pyerualjetwork 2.1.5__tar.gz → 2.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/PKG-INFO +1 -1
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/plan_bi/plan_bi.py +7 -3
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/plan_di/plan_di.py +4 -8
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/pyerualjetwork.egg-info/PKG-INFO +1 -1
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/setup.py +1 -1
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/plan_bi/__init__.py +0 -0
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/plan_di/__init__.py +0 -0
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/pyerualjetwork.egg-info/top_level.txt +0 -0
- {pyerualjetwork-2.1.5 → pyerualjetwork-2.1.7}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 2.1.
|
3
|
+
Version: 2.1.7
|
4
4
|
Summary: 8 new functions: multiple_evaluate , encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate And Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1306,14 +1306,18 @@ def confusion_matrix(y_true, y_pred, class_count=None):
|
|
1306
1306
|
"""
|
1307
1307
|
if class_count is None:
|
1308
1308
|
class_count = len(np.unique(np.concatenate((y_true, y_pred))))
|
1309
|
-
|
1309
|
+
|
1310
1310
|
confusion = np.zeros((class_count, class_count), dtype=int)
|
1311
1311
|
|
1312
1312
|
for i in range(len(y_true)):
|
1313
1313
|
true_label = y_true[i]
|
1314
1314
|
pred_label = y_pred[i]
|
1315
|
-
|
1315
|
+
|
1316
|
+
# Ensure that true_label and pred_label are within the correct range
|
1317
|
+
if 0 <= true_label < class_count and 0 <= pred_label < class_count:
|
1316
1318
|
confusion[true_label, pred_label] += 1
|
1319
|
+
else:
|
1320
|
+
print(f"Warning: Ignoring out of range label - True: {true_label}, Predicted: {pred_label}")
|
1317
1321
|
|
1318
1322
|
return confusion
|
1319
1323
|
|
@@ -1327,7 +1331,7 @@ def plot_evaluate(y_test, y_preds, acc_list):
|
|
1327
1331
|
y_preds = np.array(y_preds)
|
1328
1332
|
fpr, tpr, thresholds = roc_curve(y_true, y_preds)
|
1329
1333
|
precision, recall, f1 = metrics(y_test, y_preds)
|
1330
|
-
Class = np.unique(y_test)
|
1334
|
+
Class = np.unique(decode_one_hot(y_test))
|
1331
1335
|
|
1332
1336
|
|
1333
1337
|
cm = confusion_matrix(y_true, y_preds, len(Class))
|
@@ -1266,28 +1266,24 @@ def roc_curve(y_true, y_score):
|
|
1266
1266
|
return fpr, tpr, thresholds
|
1267
1267
|
|
1268
1268
|
|
1269
|
-
def confusion_matrix(y_true, y_pred, class_count
|
1269
|
+
def confusion_matrix(y_true, y_pred, class_count):
|
1270
1270
|
"""
|
1271
1271
|
Computes confusion matrix.
|
1272
1272
|
|
1273
1273
|
Args:
|
1274
1274
|
y_true (numpy.ndarray): True class labels (1D array).
|
1275
1275
|
y_pred (numpy.ndarray): Predicted class labels (1D array).
|
1276
|
-
|
1276
|
+
num_classes (int): Number of classes.
|
1277
1277
|
|
1278
1278
|
Returns:
|
1279
1279
|
numpy.ndarray: Confusion matrix of shape (num_classes, num_classes).
|
1280
1280
|
"""
|
1281
|
-
if class_count is None:
|
1282
|
-
class_count = len(np.unique(np.concatenate((y_true, y_pred))))
|
1283
|
-
|
1284
1281
|
confusion = np.zeros((class_count, class_count), dtype=int)
|
1285
1282
|
|
1286
1283
|
for i in range(len(y_true)):
|
1287
1284
|
true_label = y_true[i]
|
1288
1285
|
pred_label = y_pred[i]
|
1289
|
-
|
1290
|
-
confusion[true_label, pred_label] += 1
|
1286
|
+
confusion[true_label, pred_label] += 1
|
1291
1287
|
|
1292
1288
|
return confusion
|
1293
1289
|
|
@@ -1301,7 +1297,7 @@ def plot_evaluate(y_test, y_preds, acc_list):
|
|
1301
1297
|
y_preds = np.array(y_preds)
|
1302
1298
|
fpr, tpr, thresholds = roc_curve(y_true, y_preds)
|
1303
1299
|
precision, recall, f1 = metrics(y_test, y_preds)
|
1304
|
-
Class = np.unique(y_test)
|
1300
|
+
Class = np.unique(decode_one_hot(y_test))
|
1305
1301
|
|
1306
1302
|
# Confusion matrix
|
1307
1303
|
cm = confusion_matrix(y_true, y_preds, len(Class))
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 2.1.
|
3
|
+
Version: 2.1.7
|
4
4
|
Summary: 8 new functions: multiple_evaluate , encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate And Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -5,7 +5,7 @@ from setuptools import setup, find_packages
|
|
5
5
|
setup(
|
6
6
|
|
7
7
|
name = "pyerualjetwork",
|
8
|
-
version = "2.1.
|
8
|
+
version = "2.1.7",
|
9
9
|
author = "Hasan Can Beydili",
|
10
10
|
author_email = "tchasancan@gmail.com",
|
11
11
|
description= " 8 new functions: multiple_evaluate , encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate And Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)",
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|