pyerualjetwork 4.3.13.dev0__tar.gz → 4.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/PKG-INFO +1 -1
  2. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/__init__.py +1 -1
  3. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/plan.py +2 -2
  4. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/plan_cuda.py +2 -2
  5. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork.egg-info/PKG-INFO +1 -1
  6. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/setup.py +1 -1
  7. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/README.md +0 -0
  8. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/activation_functions.py +0 -0
  9. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/activation_functions_cuda.py +0 -0
  10. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/data_operations.py +0 -0
  11. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/data_operations_cuda.py +0 -0
  12. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/fitness_functions.py +0 -0
  13. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/help.py +0 -0
  14. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/loss_functions.py +0 -0
  15. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/loss_functions_cuda.py +0 -0
  16. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/memory_operations.py +0 -0
  17. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/metrics.py +0 -0
  18. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/metrics_cuda.py +0 -0
  19. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/model_operations.py +0 -0
  20. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/model_operations_cuda.py +0 -0
  21. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/planeat.py +0 -0
  22. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/planeat_cuda.py +0 -0
  23. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/ui.py +0 -0
  24. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/visualizations.py +0 -0
  25. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork/visualizations_cuda.py +0 -0
  26. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  27. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  28. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/pyerualjetwork.egg-info/top_level.txt +0 -0
  29. {pyerualjetwork-4.3.13.dev0 → pyerualjetwork-4.4}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.13.dev0
3
+ Version: 4.4
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.13dev0"
1
+ __version__ = "4.4"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -84,7 +84,7 @@ def fit(
84
84
 
85
85
 
86
86
  def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, pop_size=None,
87
- weight_evolve=False, neural_web_history=False, show_current_activations=False, auto_normalization=False,
87
+ weight_evolve=True, neural_web_history=False, show_current_activations=False, auto_normalization=False,
88
88
  neurons_history=False, early_stop=False, show_history=False, target_loss=None,
89
89
  interval=33.33, target_acc=None, loss='categorical_crossentropy', acc_impact=0.9, loss_impact=0.1,
90
90
  start_this_act=None, start_this_W=None, dtype=np.float32):
@@ -120,7 +120,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
120
120
  interval=16.67)
121
121
  ```
122
122
 
123
- weight_evolve (bool, optional): Activation combinations already optimizes by planeat genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: False (PLAN)
123
+ weight_evolve (bool, optional): Activation combinations already optimizes by PLANEAT genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: True (Evolves Weights)
124
124
 
125
125
  loss (str, optional): options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
126
126
 
@@ -83,7 +83,7 @@ def fit(
83
83
 
84
84
 
85
85
  def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, pop_size=None,
86
- weight_evolve=False, neural_web_history=False, show_current_activations=False, auto_normalization=False, target_acc=None,
86
+ weight_evolve=True, neural_web_history=False, show_current_activations=False, auto_normalization=False, target_acc=None,
87
87
  neurons_history=False, early_stop=False, show_history=False, loss='categorical_crossentropy',
88
88
  interval=33.33, target_loss=None, loss_impact=0.1, acc_impact=0.9,
89
89
  start_this_act=None, start_this_W=None, dtype=cp.float32, memory='gpu'):
@@ -119,7 +119,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
119
119
  interval=16.67)
120
120
  ```
121
121
 
122
- weight_evolve (bool, optional): Activation combinations already optimizes by planeat genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: False (PLAN)
122
+ weight_evolve (bool, optional): Activation combinations already optimizes by PLANEAT genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: True (Evolves Weights)
123
123
 
124
124
  loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
125
125
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.13.dev0
3
+ Version: 4.4
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="4.3.13dev0",
9
+ version="4.4",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(