning pipeline.
51
50
 
52
51
  ## Quick Tour for New Users
53
52
 
@@ -110,7 +109,7 @@ More information about evaluating final model performance can be found in the co
110
109
  In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
111
110
  For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
112
111
 
113
- $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( \[ ~ x_i, ~ x_j - x_i ~ \] \\right)$$
112
+ $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
114
113
 
115
114
  ```python
116
115
  import torch
@@ -139,20 +138,6 @@ class EdgeConv(MessagePassing):
139
138
  return self.mlp(edge_features) # shape [num_edges, out_channels]
140
139
  ```
141
140
 
142
- ### Manage experiments with GraphGym
143
-
144
- GraphGym allows you to manage and launch GNN experiments, using a highly modularized pipeline (see [here](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) for the accompanying tutorial).
145
-
146
- ```
147
- git clone https://github.com/pyg-team/pytorch_geometric.git
148
- cd pytorch_geometric/graphgym
149
- bash run_single.sh # run a single GNN experiment (node/edge/graph-level)
150
- bash run_batch.sh # run a batch of GNN experiments, using differnt GNN designs/datasets/tasks
151
- ```
152
-
153
- Users are highly encouraged to check out the [documentation](https://pytorch-geometric.readthedocs.io/en/latest), which contains additional tutorials on the essential functionalities of PyG, including data handling, creation of datasets and a full list of implemented methods, transforms, and datasets.
154
- For a quick start, check out our [examples](https://github.com/pyg-team/pytorch_geometric/tree/master/examples) in `examples/`.
155
-
156
141
  ## Architecture Overview
157
142
 
158
143
  PyG provides a multi-layer framework that enables users to build Graph Neural Network solutions on both low and high levels.
@@ -191,7 +176,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
191
176
  - **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
192
177
  - **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
193
178
  - **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
194
- - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
179
+ - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
195
180
  - **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
196
181
  - **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
197
182
  - **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
@@ -334,7 +319,7 @@ Such application is challenging since the entire graph, its associated features
334
319
  Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
335
320
  These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
336
321
 
337
- - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_gat.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
322
+ - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
338
323
  - **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
339
324
  - **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
340
325
 
@@ -349,7 +334,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
349
334
 
350
335
  ## Installation
351
336
 
352
- PyG is available for Python 3.8 to Python 3.12.
337
+ PyG is available for Python 3.9 to Python 3.12.
353
338
 
354
339
  ### Anaconda
355
340
 
@@ -386,39 +371,39 @@ We recommend to start with a minimal installation, and install additional depend
386
371
 
387
372
  For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
388
373
 
389
- #### PyTorch 2.2
374
+ #### PyTorch 2.5
390
375
 
391
- To install the binaries for PyTorch 2.2.0, simply run
376
+ To install the binaries for PyTorch 2.5.0, simply run
392
377
 
393
378
  ```
394
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.2.0+${CUDA}.html
379
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
395
380
  ```
396
381
 
397
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
382
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
398
383
 
399
- | | `cpu` | `cu118` | `cu121` |
400
- | ----------- | ----- | ------- | ------- |
401
- | **Linux** | ✅ | ✅ | ✅ |
402
- | **Windows** | ✅ | ✅ | ✅ |
403
- | **macOS** | ✅ | | |
384
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
385
+ | ----------- | ----- | ------- | ------- | ------- |
386
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
387
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
388
+ | **macOS** | ✅ | | | |
404
389
 
405
- #### PyTorch 2.1
390
+ #### PyTorch 2.4
406
391
 
407
- To install the binaries for PyTorch 2.1.0, simply run
392
+ To install the binaries for PyTorch 2.4.0, simply run
408
393
 
409
394
  ```
410
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+${CUDA}.html
395
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+${CUDA}.html
411
396
  ```
412
397
 
413
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
398
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
414
399
 
415
- | | `cpu` | `cu118` | `cu121` |
416
- | ----------- | ----- | ------- | ------- |
417
- | **Linux** | ✅ | ✅ | ✅ |
418
- | **Windows** | ✅ | ✅ | ✅ |
419
- | **macOS** | ✅ | | |
400
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
401
+ | ----------- | ----- | ------- | ------- | ------- |
402
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
403
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
404
+ | **macOS** | ✅ | | | |
420
405
 
421
- **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, and PyTorch 2.0.0 (following the same procedure).
406
+ **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, and PyTorch 2.3.0/2.3.1 (following the same procedure).
422
407
  **For older versions, you might need to explicitly specify the latest supported version number** or install via `pip install --no-index` in order to prevent a manual installation from source.
423
408
  You can look up the latest supported version number [here](https://data.pyg.org/whl).
424
409
 
@@ -4,13 +4,13 @@ build-backend="flit_core.buildapi"
4
4
 
5
5
  [project]
6
6
  name="pyg-nightly"
7
- version="2.6.0.dev20240406"
7
+ version="2.7.0.dev20250114"
8
8
  authors=[
9
9
  {name="Matthias Fey", email="matthias@pyg.org"},
10
10
  ]
11
11
  description="Graph Neural Network Library for PyTorch"
12
12
  readme="README.md"
13
- requires-python=">=3.8"
13
+ requires-python=">=3.9"
14
14
  keywords=[
15
15
  "deep-learning",
16
16
  "pytorch",
@@ -22,7 +22,6 @@ classifiers=[
22
22
  "Development Status :: 5 - Production/Stable",
23
23
  "License :: OSI Approved :: MIT License",
24
24
  "Programming Language :: Python",
25
- "Programming Language :: Python :: 3.8",
26
25
  "Programming Language :: Python :: 3.9",
27
26
  "Programming Language :: Python :: 3.10",
28
27
  "Programming Language :: Python :: 3.11",
@@ -37,15 +36,13 @@ dependencies=[
37
36
  "psutil>=5.8.0",
38
37
  "pyparsing",
39
38
  "requests",
40
- "scikit-learn",
41
- "scipy",
42
39
  "tqdm",
43
40
  ]
44
41
 
45
42
  [project.optional-dependencies]
46
43
  graphgym=[
47
44
  "protobuf<4.21",
48
- "pytorch-lightning",
45
+ "pytorch-lightning<2.3.0",
49
46
  "yacs",
50
47
  ]
51
48
  modelhub=[
@@ -71,13 +68,15 @@ dev=[
71
68
  "torch_geometric[test]",
72
69
  ]
73
70
  full = [
71
+ "scipy",
72
+ "scikit-learn",
74
73
  "ase",
75
74
  "captum<0.7.0",
76
75
  "graphviz",
77
76
  "h5py",
78
77
  "matplotlib",
79
78
  "networkx",
80
- "numba",
79
+ "numba<0.60.0",
81
80
  "opt_einsum",
82
81
  "pandas",
83
82
  "pgmpy",
@@ -140,6 +139,12 @@ include_trailing_comma = true
140
139
  skip = [".gitignore", "__init__.py"]
141
140
 
142
141
  [tool.ruff] # https://docs.astral.sh/ruff/rules
142
+ src = ["torch_geometric"]
143
+ line-length = 80
144
+ indent-width = 4
145
+ target-version = "py39"
146
+
147
+ [tool.ruff.lint]
143
148
  select = [
144
149
  "D", # pydocstyle
145
150
  ]
@@ -153,10 +158,9 @@ ignore = [
153
158
  "D107", # Ignore "Missing docstring in __init__"
154
159
  "D205", # Ignore "blank line required between summary line and description"
155
160
  ]
156
- src = ["torch_geometric"]
157
- line-length = 80
158
- indent-width = 4
159
- target-version = "py38"
161
+
162
+ [tool.ruff.format]
163
+ quote-style = "single"
160
164
 
161
165
  [tool.ruff.lint.pydocstyle]
162
166
  convention = "google"
@@ -203,3 +207,6 @@ exclude_lines = [
203
207
  "register_parameter",
204
208
  "torch.cuda.is_available",
205
209
  ]
210
+
211
+ [tool.setuptools]
212
+ py-modules = []
@@ -1,7 +1,15 @@
1
+ from collections import defaultdict
2
+
3
+ import torch
4
+ import torch_geometric.typing
5
+
1
6
  from ._compile import compile, is_compiling
7
+ from ._onnx import is_in_onnx_export
8
+ from .index import Index
2
9
  from .edge_index import EdgeIndex
3
10
  from .seed import seed_everything
4
11
  from .home import get_home_dir, set_home_dir
12
+ from .device import is_mps_available, is_xpu_available, device
5
13
  from .isinstance import is_torch_instance
6
14
  from .debug import is_debug_enabled, debug, set_debug
7
15
 
@@ -22,15 +30,20 @@ from .lazy_loader import LazyLoader
22
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
23
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
24
32
 
25
- __version__ = '2.6.0.dev20240406'
33
+ __version__ = '2.7.0.dev20250114'
26
34
 
27
35
  __all__ = [
36
+ 'Index',
28
37
  'EdgeIndex',
29
38
  'seed_everything',
30
39
  'get_home_dir',
31
40
  'set_home_dir',
32
41
  'compile',
33
42
  'is_compiling',
43
+ 'is_in_onnx_export',
44
+ 'is_mps_available',
45
+ 'is_xpu_available',
46
+ 'device',
34
47
  'is_torch_instance',
35
48
  'is_debug_enabled',
36
49
  'debug',
@@ -41,3 +54,17 @@ __all__ = [
41
54
  'torch_geometric',
42
55
  '__version__',
43
56
  ]
57
+
58
+ # Serialization ###############################################################
59
+
60
+ if torch_geometric.typing.WITH_PT24:
61
+ torch.serialization.add_safe_globals([
62
+ dict,
63
+ list,
64
+ defaultdict,
65
+ Index,
66
+ torch_geometric.index.CatMetadata,
67
+ EdgeIndex,
68
+ torch_geometric.edge_index.SortOrder,
69
+ torch_geometric.edge_index.CatMetadata,
70
+ ])
@@ -10,6 +10,8 @@ def is_compiling() -> bool:
10
10
  r"""Returns :obj:`True` in case :pytorch:`PyTorch` is compiling via
11
11
  :meth:`torch.compile`.
12
12
  """
13
+ if torch_geometric.typing.WITH_PT23:
14
+ return torch.compiler.is_compiling()
13
15
  if torch_geometric.typing.WITH_PT21:
14
16
  return torch._dynamo.is_compiling()
15
17
  return False # pragma: no cover
@@ -25,10 +27,15 @@ def compile(
25
27
  This function has the same signature as :meth:`torch.compile` (see
26
28
  `here <https://pytorch.org/docs/stable/generated/torch.compile.html>`__).
27
29
 
30
+ Args:
31
+ model: The model to compile.
32
+ *args: Additional arguments of :meth:`torch.compile`.
33
+ **kwargs: Additional keyword arguments of :meth:`torch.compile`.
34
+
28
35
  .. note::
29
36
  :meth:`torch_geometric.compile` is deprecated in favor of
30
37
  :meth:`torch.compile`.
31
38
  """
32
39
  warnings.warn("'torch_geometric.compile' is deprecated in favor of "
33
40
  "'torch.compile'")
34
- return torch.compile(model, *args, **kwargs)
41
+ return torch.compile(model, *args, **kwargs) # type: ignore
@@ -0,0 +1,14 @@
1
+ import torch
2
+
3
+ from torch_geometric import is_compiling
4
+
5
+
6
+ def is_in_onnx_export() -> bool:
7
+ r"""Returns :obj:`True` in case :pytorch:`PyTorch` is exporting to ONNX via
8
+ :meth:`torch.onnx.export`.
9
+ """
10
+ if is_compiling():
11
+ return False
12
+ if torch.jit.is_scripting():
13
+ return False
14
+ return torch.onnx.is_in_onnx_export()
@@ -0,0 +1,113 @@
1
+ import inspect
2
+ from dataclasses import fields, is_dataclass
3
+ from importlib import import_module
4
+ from typing import Any, Dict
5
+
6
+ from torch_geometric.config_store import (
7
+ class_from_dataclass,
8
+ dataclass_from_class,
9
+ )
10
+ from torch_geometric.isinstance import is_torch_instance
11
+
12
+
13
+ class ConfigMixin:
14
+ r"""Enables a class to serialize/deserialize itself to a dataclass."""
15
+ def config(self) -> Any:
16
+ r"""Creates a serializable configuration of the class."""
17
+ data_cls = dataclass_from_class(self.__class__)
18
+ if data_cls is None:
19
+ raise ValueError(f"Could not find the configuration class that "
20
+ f"belongs to '{self.__class__.__name__}'. Please "
21
+ f"register it in the configuration store.")
22
+
23
+ kwargs: Dict[str, Any] = {}
24
+ for field in fields(data_cls):
25
+ if not hasattr(self, field.name):
26
+ continue
27
+ kwargs[field.name] = _recursive_config(getattr(self, field.name))
28
+ return data_cls(**kwargs)
29
+
30
+ @classmethod
31
+ def from_config(cls, cfg: Any, *args: Any, **kwargs: Any) -> Any:
32
+ r"""Instantiates the class from a serializable configuration."""
33
+ if getattr(cfg, '_target_', None):
34
+ cls = _locate_cls(cfg._target_)
35
+ elif isinstance(cfg, dict) and '_target_' in cfg:
36
+ cls = _locate_cls(cfg['_target_'])
37
+
38
+ data_cls = cfg.__class__
39
+ if not is_dataclass(data_cls):
40
+ data_cls = dataclass_from_class(cls)
41
+ if data_cls is None:
42
+ raise ValueError(f"Could not find the configuration class "
43
+ f"that belongs to '{cls.__name__}'. Please "
44
+ f"register it in the configuration store.")
45
+
46
+ field_names = {field.name for field in fields(data_cls)}
47
+ if isinstance(cfg, dict):
48
+ _kwargs = {k: v for k, v in cfg.items() if k in field_names}
49
+ cfg = data_cls(**_kwargs)
50
+ assert is_dataclass(cfg)
51
+
52
+ if len(args) > 0: # Convert `*args` to `**kwargs`:
53
+ param_names = list(inspect.signature(cls).parameters.keys())
54
+ if 'args' in param_names:
55
+ param_names.remove('args')
56
+ if 'kwargs' in param_names:
57
+ param_names.remove('kwargs')
58
+
59
+ for name, arg in zip(param_names, args):
60
+ kwargs[name] = arg
61
+
62
+ for key in field_names:
63
+ if key not in kwargs and key != '_target_':
64
+ kwargs[key] = _recursive_from_config(getattr(cfg, key))
65
+
66
+ return cls(**kwargs)
67
+
68
+
69
+ def _recursive_config(value: Any) -> Any:
70
+ if isinstance(value, ConfigMixin):
71
+ return value.config()
72
+ if is_torch_instance(value, ConfigMixin):
73
+ return value.config()
74
+ if isinstance(value, (tuple, list)):
75
+ return [_recursive_config(v) for v in value]
76
+ if isinstance(value, dict):
77
+ return {k: _recursive_config(v) for k, v in value.items()}
78
+ return value
79
+
80
+
81
+ def _recursive_from_config(value: Any) -> Any:
82
+ cls: Any = None
83
+ if is_dataclass(value):
84
+ if getattr(value, '_target_', None):
85
+ try:
86
+ cls = _locate_cls(value._target_) # type: ignore
87
+ except ImportError:
88
+ pass # Keep the dataclass as it is.
89
+ else:
90
+ cls = class_from_dataclass(value.__class__)
91
+ elif isinstance(value, dict) and '_target_' in value:
92
+ cls = _locate_cls(value['_target_'])
93
+
94
+ if cls is not None and issubclass(cls, ConfigMixin):
95
+ return cls.from_config(value)
96
+ if isinstance(value, (tuple, list)):
97
+ return [_recursive_from_config(v) for v in value]
98
+ if isinstance(value, dict):
99
+ return {k: _recursive_from_config(v) for k, v in value.items()}
100
+ return value
101
+
102
+
103
+ def _locate_cls(qualname: str) -> Any:
104
+ parts = qualname.split('.')
105
+
106
+ if len(parts) <= 1:
107
+ raise ValueError(f"Qualified name is missing a dot (got '{qualname}')")
108
+
109
+ if any([len(part) == 0 for part in parts]):
110
+ raise ValueError(f"Relative imports not supported (got '{qualname}')")
111
+
112
+ module_name, cls_name = '.'.join(parts[:-1]), parts[-1]
113
+ return getattr(import_module(module_name), cls_name)