pyerualjetwork 4.6.2__tar.gz → 4.6.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/PKG-INFO +1 -1
  2. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/__init__.py +1 -1
  3. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/model_operations.py +2 -2
  4. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/model_operations_cuda.py +2 -2
  5. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/planeat.py +1 -1
  6. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/planeat_cuda.py +1 -1
  7. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork.egg-info/PKG-INFO +1 -1
  8. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/setup.py +1 -1
  9. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/README.md +0 -0
  10. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/activation_functions.py +0 -0
  11. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/activation_functions_cuda.py +0 -0
  12. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/data_operations.py +0 -0
  13. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/data_operations_cuda.py +0 -0
  14. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/fitness_functions.py +0 -0
  15. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/help.py +0 -0
  16. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/loss_functions.py +0 -0
  17. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/loss_functions_cuda.py +0 -0
  18. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/memory_operations.py +0 -0
  19. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/metrics.py +0 -0
  20. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/metrics_cuda.py +0 -0
  21. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/plan.py +0 -0
  22. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/plan_cuda.py +0 -0
  23. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/ui.py +0 -0
  24. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/visualizations.py +0 -0
  25. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork/visualizations_cuda.py +0 -0
  26. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  27. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  28. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/pyerualjetwork.egg-info/top_level.txt +0 -0
  29. {pyerualjetwork-4.6.2 → pyerualjetwork-4.6.3}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.6.2
3
+ Version: 4.6.3
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- __version__ = "4.6.2"
1
+ __version__ = "4.6.3"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -326,7 +326,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
326
326
 
327
327
  layer = Input
328
328
  for i in range(len(W)):
329
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
329
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
330
330
  layer = layer @ W[i].T
331
331
 
332
332
  return layer
@@ -405,7 +405,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
405
405
 
406
406
  layer = Input
407
407
  for i in range(len(W)):
408
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
408
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
409
409
  layer = layer @ W[i].T
410
410
 
411
411
  return layer
@@ -336,7 +336,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=cp.float32):
336
336
 
337
337
  layer = Input
338
338
  for i in range(len(W)):
339
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
339
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
340
340
  layer = layer @ W[i].T
341
341
 
342
342
  return layer
@@ -417,7 +417,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
417
417
 
418
418
  layer = Input
419
419
  for i in range(len(W)):
420
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
420
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
421
421
  layer = layer @ W[i].T
422
422
 
423
423
  return layer
@@ -517,7 +517,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
517
517
  if is_mlp:
518
518
  layer = Input
519
519
  for i in range(len(weights)):
520
- if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
520
+ if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
521
521
  layer = layer @ weights[i].T
522
522
 
523
523
  return layer
@@ -519,7 +519,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
519
519
 
520
520
  layer = Input
521
521
  for i in range(len(weights)):
522
- if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
522
+ if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
523
523
  layer = layer @ weights[i].T
524
524
 
525
525
  return layer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.6.2
3
+ Version: 4.6.3
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="4.6.2",
9
+ version="4.6.3",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(
File without changes
File without changes