pyerualjetwork 4.3.4__tar.gz → 4.3.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/PKG-INFO +30 -29
  2. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/README.md +29 -28
  3. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/__init__.py +1 -1
  4. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/plan.py +1 -1
  5. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/plan_cuda.py +3 -3
  6. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork.egg-info/PKG-INFO +30 -29
  7. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/__init__.py +1 -1
  8. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/data_operations_cuda.py +1 -1
  9. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/plan_cuda.py +4 -4
  10. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/setup.py +1 -1
  11. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/activation_functions.py +0 -0
  12. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/activation_functions_cuda.py +0 -0
  13. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/data_operations.py +0 -0
  14. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/data_operations_cuda.py +0 -0
  15. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/help.py +0 -0
  16. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/loss_functions.py +0 -0
  17. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/loss_functions_cuda.py +0 -0
  18. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/memory_operations.py +0 -0
  19. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/metrics.py +0 -0
  20. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/metrics_cuda.py +0 -0
  21. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/model_operations.py +0 -0
  22. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/model_operations_cuda.py +0 -0
  23. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/planeat.py +0 -0
  24. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/planeat_cuda.py +0 -0
  25. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/ui.py +0 -0
  26. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/visualizations.py +0 -0
  27. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork/visualizations_cuda.py +0 -0
  28. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  29. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  30. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork.egg-info/top_level.txt +0 -0
  31. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/activation_functions.py +0 -0
  32. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/activation_functions_cuda.py +0 -0
  33. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/data_operations.py +0 -0
  34. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/help.py +0 -0
  35. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/loss_functions.py +0 -0
  36. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/loss_functions_cuda.py +0 -0
  37. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/memory_operations.py +0 -0
  38. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/metrics.py +0 -0
  39. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/metrics_cuda.py +0 -0
  40. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/model_operations.py +0 -0
  41. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/model_operations_cuda.py +0 -0
  42. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/plan.py +0 -0
  43. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/planeat.py +0 -0
  44. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/planeat_cuda.py +0 -0
  45. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/ui.py +0 -0
  46. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/visualizations.py +0 -0
  47. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/pyerualjetwork_afterburner/visualizations_cuda.py +0 -0
  48. {pyerualjetwork-4.3.4 → pyerualjetwork-4.3.6}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.4
3
+ Version: 4.3.6
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -22,34 +22,35 @@ PyPi Page: https://pypi.org/project/pyerualjetwork/
22
22
 
23
23
  GitHub Page: https://github.com/HCB06/PyerualJetwork
24
24
 
25
-
26
- pip install pyerualjetwork
27
-
28
- 'use this if your data small or memory management is a problem :'
29
-
30
- from pyerualjetwork import plan
31
- from pyerualjetwork import planeat
32
- from pyerualjetwork import data_operations
33
- from pyerualjetwork import model_operations
34
-
35
- from pyerualjetwork import plan_cuda
36
- from pyerualjetwork import planeat_cuda
37
- from pyerualjetwork import data_operations_cuda
38
- from pyerualjetwork import model_operations_cuda
39
-
40
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
41
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
42
- Specially designed for LLM training and other massive model training)'
43
-
44
- from pyerualjetwork_afterburner import plan
45
- from pyerualjetwork_afterburner import planeat
46
- from pyerualjetwork_afterburner import data_operations
47
- from pyerualjetwork_afterburner import model_operations
48
-
49
- from pyerualjetwork_afterburner import plan_cuda
50
- from pyerualjetwork_afterburner import planeat_cuda
51
- from pyerualjetwork_afterburner import data_operations_cuda
52
- from pyerualjetwork_afterburner import model_operations_cuda
25
+ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
+
27
+ pip install pyerualjetwork
28
+
29
+ 'use this if your data small or memory management is a problem :'
30
+
31
+ from pyerualjetwork import plan
32
+ from pyerualjetwork import planeat
33
+ from pyerualjetwork import data_operations
34
+ from pyerualjetwork import model_operations
35
+
36
+ from pyerualjetwork import plan_cuda
37
+ from pyerualjetwork import planeat_cuda
38
+ from pyerualjetwork import data_operations_cuda
39
+ from pyerualjetwork import model_operations_cuda
40
+
41
+ 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
42
+ afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
43
+ Specially designed for LLM training and other massive model training)'
44
+
45
+ from pyerualjetwork_afterburner import plan
46
+ from pyerualjetwork_afterburner import planeat
47
+ from pyerualjetwork_afterburner import data_operations
48
+ from pyerualjetwork_afterburner import model_operations
49
+
50
+ from pyerualjetwork_afterburner import plan_cuda
51
+ from pyerualjetwork_afterburner import planeat_cuda
52
+ from pyerualjetwork_afterburner import data_operations_cuda
53
+ from pyerualjetwork_afterburner import model_operations_cuda
53
54
 
54
55
  Optimized for Visual Studio Code
55
56
 
@@ -13,34 +13,35 @@ PyPi Page: https://pypi.org/project/pyerualjetwork/
13
13
 
14
14
  GitHub Page: https://github.com/HCB06/PyerualJetwork
15
15
 
16
-
17
- pip install pyerualjetwork
18
-
19
- 'use this if your data small or memory management is a problem :'
20
-
21
- from pyerualjetwork import plan
22
- from pyerualjetwork import planeat
23
- from pyerualjetwork import data_operations
24
- from pyerualjetwork import model_operations
25
-
26
- from pyerualjetwork import plan_cuda
27
- from pyerualjetwork import planeat_cuda
28
- from pyerualjetwork import data_operations_cuda
29
- from pyerualjetwork import model_operations_cuda
30
-
31
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
32
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
33
- Specially designed for LLM training and other massive model training)'
34
-
35
- from pyerualjetwork_afterburner import plan
36
- from pyerualjetwork_afterburner import planeat
37
- from pyerualjetwork_afterburner import data_operations
38
- from pyerualjetwork_afterburner import model_operations
39
-
40
- from pyerualjetwork_afterburner import plan_cuda
41
- from pyerualjetwork_afterburner import planeat_cuda
42
- from pyerualjetwork_afterburner import data_operations_cuda
43
- from pyerualjetwork_afterburner import model_operations_cuda
16
+ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
17
+
18
+ pip install pyerualjetwork
19
+
20
+ 'use this if your data small or memory management is a problem :'
21
+
22
+ from pyerualjetwork import plan
23
+ from pyerualjetwork import planeat
24
+ from pyerualjetwork import data_operations
25
+ from pyerualjetwork import model_operations
26
+
27
+ from pyerualjetwork import plan_cuda
28
+ from pyerualjetwork import planeat_cuda
29
+ from pyerualjetwork import data_operations_cuda
30
+ from pyerualjetwork import model_operations_cuda
31
+
32
+ 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
33
+ afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
34
+ Specially designed for LLM training and other massive model training)'
35
+
36
+ from pyerualjetwork_afterburner import plan
37
+ from pyerualjetwork_afterburner import planeat
38
+ from pyerualjetwork_afterburner import data_operations
39
+ from pyerualjetwork_afterburner import model_operations
40
+
41
+ from pyerualjetwork_afterburner import plan_cuda
42
+ from pyerualjetwork_afterburner import planeat_cuda
43
+ from pyerualjetwork_afterburner import data_operations_cuda
44
+ from pyerualjetwork_afterburner import model_operations_cuda
44
45
 
45
46
  Optimized for Visual Studio Code
46
47
 
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.4"
1
+ __version__ = "4.3.6"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -249,7 +249,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
249
249
 
250
250
  """
251
251
 
252
- from planeat import define_genomes
252
+ from .planeat import define_genomes
253
253
 
254
254
  data = 'Train'
255
255
 
@@ -264,7 +264,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
264
264
 
265
265
  """
266
266
 
267
- from planeat_cuda import define_genomes
267
+ from .planeat_cuda import define_genomes
268
268
 
269
269
  data = 'Train'
270
270
 
@@ -277,13 +277,13 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
277
277
  x_train = transfer_to_gpu(x_train, dtype=dtype)
278
278
  y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
279
279
 
280
- from data_operations_cuda import batcher
280
+ from .data_operations_cuda import batcher
281
281
 
282
282
  elif memory == 'cpu':
283
283
  x_train = transfer_to_cpu(x_train, dtype=dtype)
284
284
  y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
285
285
 
286
- from data_operations import batcher
286
+ from .data_operations import batcher
287
287
 
288
288
  else:
289
289
  raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.4
3
+ Version: 4.3.6
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -22,34 +22,35 @@ PyPi Page: https://pypi.org/project/pyerualjetwork/
22
22
 
23
23
  GitHub Page: https://github.com/HCB06/PyerualJetwork
24
24
 
25
-
26
- pip install pyerualjetwork
27
-
28
- 'use this if your data small or memory management is a problem :'
29
-
30
- from pyerualjetwork import plan
31
- from pyerualjetwork import planeat
32
- from pyerualjetwork import data_operations
33
- from pyerualjetwork import model_operations
34
-
35
- from pyerualjetwork import plan_cuda
36
- from pyerualjetwork import planeat_cuda
37
- from pyerualjetwork import data_operations_cuda
38
- from pyerualjetwork import model_operations_cuda
39
-
40
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
41
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
42
- Specially designed for LLM training and other massive model training)'
43
-
44
- from pyerualjetwork_afterburner import plan
45
- from pyerualjetwork_afterburner import planeat
46
- from pyerualjetwork_afterburner import data_operations
47
- from pyerualjetwork_afterburner import model_operations
48
-
49
- from pyerualjetwork_afterburner import plan_cuda
50
- from pyerualjetwork_afterburner import planeat_cuda
51
- from pyerualjetwork_afterburner import data_operations_cuda
52
- from pyerualjetwork_afterburner import model_operations_cuda
25
+ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
+
27
+ pip install pyerualjetwork
28
+
29
+ 'use this if your data small or memory management is a problem :'
30
+
31
+ from pyerualjetwork import plan
32
+ from pyerualjetwork import planeat
33
+ from pyerualjetwork import data_operations
34
+ from pyerualjetwork import model_operations
35
+
36
+ from pyerualjetwork import plan_cuda
37
+ from pyerualjetwork import planeat_cuda
38
+ from pyerualjetwork import data_operations_cuda
39
+ from pyerualjetwork import model_operations_cuda
40
+
41
+ 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
42
+ afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
43
+ Specially designed for LLM training and other massive model training)'
44
+
45
+ from pyerualjetwork_afterburner import plan
46
+ from pyerualjetwork_afterburner import planeat
47
+ from pyerualjetwork_afterburner import data_operations
48
+ from pyerualjetwork_afterburner import model_operations
49
+
50
+ from pyerualjetwork_afterburner import plan_cuda
51
+ from pyerualjetwork_afterburner import planeat_cuda
52
+ from pyerualjetwork_afterburner import data_operations_cuda
53
+ from pyerualjetwork_afterburner import model_operations_cuda
53
54
 
54
55
  Optimized for Visual Studio Code
55
56
 
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.4-afterburner"
1
+ __version__ = "4.3.6-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -17,7 +17,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
17
17
  tuple: One-hot encoded y_train and (if given) y_test.
18
18
  """
19
19
 
20
- from memory_operations import optimize_labels, transfer_to_cpu
20
+ from .memory_operations import optimize_labels, transfer_to_cpu
21
21
 
22
22
  y_train = optimize_labels(y_train, one_hot_encoded=False, cuda=True)
23
23
  y_test = optimize_labels(y_test, one_hot_encoded=False, cuda=True)
@@ -23,7 +23,7 @@ from .data_operations_cuda import normalization
23
23
  from .loss_functions_cuda import binary_crossentropy, categorical_crossentropy
24
24
  from .activation_functions_cuda import apply_activation, all_activations
25
25
  from .metrics_cuda import metrics
26
- from model_operations_cuda import get_acc, get_preds, get_preds_softmax
26
+ from .model_operations_cuda import get_acc, get_preds, get_preds_softmax
27
27
  from .memory_operations import transfer_to_gpu, transfer_to_cpu, optimize_labels
28
28
  from .visualizations_cuda import (
29
29
  draw_neural_web,
@@ -151,7 +151,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
151
151
 
152
152
  """
153
153
 
154
- from planeat_cuda import define_genomes
154
+ from .planeat_cuda import define_genomes
155
155
 
156
156
  data = 'Train'
157
157
 
@@ -165,13 +165,13 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
165
165
  x_train = transfer_to_gpu(x_train, dtype=dtype)
166
166
  y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
167
167
 
168
- from data_operations_cuda import batcher
168
+ from .data_operations_cuda import batcher
169
169
 
170
170
  elif memory == 'cpu':
171
171
  x_train = transfer_to_cpu(x_train, dtype=dtype)
172
172
  y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
173
173
 
174
- from data_operations import batcher
174
+ from .data_operations import batcher
175
175
 
176
176
  else:
177
177
  raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="4.3.4",
9
+ version="4.3.6",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(
File without changes