pyerualjetwork 4.0.5__tar.gz → 4.0.6__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (29) hide show
  1. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/PKG-INFO +2 -2
  2. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/README.md +1 -1
  3. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/__init__.py +1 -1
  4. pyerualjetwork-4.0.6/pyerualjetwork/activation_functions.py +344 -0
  5. pyerualjetwork-4.0.6/pyerualjetwork/activation_functions_cuda.py +342 -0
  6. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/data_operations.py +3 -0
  7. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/data_operations_cuda.py +7 -9
  8. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/plan.py +9 -7
  9. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/plan_cuda.py +7 -9
  10. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork.egg-info/PKG-INFO +2 -2
  11. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/setup.py +1 -1
  12. pyerualjetwork-4.0.5/pyerualjetwork/activation_functions.py +0 -367
  13. pyerualjetwork-4.0.5/pyerualjetwork/activation_functions_cuda.py +0 -363
  14. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/help.py +0 -0
  15. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/loss_functions.py +0 -0
  16. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/loss_functions_cuda.py +0 -0
  17. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/metrics.py +0 -0
  18. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/metrics_cuda.py +0 -0
  19. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/model_operations.py +0 -0
  20. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/model_operations_cuda.py +0 -0
  21. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/planeat.py +0 -0
  22. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/planeat_cuda.py +0 -0
  23. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/ui.py +0 -0
  24. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/visualizations.py +0 -0
  25. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork/visualizations_cuda.py +0 -0
  26. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
  27. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
  28. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/pyerualjetwork.egg-info/top_level.txt +0 -0
  29. {pyerualjetwork-4.0.5 → pyerualjetwork-4.0.6}/setup.cfg +0 -0
@@ -1,13 +1,13 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.5
3
+ Version: 4.0.6
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
8
8
  Description-Content-Type: text/markdown
9
9
 
10
- # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.5?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.5/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan) + [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
10
+ # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.6?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.6/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan) + [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
11
11
 
12
12
  Note: anaplan old name of pyerualjetwork
13
13
 
@@ -1,4 +1,4 @@
1
- # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.5?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.5/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan) + [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
1
+ # PyerualJetwork [![Socket Badge](https://socket.dev/api/badge/pypi/package/pyerualjetwork/4.0.6?artifact_id=tar-gz)](https://socket.dev/pypi/package/pyerualjetwork/overview/4.0.6/tar-gz) [![CodeFactor](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork/badge)](https://www.codefactor.io/repository/github/hcb06/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/anaplan)](https://pepy.tech/projects/anaplan) + [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/month)](https://pepy.tech/projects/pyerualjetwork) [![PyPI Downloads](https://static.pepy.tech/badge/pyerualjetwork/week)](https://pepy.tech/projects/pyerualjetwork) [![PyPI version](https://img.shields.io/pypi/v/pyerualjetwork.svg)](https://pypi.org/project/pyerualjetwork/)
2
2
 
3
3
  Note: anaplan old name of pyerualjetwork
4
4
 
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.0.5"
50
+ __version__ = "4.0.6"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
@@ -0,0 +1,344 @@
1
+ import numpy as np
2
+ from scipy.special import expit, softmax
3
+ import warnings
4
+
5
+
6
+ # ACTIVATION FUNCTIONS -----
7
+
8
+ def all_activations():
9
+
10
+ activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
11
+
12
+ return activations_list
13
+
14
+ def spiral_activation(x):
15
+
16
+ r = np.sqrt(np.sum(x**2))
17
+
18
+ theta = np.arctan2(x[1:], x[:-1])
19
+
20
+ spiral_x = r * np.cos(theta + r)
21
+ spiral_y = r * np.sin(theta + r)
22
+
23
+
24
+ spiral_output = np.concatenate(([spiral_x[0]], spiral_y))
25
+
26
+ return spiral_output
27
+
28
+
29
+ def Softmax(
30
+ x # num: Input data to be transformed using softmax function.
31
+ ):
32
+ """
33
+ Applies the softmax function to the input data.
34
+
35
+ Args:
36
+ (num): Input data to be transformed using softmax function.
37
+
38
+ Returns:
39
+ (num): Transformed data after applying softmax function.
40
+ """
41
+
42
+ return softmax(x)
43
+
44
+
45
+ def Sigmoid(
46
+ x # num: Input data to be transformed using sigmoid function.
47
+ ):
48
+ """
49
+ Applies the sigmoid function to the input data.
50
+
51
+ Args:
52
+ (num): Input data to be transformed using sigmoid function.
53
+
54
+ Returns:
55
+ (num): Transformed data after applying sigmoid function.
56
+ """
57
+ return expit(x)
58
+
59
+
60
+ def Relu(
61
+ x # num: Input data to be transformed using ReLU function.
62
+ ):
63
+ """
64
+ Applies the Rectified Linear Unit (ReLU) function to the input data.
65
+
66
+ Args:
67
+ (num): Input data to be transformed using ReLU function.
68
+
69
+ Returns:
70
+ (num): Transformed data after applying ReLU function.
71
+ """
72
+
73
+ return np.maximum(0, x)
74
+
75
+
76
+ def tanh(x):
77
+ return np.tanh(x)
78
+
79
+ def swish(x):
80
+ return x * (1 / (1 + np.exp(-x)))
81
+
82
+ def sin_plus(x):
83
+ return (np.sin(x) + 1) / 2
84
+
85
+ def modular_circular_activation(x, period=2*np.pi):
86
+ return np.mod(x, period) / period
87
+
88
+ def tanh_circular_activation(x):
89
+ return (np.tanh(x) + 1) / 2
90
+
91
+ def leaky_relu(x, alpha=0.01):
92
+ return np.where(x > 0, x, alpha * x)
93
+
94
+ def softplus(x):
95
+ return np.log(1 + np.exp(x))
96
+
97
+ def elu(x, alpha=1.0):
98
+ return np.where(x > 0, x, alpha * (np.exp(x) - 1))
99
+
100
+ def gelu(x):
101
+ return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
102
+
103
+ def selu(x, lambda_=1.0507, alpha=1.6733):
104
+ return lambda_ * np.where(x > 0, x, alpha * (np.exp(x) - 1))
105
+
106
+ def sinakt(x):
107
+ return np.sin(x) + np.cos(x)
108
+
109
+ def p_squared(x, alpha=1.0, beta=0.0):
110
+ return alpha * x**2 + beta * x
111
+
112
+ def sglu(x, alpha=1.0):
113
+ return softmax(alpha * x) * x
114
+
115
+ # 4. Double Leaky ReLU (DLReLU)
116
+ def dlrelu(x):
117
+ return np.maximum(0.01 * x, x) + np.minimum(0.01 * x, 0.1 * x)
118
+
119
+ # 5. Exponential Sigmoid (ExSig)
120
+ def exsig(x):
121
+ return 1 / (1 + np.exp(-x**2))
122
+
123
+ # 6. Adaptive Cosine Activation (ACos)
124
+ def acos(x, alpha=1.0, beta=0.0):
125
+ return np.cos(alpha * x + beta)
126
+
127
+ # 7. Gaussian-like Activation (GLA)
128
+ def gla(x, alpha=1.0, mu=0.0):
129
+ return np.exp(-alpha * (x - mu)**2)
130
+
131
+ # 8. Swish ReLU (SReLU)
132
+ def srelu(x):
133
+ return x * (1 / (1 + np.exp(-x))) + np.maximum(0, x)
134
+
135
+ # 9. Quadratic Exponential Linear Unit (QELU)
136
+ def qelu(x):
137
+ return x**2 * np.exp(x) - 1
138
+
139
+ # 10. Inverse Square Root Activation (ISRA)
140
+ def isra(x):
141
+ return x / np.sqrt(np.abs(x) + 1)
142
+
143
+ def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
144
+ return np.sin(alpha * x) * np.cos(beta * x) * np.sin(gamma * x)
145
+
146
+ def arctan(x):
147
+ return np.arctan(x)
148
+
149
+ def bent_identity(x):
150
+ return (np.sqrt(x**2 + 1) - 1) / 2 + x
151
+
152
+ def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
153
+
154
+ n_features = x.shape[0]
155
+
156
+ circular_output = np.zeros_like(x)
157
+
158
+ for i in range(n_features):
159
+
160
+ r = np.sqrt(np.sum(x**2))
161
+ theta = 2 * np.pi * (i / n_features) + shift
162
+
163
+ circular_x = r * np.cos(theta + frequency * r) * scale
164
+ circular_y = r * np.sin(theta + frequency * r) * scale
165
+
166
+ if i % 2 == 0:
167
+ circular_output[i] = circular_x
168
+ else:
169
+ circular_output[i] = circular_y
170
+
171
+ return circular_output
172
+
173
+ def sech(x):
174
+ return 2 / (np.exp(x) + np.exp(-x))
175
+
176
+ def softsign(x):
177
+ return x / (1 + np.abs(x))
178
+
179
+ def pwl(x, alpha=0.5, beta=1.5):
180
+ return np.where(x <= 0, alpha * x, beta * x)
181
+
182
+ def cubic(x):
183
+ return x**3
184
+
185
+ def gaussian(x, alpha=1.0, mu=0.0):
186
+ return np.exp(-alpha * (x - mu)**2)
187
+
188
+ def sine(x, alpha=1.0):
189
+ return np.sin(alpha * x)
190
+
191
+ def tanh_square(x):
192
+ return np.tanh(x)**2
193
+
194
+ def mod_sigmoid(x, alpha=1.0, beta=0.0):
195
+ return 1 / (1 + np.exp(-alpha * x + beta))
196
+
197
+ def quartic(x):
198
+ return x**4
199
+
200
+ def square_quartic(x):
201
+ return (x**2)**2
202
+
203
+ def cubic_quadratic(x):
204
+ return x**3 * (x**2)
205
+
206
+ def exp_cubic(x):
207
+ return np.exp(x**3)
208
+
209
+ def sine_square(x):
210
+ return np.sin(x)**2
211
+
212
+ def logarithmic(x):
213
+ return np.log(x**2 + 1)
214
+
215
+ def scaled_cubic(x, alpha=1.0):
216
+ return alpha * x**3
217
+
218
+ def sine_offset(x, beta=0.0):
219
+ return np.sin(x + beta)
220
+
221
+
222
+
223
+ def safe_aggregate(current_sum, new_value):
224
+ try:
225
+ return current_sum + new_value
226
+ except OverflowError:
227
+ return np.array(current_sum) + np.array(new_value)
228
+
229
+
230
+ def apply_activation(Input, activation_list):
231
+ """
232
+ Applies a sequence of activation functions to the input.
233
+
234
+ Args:
235
+ Input (numpy.ndarray): The input to apply activations to.
236
+ activation_list (list): A list of activation function names to apply.
237
+
238
+ Returns:
239
+ numpy.ndarray: The input after all activations have been applied.
240
+ """
241
+
242
+ origin_input = np.copy(Input)
243
+
244
+ for i in range(len(activation_list)):
245
+ try:
246
+ if activation_list[i] == 'sigmoid':
247
+ Input = safe_aggregate(Input, Sigmoid(origin_input))
248
+ elif activation_list[i] == 'swish':
249
+ Input = safe_aggregate(Input, swish(origin_input))
250
+ elif activation_list[i] == 'mod_circular':
251
+ Input = safe_aggregate(Input, modular_circular_activation(origin_input))
252
+ elif activation_list[i] == 'tanh_circular':
253
+ Input = safe_aggregate(Input, tanh_circular_activation(origin_input))
254
+ elif activation_list[i] == 'leaky_relu':
255
+ Input = safe_aggregate(Input, leaky_relu(origin_input))
256
+ elif activation_list[i] == 'relu':
257
+ Input = safe_aggregate(Input, Relu(origin_input))
258
+ elif activation_list[i] == 'softplus':
259
+ Input = safe_aggregate(Input, softplus(origin_input))
260
+ elif activation_list[i] == 'elu':
261
+ Input = safe_aggregate(Input, elu(origin_input))
262
+ elif activation_list[i] == 'gelu':
263
+ Input = safe_aggregate(Input, gelu(origin_input))
264
+ elif activation_list[i] == 'selu':
265
+ Input = safe_aggregate(Input, selu(origin_input))
266
+ elif activation_list[i] == 'tanh':
267
+ Input = safe_aggregate(Input, tanh(origin_input))
268
+ elif activation_list[i] == 'sinakt':
269
+ Input = safe_aggregate(Input, sinakt(origin_input))
270
+ elif activation_list[i] == 'p_squared':
271
+ Input = safe_aggregate(Input, p_squared(origin_input))
272
+ elif activation_list[i] == 'sglu':
273
+ Input = safe_aggregate(Input, sglu(origin_input, alpha=1.0))
274
+ elif activation_list[i] == 'dlrelu':
275
+ Input = safe_aggregate(Input, dlrelu(origin_input))
276
+ elif activation_list[i] == 'exsig':
277
+ Input = safe_aggregate(Input, exsig(origin_input))
278
+ elif activation_list[i] == 'sin_plus':
279
+ Input = safe_aggregate(Input, sin_plus(origin_input))
280
+ elif activation_list[i] == 'acos':
281
+ Input = safe_aggregate(Input, acos(origin_input, alpha=1.0, beta=0.0))
282
+ elif activation_list[i] == 'gla':
283
+ Input = safe_aggregate(Input, gla(origin_input, alpha=1.0, mu=0.0))
284
+ elif activation_list[i] == 'srelu':
285
+ Input = safe_aggregate(Input, srelu(origin_input))
286
+ elif activation_list[i] == 'qelu':
287
+ Input = safe_aggregate(Input, qelu(origin_input))
288
+ elif activation_list[i] == 'isra':
289
+ Input = safe_aggregate(Input, isra(origin_input))
290
+ elif activation_list[i] == 'waveakt':
291
+ Input = safe_aggregate(Input, waveakt(origin_input))
292
+ elif activation_list[i] == 'arctan':
293
+ Input = safe_aggregate(Input, arctan(origin_input))
294
+ elif activation_list[i] == 'bent_identity':
295
+ Input = safe_aggregate(Input, bent_identity(origin_input))
296
+ elif activation_list[i] == 'sech':
297
+ Input = safe_aggregate(Input, sech(origin_input))
298
+ elif activation_list[i] == 'softsign':
299
+ Input = safe_aggregate(Input, softsign(origin_input))
300
+ elif activation_list[i] == 'pwl':
301
+ Input = safe_aggregate(Input, pwl(origin_input))
302
+ elif activation_list[i] == 'cubic':
303
+ Input = safe_aggregate(Input, cubic(origin_input))
304
+ elif activation_list[i] == 'gaussian':
305
+ Input = safe_aggregate(Input, gaussian(origin_input))
306
+ elif activation_list[i] == 'sine':
307
+ Input = safe_aggregate(Input, sine(origin_input))
308
+ elif activation_list[i] == 'tanh_square':
309
+ Input = safe_aggregate(Input, tanh_square(origin_input))
310
+ elif activation_list[i] == 'mod_sigmoid':
311
+ Input = safe_aggregate(Input, mod_sigmoid(origin_input))
312
+ elif activation_list[i] == 'linear':
313
+ Input = safe_aggregate(Input, origin_input)
314
+ elif activation_list[i] == 'quartic':
315
+ Input = safe_aggregate(Input, quartic(origin_input))
316
+ elif activation_list[i] == 'square_quartic':
317
+ Input = safe_aggregate(Input, square_quartic(origin_input))
318
+ elif activation_list[i] == 'cubic_quadratic':
319
+ Input = safe_aggregate(Input, cubic_quadratic(origin_input))
320
+ elif activation_list[i] == 'exp_cubic':
321
+ Input = safe_aggregate(Input, exp_cubic(origin_input))
322
+ elif activation_list[i] == 'sine_square':
323
+ Input = safe_aggregate(Input, sine_square(origin_input))
324
+ elif activation_list[i] == 'logarithmic':
325
+ Input = safe_aggregate(Input, logarithmic(origin_input))
326
+ elif activation_list[i] == 'scaled_cubic':
327
+ Input = safe_aggregate(Input, scaled_cubic(origin_input, 1.0))
328
+ elif activation_list[i] == 'sine_offset':
329
+ Input = safe_aggregate(Input, sine_offset(origin_input, 1.0))
330
+ elif activation_list[i] == 'spiral':
331
+ Input = safe_aggregate(Input, spiral_activation(origin_input))
332
+ elif activation_list[i] == 'circular':
333
+ Input = safe_aggregate(Input, circular_activation(origin_input))
334
+
335
+
336
+ except Exception as e:
337
+ warnings.warn(f"Error in activation {activation_list[i]}: {str(e)}", RuntimeWarning)
338
+ if not isinstance(Input, np.ndarray):
339
+ Input = np.array(Input)
340
+ if not isinstance(origin_input, np.ndarray):
341
+ origin_input = np.array(origin_input)
342
+ continue
343
+
344
+ return Input