pyerualjetwork 4.0.8__tar.gz → 4.1.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/PKG-INFO +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/data_operations_cuda.py +1 -2
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/plan.py +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/plan_cuda.py +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/PKG-INFO +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/setup.py +1 -1
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/README.md +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/activation_functions.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/activation_functions_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/data_operations.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/help.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/loss_functions.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/loss_functions_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/metrics.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/metrics_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/model_operations.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/model_operations_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/planeat.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/planeat_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/ui.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/visualizations.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/visualizations_cuda.py +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/top_level.txt +0 -0
- {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.0
|
3
|
+
Version: 4.1.0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -47,7 +47,7 @@ for package_name in package_names:
|
|
47
47
|
|
48
48
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
49
|
|
50
|
-
__version__ = "4.0
|
50
|
+
__version__ = "4.1.0"
|
51
51
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
52
|
|
53
53
|
def print_version(__version__):
|
@@ -322,8 +322,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32):
|
|
322
322
|
class_count = len(classes)
|
323
323
|
class_distribution = {i: 0 for i in range(class_count)}
|
324
324
|
|
325
|
-
|
326
|
-
for label in y_cpu:
|
325
|
+
for label in y:
|
327
326
|
class_distribution[cp.argmax(label).item()] += 1
|
328
327
|
|
329
328
|
max_class_count = max(class_distribution.values())
|
@@ -231,7 +231,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
231
231
|
tuple: A list for model parameters: [Weight matrix, Test loss, Test Accuracy, [Activations functions]].
|
232
232
|
|
233
233
|
"""
|
234
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
234
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
235
235
|
|
236
236
|
activation_potentiation = all_activations()
|
237
237
|
|
@@ -232,7 +232,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
232
232
|
tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
|
233
233
|
|
234
234
|
"""
|
235
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
235
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
236
236
|
|
237
237
|
activation_potentiation = all_activations()
|
238
238
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.0
|
3
|
+
Version: 4.1.0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|