pyerualjetwork 4.1.1__tar.gz → 4.1.2b0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/PKG-INFO +1 -1
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/plan_cuda.py +4 -17
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork.egg-info/PKG-INFO +1 -1
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/setup.py +1 -1
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/README.md +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/activation_functions.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/activation_functions_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/data_operations.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/data_operations_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/help.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/loss_functions.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/loss_functions_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/metrics.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/metrics_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/model_operations.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/model_operations_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/plan.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/planeat.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/planeat_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/ui.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/visualizations.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork/visualizations_cuda.py +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork.egg-info/top_level.txt +0 -0
- {pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.2b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -47,7 +47,7 @@ for package_name in package_names:
|
|
47
47
|
|
48
48
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
49
|
|
50
|
-
__version__ = "4.1.
|
50
|
+
__version__ = "4.1.2b0"
|
51
51
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
52
|
|
53
53
|
def print_version(__version__):
|
@@ -120,22 +120,9 @@ def fit(
|
|
120
120
|
if len(x_train) != len(y_train):
|
121
121
|
raise ValueError("x_train and y_train must have the same length.")
|
122
122
|
|
123
|
-
if val and (x_val is None
|
123
|
+
if val and (x_val is None or y_val is None):
|
124
124
|
x_val, y_val = x_train, y_train
|
125
125
|
|
126
|
-
elif val and (x_val is not None and y_val is not None):
|
127
|
-
x_val = cp.array(x_val, copy=False).astype(dtype, copy=False)
|
128
|
-
|
129
|
-
if len(y_val[0]) < 256:
|
130
|
-
if y_val.dtype != cp.uint8:
|
131
|
-
y_val = cp.array(y_val, copy=False).astype(cp.uint8, copy=False)
|
132
|
-
elif len(y_val[0]) <= 32767:
|
133
|
-
if y_val.dtype != cp.uint16:
|
134
|
-
y_val = cp.array(y_val, copy=False).astype(cp.uint16, copy=False)
|
135
|
-
else:
|
136
|
-
if y_val.dtype != cp.uint32:
|
137
|
-
y_val = cp.array(y_val, copy=False).astype(cp.uint32, copy=False)
|
138
|
-
|
139
126
|
val_list = [] if val else None
|
140
127
|
val_count = val_count or 10
|
141
128
|
# Defining weights
|
@@ -232,7 +219,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
232
219
|
tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
|
233
220
|
|
234
221
|
"""
|
235
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'
|
222
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
236
223
|
|
237
224
|
activation_potentiation = all_activations()
|
238
225
|
|
@@ -297,9 +284,9 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
297
284
|
|
298
285
|
# Initialize progress bar
|
299
286
|
if batch_size == 1:
|
300
|
-
ncols =
|
287
|
+
ncols = 100
|
301
288
|
else:
|
302
|
-
ncols =
|
289
|
+
ncols = 140
|
303
290
|
progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
|
304
291
|
|
305
292
|
# Initialize variables
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.2b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{pyerualjetwork-4.1.1 → pyerualjetwork-4.1.2b0}/pyerualjetwork.egg-info/dependency_links.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|