pyerualjetwork 5.25__tar.gz → 5.27__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/PKG-INFO +1 -1
  2. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/__init__.py +1 -1
  3. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/activation_functions_cuda.py +11 -5
  4. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/ene_cpu.py +0 -14
  5. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/ene_cuda.py +0 -14
  6. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/neu_cpu.py +1 -1
  7. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/neu_cuda.py +1 -1
  8. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork.egg-info/PKG-INFO +1 -1
  9. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/setup.py +1 -1
  10. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/README.md +0 -0
  11. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/activation_functions_cpu.py +0 -0
  12. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/data_operations_cpu.py +0 -0
  13. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/data_operations_cuda.py +0 -0
  14. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/fitness_functions.py +0 -0
  15. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/help.py +0 -0
  16. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/issue_solver.py +0 -0
  17. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/loss_functions_cpu.py +0 -0
  18. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/loss_functions_cuda.py +0 -0
  19. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/memory_operations.py +0 -0
  20. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/metrics_cpu.py +0 -0
  21. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/metrics_cuda.py +0 -0
  22. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/model_operations_cpu.py +0 -0
  23. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/model_operations_cuda.py +0 -0
  24. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/ui.py +0 -0
  25. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/visualizations_cpu.py +0 -0
  26. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork/visualizations_cuda.py +0 -0
  27. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  28. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  29. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/pyerualjetwork.egg-info/top_level.txt +0 -0
  30. {pyerualjetwork-5.25 → pyerualjetwork-5.27}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.25
3
+ Version: 5.27
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.25"
45
+ __version__ = "5.27"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -202,13 +202,19 @@ def apply_activation(Input, activation_list):
202
202
 
203
203
  try:
204
204
 
205
- valid_mask = cp.array([act in activation_functions for act in activation_list])
206
- valid_activations = np.array(activation_list)[valid_mask.get()]
205
+ if isinstance(activation_list, str):
206
+ activation_list = [activation_list]
207
207
 
208
- activation_outputs = cp.array([activation_functions[act](origin_input) for act in valid_activations])
208
+ activation_list = [str(act).lower() for act in activation_list]
209
209
 
210
- return cp.sum(activation_outputs, axis=0)
211
-
210
+ valid_activations = [act for act in activation_list if act in activation_functions]
211
+
212
+ result = origin_input
213
+ for act in valid_activations:
214
+ result = activation_functions[act](result)
215
+
216
+ return result
217
+
212
218
  except Exception as e:
213
219
  warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
214
220
  return Input
@@ -97,13 +97,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
97
97
  if l != hidden:
98
98
  population_activations[i][l] = activation_functions[l]
99
99
 
100
- # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
101
-
102
- for j in range(population_weights[i][l].shape[0]):
103
-
104
- population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
105
- population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
106
-
107
100
  return population_weights, population_activations
108
101
 
109
102
  else:
@@ -118,13 +111,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
118
111
  population_weights[i] = np.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype)
119
112
  population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
120
113
 
121
- # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
122
-
123
- for j in range(population_weights[i].shape[0]):
124
-
125
- population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
126
- population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
127
-
128
114
  return np.array(population_weights, dtype=dtype), population_activations
129
115
 
130
116
 
@@ -98,13 +98,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
98
98
  if l != hidden:
99
99
  population_activations[i][l] = activation_functions[l]
100
100
 
101
- # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
102
-
103
- for j in range(population_weights[i][l].shape[0]):
104
-
105
- population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
106
- population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
107
-
108
101
  return population_weights, population_activations
109
102
 
110
103
  else:
@@ -119,13 +112,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
119
112
  population_weights[i] = cp.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype, copy=False)
120
113
  population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
121
114
 
122
- # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
123
-
124
- for j in range(population_weights[i].shape[0]):
125
-
126
- population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
127
- population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
128
-
129
115
  return cp.array(population_weights, dtype=dtype), population_activations
130
116
 
131
117
  def evolver(weights,
@@ -250,7 +250,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
250
250
  loss_list = []
251
251
  target_pop = []
252
252
 
253
- progress = initialize_loading_bar(total=activations_len, desc="", ncols=77, bar_format=bar_format_learner)
253
+ progress = initialize_loading_bar(total=pop_size, desc="", ncols=77, bar_format=bar_format_learner)
254
254
 
255
255
  if fit_start is False:
256
256
  weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
@@ -259,7 +259,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
259
259
  loss_list = []
260
260
  target_pop = []
261
261
 
262
- progress = initialize_loading_bar(total=activations_len, desc="", ncols=79, bar_format=bar_format_learner)
262
+ progress = initialize_loading_bar(total=pop_size, desc="", ncols=79, bar_format=bar_format_learner)
263
263
 
264
264
  if fit_start is False:
265
265
  weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.25
3
+ Version: 5.27
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="5.25",
9
+ version="5.27",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(
File without changes
File without changes