pyerualjetwork 4.3.9b0__tar.gz → 4.3.9b1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/PKG-INFO +1 -1
  2. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/__init__.py +1 -1
  3. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/plan.py +2 -0
  4. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/plan_cuda.py +4 -2
  5. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork.egg-info/PKG-INFO +1 -1
  6. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/setup.py +1 -1
  7. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/README.md +0 -0
  8. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/activation_functions.py +0 -0
  9. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/activation_functions_cuda.py +0 -0
  10. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/data_operations.py +0 -0
  11. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/data_operations_cuda.py +0 -0
  12. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/help.py +0 -0
  13. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/loss_functions.py +0 -0
  14. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/loss_functions_cuda.py +0 -0
  15. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/memory_operations.py +0 -0
  16. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/metrics.py +0 -0
  17. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/metrics_cuda.py +0 -0
  18. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/model_operations.py +0 -0
  19. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/model_operations_cuda.py +0 -0
  20. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/planeat.py +0 -0
  21. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/planeat_cuda.py +0 -0
  22. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/ui.py +0 -0
  23. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/visualizations.py +0 -0
  24. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork/visualizations_cuda.py +0 -0
  25. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  26. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  27. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/pyerualjetwork.egg-info/top_level.txt +0 -0
  28. {pyerualjetwork-4.3.9b0 → pyerualjetwork-4.3.9b1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.9b0
3
+ Version: 4.3.9b1
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.9b0"
1
+ __version__ = "4.3.9b1"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -136,6 +136,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
136
136
 
137
137
  show_history (bool, optional): If True, displays the training history after optimization. Default is False.
138
138
 
139
+ normalization (bool, optional): Normalization may solves overflow problem. Default: False
140
+
139
141
  loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
140
142
 
141
143
  interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
@@ -83,7 +83,7 @@ def fit(
83
83
 
84
84
 
85
85
  def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
86
- neural_web_history=False, show_current_activations=False,
86
+ neural_web_history=False, show_current_activations=False, normalization=False,
87
87
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
88
88
  interval=33.33, target_acc=None, target_loss=None,
89
89
  start_this_act=None, start_this_W=None, dtype=cp.float32, memory='gpu'):
@@ -136,6 +136,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
136
136
 
137
137
  loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
138
138
 
139
+ normalization (bool, optional): Normalization may solves overflow problem. Default: False
140
+
139
141
  interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
140
142
 
141
143
  target_acc (int, optional): The target accuracy to stop training early when achieved. Default is None.
@@ -240,7 +242,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
240
242
 
241
243
  if fit_start is True and i == 0 and j < activation_potentiation_len:
242
244
  act_pop[j] = activation_potentiation[j]
243
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
245
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], normalization=normalization, dtype=dtype)
244
246
  weight_pop[j] = W
245
247
 
246
248
  model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.9b0
3
+ Version: 4.3.9b1
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="4.3.9b0",
9
+ version="4.3.9b1",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(