pyerualjetwork 2.2.5__tar.gz → 2.2.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.2.5
3
+ Version: 2.2.6
4
4
  Summary: Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -61,6 +61,7 @@ def fit(
61
61
  W = weight_identification(len(layers) - 1,len(class_count),neurons,x_train_size)
62
62
  trained_W = [1] * len(W)
63
63
  print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL,)
64
+ y = decode_one_hot(y_train)
64
65
  start_time = time.time()
65
66
  for index, inp in enumerate(x_train):
66
67
  uni_start_time = time.time()
@@ -76,15 +77,15 @@ def fit(
76
77
 
77
78
  for Lindex, Layer in enumerate(layers):
78
79
 
79
- y = np.argmax(y_train[index])
80
80
  neural_layer = normalization(neural_layer)
81
81
 
82
82
  if Layer == 'fex':
83
- W[Lindex] = fex(neural_layer, W[Lindex], activation_potential, True, y)
83
+ W[Lindex] = fex(neural_layer, W[Lindex], activation_potential, True, y[index])
84
84
 
85
85
 
86
86
  for i, w in enumerate(W):
87
- trained_W[i] = trained_W[i] + w
87
+ if i!= len(W) - 1:
88
+ trained_W[i] = trained_W[i] + w
88
89
 
89
90
 
90
91
  W = weight_identification(len(layers) - 1, len(class_count), neurons, x_train_size)
@@ -64,6 +64,7 @@ def fit(
64
64
 
65
65
  trained_W = [1] * len(W)
66
66
  print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
67
+ y = decode_one_hot(y_train)
67
68
  start_time = time.time()
68
69
  for index, inp in enumerate(x_train):
69
70
  uni_start_time = time.time()
@@ -81,12 +82,12 @@ def fit(
81
82
 
82
83
  neural_layer = normalization(neural_layer)
83
84
 
84
- y = np.argmax(y_train[index])
85
85
  if Layer == 'fex':
86
- W[Lindex] = fex(neural_layer, W[Lindex], True, y)
86
+ W[Lindex] = fex(neural_layer, W[Lindex], True, y[index])
87
87
 
88
88
  for i, w in enumerate(W):
89
- trained_W[i] = trained_W[i] + w
89
+ if i!= len(W) - 1:
90
+ trained_W[i] = trained_W[i] + w
90
91
 
91
92
  W = weight_identification(
92
93
  len(layers) - 1, len(class_count), neurons, x_train_size)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.2.5
3
+ Version: 2.2.6
4
4
  Summary: Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -5,7 +5,7 @@ from setuptools import setup, find_packages
5
5
  setup(
6
6
 
7
7
  name = "pyerualjetwork",
8
- version = "2.2.5",
8
+ version = "2.2.6",
9
9
  author = "Hasan Can Beydili",
10
10
  author_email = "tchasancan@gmail.com",
11
11
  description= "Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)",
File without changes