pyerualjetwork 4.0.8__tar.gz → 4.1.0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (27) hide show
  1. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/PKG-INFO +1 -1
  2. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/__init__.py +1 -1
  3. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/data_operations_cuda.py +1 -2
  4. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/plan.py +1 -1
  5. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/plan_cuda.py +1 -1
  6. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/PKG-INFO +1 -1
  7. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/setup.py +1 -1
  8. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/README.md +0 -0
  9. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/activation_functions.py +0 -0
  10. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/activation_functions_cuda.py +0 -0
  11. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/data_operations.py +0 -0
  12. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/help.py +0 -0
  13. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/loss_functions.py +0 -0
  14. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/loss_functions_cuda.py +0 -0
  15. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/metrics.py +0 -0
  16. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/metrics_cuda.py +0 -0
  17. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/model_operations.py +0 -0
  18. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/model_operations_cuda.py +0 -0
  19. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/planeat.py +0 -0
  20. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/planeat_cuda.py +0 -0
  21. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/ui.py +0 -0
  22. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/visualizations.py +0 -0
  23. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork/visualizations_cuda.py +0 -0
  24. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  25. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  26. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/pyerualjetwork.egg-info/top_level.txt +0 -0
  27. {pyerualjetwork-4.0.8 → pyerualjetwork-4.1.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.8
3
+ Version: 4.1.0
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.0.8"
50
+ __version__ = "4.1.0"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
@@ -322,8 +322,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32):
322
322
  class_count = len(classes)
323
323
  class_distribution = {i: 0 for i in range(class_count)}
324
324
 
325
- y_cpu = cp.asnumpy(y) if isinstance(y, cp.ndarray) else y
326
- for label in y_cpu:
325
+ for label in y:
327
326
  class_distribution[cp.argmax(label).item()] += 1
328
327
 
329
328
  max_class_count = max(class_distribution.values())
@@ -231,7 +231,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
231
231
  tuple: A list for model parameters: [Weight matrix, Test loss, Test Accuracy, [Activations functions]].
232
232
 
233
233
  """
234
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
234
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
235
235
 
236
236
  activation_potentiation = all_activations()
237
237
 
@@ -232,7 +232,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
232
232
  tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
233
233
 
234
234
  """
235
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
235
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
236
236
 
237
237
  activation_potentiation = all_activations()
238
238
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.8
3
+ Version: 4.1.0
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -6,7 +6,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
6
6
  # Setting Up
7
7
  setup(
8
8
  name="pyerualjetwork",
9
- version="4.0.8",
9
+ version="4.1.0",
10
10
  author="Hasan Can Beydili",
11
11
  author_email="tchasancan@gmail.com",
12
12
  description=(
File without changes
File without changes