pyerualjetwork 2.0.8__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan_bi/plan_bi.py CHANGED
@@ -192,12 +192,12 @@ def weight_identification(
192
192
  return W
193
193
 
194
194
  def synaptic_pruning(
195
- w, # list[list[num]]: Weight matrix of the neural network.
196
- cs, # list[list[num]]: Synaptic connections between neurons.
195
+ w, # list[num]: Weight matrix of the neural network.
196
+ cs, # int: cs = cut_start, Synaptic connections between neurons.
197
197
  key, # int: key for identifying synaptic connections.
198
198
  Class, # int: Class label for the current training instance.
199
199
  class_count, # int: Total number of classes in the dataset.
200
- piece, # ???
200
+ piece, # int: Which set of neurons will information be transferred to?
201
201
  is_training # int: 1 or 0
202
202
 
203
203
  ) -> str:
@@ -205,8 +205,8 @@ def synaptic_pruning(
205
205
  Performs synaptic pruning in a neural network model.
206
206
 
207
207
  Args:
208
- w (list[list[num]]): Weight matrix of the neural network.
209
- cs (list[list[num]]): Synaptic connections between neurons.
208
+ w (list[num]): Weight matrix of the neural network.
209
+ cs (int): Synaptic connections between neurons.
210
210
  key (str): key for identifying synaptic row or col connections.
211
211
  Class (int): Class label for the current training instance.
212
212
  class_count (int): Total number of classes in the dataset.
@@ -219,10 +219,8 @@ def synaptic_pruning(
219
219
  Class += 1 # because index start 0
220
220
 
221
221
  if Class != 1:
222
-
223
-
224
-
225
- ce = cs / Class
222
+
223
+ ce = cs / Class # ce(cut_end) = cs(cut_start) / current_class
226
224
 
227
225
  if is_training == 1:
228
226
 
@@ -237,66 +235,46 @@ def synaptic_pruning(
237
235
 
238
236
  w[int(ce)-1::-1,:] = 0
239
237
 
240
-
241
238
  w[cs:,:] = 0
242
239
 
243
240
  else:
244
241
 
245
- if Class == 1:
246
- if key == 'row':
247
-
248
- w[cs:,:] = 0
249
-
250
- elif key == 'col':
251
-
252
- w[:,cs] = 0
242
+ if key == 'row':
243
+
244
+ w[cs:,:] = 0
245
+
246
+ elif key == 'col':
247
+
248
+ w[:,cs] = 0
253
249
 
254
- else:
255
- print(Fore.RED + "ERROR103: synaptic_pruning func's key parameter must be 'row' or 'col' from: synaptic_pruning" + infoPruning)
256
- return 'e'
257
250
  else:
258
- if key == 'row':
259
-
260
- w[cs:,:] = 0
261
-
262
- ce = int(round(w.shape[0] - cs / class_count))
263
- w[ce-1::-1,:] = 0
264
-
265
- elif key == 'col':
266
-
267
- w[:,cs] = 0
268
-
269
- else:
270
- print(Fore.RED + "ERROR103: synaptic_pruning func's key parameter must be 'row' or 'col' from: synaptic_pruning" + infoPruning + Style.RESET_ALL)
271
- return 'e'
251
+ print(Fore.RED + "ERROR103: synaptic_pruning func's key parameter must be 'row' or 'col' from: synaptic_pruning" + infoPruning)
252
+ return 'e'
253
+
272
254
  return w
273
255
 
274
256
  def synaptic_dividing(
275
257
  class_count, # int: Total number of classes in the dataset.
276
- W # list[list[num]]: Weight matrix of the neural network.
258
+ W # list[num]: Weight matrix list of the neural network.
277
259
  ) -> str:
278
260
  """
279
261
  Divides the synaptic weights of a neural network model based on class count.
280
262
 
281
263
  Args:
282
264
  class_count (int): Total number of classes in the dataset.
283
- W (list[list[num]]): Weight matrix of the neural network.
265
+ W (list[num]): Weight matrix of the neural network.
284
266
 
285
267
  Returns:
286
- list: a 3D list holds informations of divided net.
268
+ list: a 3D list holds informations of divided net and list of neuron groups separated by classes.
287
269
  """
288
270
 
289
271
 
290
272
  Piece = [1] * len(W)
291
- #print('Piece:' + Piece)
292
- #input()
293
- # Boş bir üç boyutlu liste oluşturma
294
273
  Divides = [[[0] for _ in range(len(W))] for _ in range(class_count)]
295
274
 
296
275
 
297
276
  for i in range(len(W)):
298
277
 
299
-
300
278
  Piece[i] = int(math.floor(W[i].shape[0] / class_count))
301
279
 
302
280
  cs = 0
@@ -306,9 +284,6 @@ def synaptic_dividing(
306
284
  for j in range(class_count):
307
285
  cs = cs + Piece[i]
308
286
  Divides[j][i][0] = cs
309
- #pruning_param[i] = cs
310
- #print('Divides: ' + j + i + ' = ' + Divides[j][i][0])
311
- #input()
312
287
 
313
288
  j = 0
314
289
  cs = 0
@@ -318,20 +293,19 @@ def synaptic_dividing(
318
293
 
319
294
  def fex(
320
295
  Input, # list[num]: Input data.
321
- w, # list[list[num]]: Weight matrix of the neural network.,
322
- activation_potential, # num: Threshold value for comparison.
323
- piece, # ???
324
- is_training # num: 1 or 0
296
+ w, # list[num]: Weight matrix of the neural network.,
297
+ activation_potential, # float: Threshold value for comparison.
298
+ piece, # int: Which set of neurons will information be transferred to?
299
+ is_training # int: 1 or 0
325
300
  ) -> tuple:
326
301
  """
327
302
  Applies feature extraction process to the input data using synaptic pruning.
328
303
 
329
304
  Args:
330
305
  Input (list[num]): Input data.
331
- w (list[list[num]]): Weight matrix of the neural network.
332
- ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
333
- activation_potential (num): Threshold value for comparison.
334
-
306
+ w (list[num]): Weight matrix of the neural network.
307
+ activation_potential (float): Threshold value for comparison.
308
+ piece (int): Which set of neurons will information be transferred to?
335
309
  Returns:
336
310
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
337
311
  """
@@ -346,30 +320,29 @@ def fex(
346
320
 
347
321
  def cat(
348
322
  Input, # list[num]: Input data.
349
- w, # list[list[num]]: Weight matrix of the neural network.
350
- activation_potential, # num: Threshold value for comparison.
351
- isTrain,
352
- piece # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
323
+ w, # list[num]: Weight matrix of the neural network.
324
+ activation_potential, # (float): Threshold value for comparison.
325
+ is_training, # (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
326
+ piece # (int) Which set of neurons will information be transferred to?
353
327
  ) -> tuple:
354
328
  """
355
329
  Applies categorization process to the input data using synaptic pruning if specified.
356
330
 
357
331
  Args:
358
332
  Input (list[num]): Input data.
359
- w (list[list[num]]): Weight matrix of the neural network.
360
- ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
361
- activation_potential (num): Threshold value for comparison.
362
- isTrain (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
363
-
333
+ w (list[num]): Weight matrix of the neural network.
334
+ activation_potential (float): Threshold value for comparison.
335
+ is_training (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
336
+ piece (int): Which set of neurons will information be transferred to?
364
337
  Returns:
365
338
  tuple: A tuple containing the neural layer (vector) result and the possibly updated weight matrix.
366
339
  """
367
340
 
368
341
  PruneIndex = np.where(Input == 0)
369
342
 
370
- if isTrain == 1:
343
+ if is_training == 1:
371
344
 
372
- w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, isTrain)
345
+ w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, is_training)
373
346
 
374
347
 
375
348
  neural_layer = np.dot(w, Input)
@@ -378,16 +351,16 @@ def cat(
378
351
 
379
352
 
380
353
  def normalization(
381
- Input # list[num]: Input data to be normalized.
354
+ Input # num: Input data to be normalized.
382
355
  ):
383
356
  """
384
357
  Normalizes the input data using maximum absolute scaling.
385
358
 
386
359
  Args:
387
- Input (list[num]): Input data to be normalized.
360
+ Input num: Input data to be normalized.
388
361
 
389
362
  Returns:
390
- list[num]: Scaled input data after normalization.
363
+ num: Scaled input data after normalization.
391
364
  """
392
365
 
393
366
 
@@ -401,16 +374,16 @@ def normalization(
401
374
 
402
375
 
403
376
  def Softmax(
404
- x # list[num]: Input data to be transformed using softmax function.
377
+ x # num: Input data to be transformed using softmax function.
405
378
  ):
406
379
  """
407
380
  Applies the softmax function to the input data.
408
381
 
409
382
  Args:
410
- x (list[num]): Input data to be transformed using softmax function.
383
+ num: Input data to be transformed using softmax function.
411
384
 
412
385
  Returns:
413
- list[num]: Transformed data after applying softmax function.
386
+ num: Transformed data after applying softmax function.
414
387
  """
415
388
 
416
389
  return softmax(x)
@@ -423,10 +396,10 @@ def Sigmoid(
423
396
  Applies the sigmoid function to the input data.
424
397
 
425
398
  Args:
426
- x (list[num]): Input data to be transformed using sigmoid function.
399
+ num: Input data to be transformed using sigmoid function.
427
400
 
428
401
  Returns:
429
- list[num]: Transformed data after applying sigmoid function.
402
+ num: Transformed data after applying sigmoid function.
430
403
  """
431
404
  return expit(x)
432
405
 
@@ -438,10 +411,10 @@ def Relu(
438
411
  Applies the Rectified Linear Unit (ReLU) function to the input data.
439
412
 
440
413
  Args:
441
- x (list[num]): Input data to be transformed using ReLU function.
414
+ num: Input data to be transformed using ReLU function.
442
415
 
443
416
  Returns:
444
- list[num]: Transformed data after applying ReLU function.
417
+ num: Transformed data after applying ReLU function.
445
418
  """
446
419
 
447
420
 
@@ -451,21 +424,21 @@ def Relu(
451
424
 
452
425
 
453
426
  def evaluate(
454
- x_test, # list[list[num]]: Test input data.
427
+ x_test, # list[num]: Test input data.
455
428
  y_test, # list[num]: Test labels.
456
- activation_potential, # list[num]: List of ACTIVATION POTENTIALS for each layer.
457
- visualize, # visualize Testing procces or not visualize ('y' or 'n')
458
- W # list[list[num]]: Weight matrix of the neural network.
429
+ activation_potential, # float: Threshold value for comparison.
430
+ visualize, # str: visualize Testing procces or not visualize ('y' or 'n')
431
+ W # list[num]: Weight matrix of the neural network.
459
432
  ) -> tuple:
460
433
  infoTestModel = """
461
434
  Tests the neural network model with the given test data.
462
435
 
463
436
  Args:
464
- x_test (list[list[num]]): Test input data.
437
+ x_test (list[num]): Test input data.
465
438
  y_test (list[num]): Test labels.
466
439
  activation_potential (float): Input activation potential
467
440
  visualize (str): Visualize test progress ? ('y' or 'n')
468
- W (list[list[num]]): Weight matrix of the neural network.
441
+ W (list[num]): Weight matrix list of the neural network.
469
442
 
470
443
  Returns:
471
444
  tuple: A tuple containing the predicted labels and the accuracy of the model.
@@ -475,7 +448,7 @@ def evaluate(
475
448
 
476
449
 
477
450
  try:
478
- Wc = [0] * len(W)
451
+ Wc = [0] * len(W) # Wc = weight copy
479
452
  true = 0
480
453
  TestPredictions = [None] * len(y_test)
481
454
  for i, w in enumerate(W):
@@ -602,7 +575,7 @@ def save_model(model_name,
602
575
  weights_type (str): Type of weights to save (options: 'txt', 'npy', 'mat').
603
576
  WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
604
577
  model_path (str): Path where the model will be saved. For example: C:/Users/beydili/Desktop/denemePLAN/
605
- W: Weights of the model.
578
+ W: Weights list of the model.
606
579
 
607
580
  Returns:
608
581
  str: Message indicating if the model was saved successfully or encountered an error.
@@ -743,10 +716,9 @@ def load_model(model_name,
743
716
  Arguments:
744
717
  model_name (str): Name of the model.
745
718
  model_path (str): Path where the model is saved.
746
- log_type (str): Type of log to load (options: 'csv', 'txt', 'hdf5').
747
719
 
748
720
  Returns:
749
- lists: W(list[num]), activation_potential, df (DataFrame of the model)
721
+ lists: W(list[num]), activation_potential, DataFrame of the model
750
722
  """
751
723
  pass
752
724
 
@@ -797,7 +769,7 @@ def predict_model_ssd(Input,model_name,model_path):
797
769
  Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
798
770
 
799
771
  Arguments:
800
- Input (list or ndarray): Input data for the model (single vector or single matrix).
772
+ Input (num): Input data for the model (single vector or single matrix).
801
773
  model_name (str): Name of the model.
802
774
  model_path (str): Path where the model is saved.
803
775
  Returns:
@@ -1001,4 +973,4 @@ def get_acc():
1001
973
 
1002
974
  def get_pot():
1003
975
 
1004
- return 1
976
+ return 1
plan_di/plan_di.py CHANGED
@@ -174,7 +174,7 @@ def weight_identification(
174
174
  x_train_size (int): Size of the input data.
175
175
 
176
176
  Returns:
177
- list([numpy_arrays],[...]): Weight matices of the model. .
177
+ list([numpy_arrays],[...]): pretrained weight matices of the model. .
178
178
  """
179
179
 
180
180
 
@@ -188,12 +188,12 @@ def weight_identification(
188
188
  return W
189
189
 
190
190
  def synaptic_pruning(
191
- w, # list[list[num]]: Weight matrix of the neural network.
192
- cs, # list[list[num]]: Synaptic connections between neurons.
191
+ w, # num: Weight matrix of the neural network.
192
+ cs, # int: cs = cut_start, Synaptic connections between neurons.
193
193
  key, # int: key for identifying synaptic connections.
194
194
  Class, # int: Class label for the current training instance.
195
195
  class_count, # int: Total number of classes in the dataset.
196
- piece, # ???
196
+ piece, # int: Which set of neurons will information be transferred to?
197
197
  is_training # int: 1 or 0
198
198
 
199
199
  ) -> str:
@@ -201,11 +201,13 @@ def synaptic_pruning(
201
201
  Performs synaptic pruning in a neural network model.
202
202
 
203
203
  Args:
204
- w (list[list[num]]): Weight matrix of the neural network.
205
- cs (list[list[num]]): Synaptic connections between neurons.
204
+ w (list[num]): Weight matrix of the neural network.
205
+ cs (list[num]): Synaptic connections between neurons.
206
206
  key (str): key for identifying synaptic row or col connections.
207
207
  Class (int): Class label for the current training instance.
208
208
  class_count (int): Total number of classes in the dataset.
209
+ piece (int): Which set of neurons will information be transferred to?
210
+ is_training (int): 1 or 0
209
211
 
210
212
  Returns:
211
213
  numpy array: Weight matrix.
@@ -218,7 +220,7 @@ def synaptic_pruning(
218
220
 
219
221
 
220
222
 
221
- ce = cs / Class
223
+ ce = cs / Class # ce(cut_end) = cs(cut_start) / current_class
222
224
 
223
225
  if is_training == 1:
224
226
 
@@ -238,7 +240,6 @@ def synaptic_pruning(
238
240
 
239
241
  else:
240
242
 
241
- if Class == 1:
242
243
  if key == 'row':
243
244
 
244
245
  w[cs:,:] = 0
@@ -250,43 +251,27 @@ def synaptic_pruning(
250
251
  else:
251
252
  print(Fore.RED + "ERROR103: synaptic_pruning func's key parameter must be 'row' or 'col' from: synaptic_pruning" + infoPruning)
252
253
  return 'e'
253
- else:
254
- if key == 'row':
255
-
256
- w[cs:,:] = 0
257
-
258
- ce = int(round(w.shape[0] - cs / class_count))
259
- w[ce-1::-1,:] = 0
260
-
261
- elif key == 'col':
262
-
263
- w[:,cs] = 0
264
-
265
- else:
266
- print(Fore.RED + "ERROR103: synaptic_pruning func's key parameter must be 'row' or 'col' from: synaptic_pruning" + infoPruning + Style.RESET_ALL)
267
- return 'e'
254
+
268
255
  return w
269
256
 
270
257
  def synaptic_dividing(
271
258
  class_count, # int: Total number of classes in the dataset.
272
- W # list[list[num]]: Weight matrix of the neural network.
259
+ W # list[num]: Weight matrix of the neural network.
273
260
  ) -> str:
274
261
  """
275
262
  Divides the synaptic weights of a neural network model based on class count.
276
263
 
277
264
  Args:
278
265
  class_count (int): Total number of classes in the dataset.
279
- W (list[list[num]]): Weight matrix of the neural network.
266
+ W (list[num]): Weight matrix of the neural network.
280
267
 
281
268
  Returns:
282
- list: a 3D list holds informations of divided net.
269
+ list: a 3D list holds informations of divided net and list of neuron groups separated by classes.
283
270
  """
284
271
 
285
272
 
286
273
  Piece = [1] * len(W)
287
- #print('Piece:' + Piece)
288
- #input()
289
- # Boş bir üç boyutlu liste oluşturma
274
+
290
275
  Divides = [[[0] for _ in range(len(W))] for _ in range(class_count)]
291
276
 
292
277
 
@@ -296,15 +281,11 @@ def synaptic_dividing(
296
281
  Piece[i] = int(math.floor(W[i].shape[0] / class_count))
297
282
 
298
283
  cs = 0
299
- # j = Classes, i = Weights, [0] = CutStart.
300
284
 
301
285
  for i in range(len(W)):
302
286
  for j in range(class_count):
303
287
  cs = cs + Piece[i]
304
288
  Divides[j][i][0] = cs
305
- #pruning_param[i] = cs
306
- #print('Divides: ' + j + i + ' = ' + Divides[j][i][0])
307
- #input()
308
289
 
309
290
  j = 0
310
291
  cs = 0
@@ -314,18 +295,18 @@ def synaptic_dividing(
314
295
 
315
296
  def fex(
316
297
  Input, # list[num]: Input data.
317
- w, # list[list[num]]: Weight matrix of the neural network.,
318
- Class, # Which class is, if training. num
319
- is_training # num: 1 or 0
298
+ w, # num: Weight matrix of the neural network.,
299
+ Class, # int: Which class is, if training.
300
+ is_training # int: 1 or 0
320
301
  ) -> tuple:
321
302
  """
322
303
  Applies feature extraction process to the input data using synaptic pruning.
323
304
 
324
305
  Args:
325
- Input (list[num]): Input data.
326
- w (list[list[num]]): Weight matrix of the neural network.
327
- ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
328
- activation_potential (num): Threshold value for comparison.
306
+ Input (num): Input data.
307
+ w (num): Weight matrix of the neural network.
308
+ Class (int): Which class is, if training.
309
+ is_training (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
329
310
 
330
311
  Returns:
331
312
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
@@ -341,29 +322,28 @@ def fex(
341
322
 
342
323
  def cat(
343
324
  Input, # list[num]: Input data.
344
- w, # list[list[num]]: Weight matrix of the neural network.
345
- isTrain,
346
- piece # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
325
+ w, # list[num]: Weight matrix of the neural network.
326
+ is_training, # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
327
+ piece # int Which set of neurons will information be transferred to?
347
328
  ) -> tuple:
348
329
  """
349
330
  Applies categorization process to the input data using synaptic pruning if specified.
350
331
 
351
332
  Args:
352
333
  Input (list[num]): Input data.
353
- w (list[list[num]]): Weight matrix of the neural network.
354
- ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
355
- activation_potential (num): Threshold value for comparison.
356
- isTrain (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
357
-
334
+ w (num): Weight matrix of the neural network.
335
+ is_training (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
336
+ piece (int): Which set of neurons will information be transferred to?
337
+ ) -> tuple:
358
338
  Returns:
359
339
  tuple: A tuple containing the neural layer (vector) result and the possibly updated weight matrix.
360
340
  """
361
341
 
362
342
  PruneIndex = np.where(Input == 0)
363
343
 
364
- if isTrain == 1:
344
+ if is_training == 1:
365
345
 
366
- w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, isTrain)
346
+ w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, is_training)
367
347
 
368
348
 
369
349
  neural_layer = np.dot(w, Input)
@@ -372,16 +352,16 @@ def cat(
372
352
 
373
353
 
374
354
  def normalization(
375
- Input # list[num]: Input data to be normalized.
355
+ Input # num: Input data to be normalized.
376
356
  ):
377
357
  """
378
358
  Normalizes the input data using maximum absolute scaling.
379
359
 
380
360
  Args:
381
- Input (list[num]): Input data to be normalized.
361
+ Input (num): Input data to be normalized.
382
362
 
383
363
  Returns:
384
- list[num]: Scaled input data after normalization.
364
+ (num) Scaled input data after normalization.
385
365
  """
386
366
 
387
367
 
@@ -395,47 +375,47 @@ def normalization(
395
375
 
396
376
 
397
377
  def Softmax(
398
- x # list[num]: Input data to be transformed using softmax function.
378
+ x # num: Input data to be transformed using softmax function.
399
379
  ):
400
380
  """
401
381
  Applies the softmax function to the input data.
402
382
 
403
383
  Args:
404
- x (list[num]): Input data to be transformed using softmax function.
384
+ (num): Input data to be transformed using softmax function.
405
385
 
406
386
  Returns:
407
- list[num]: Transformed data after applying softmax function.
387
+ (num): Transformed data after applying softmax function.
408
388
  """
409
389
 
410
390
  return softmax(x)
411
391
 
412
392
 
413
393
  def Sigmoid(
414
- x # list[num]: Input data to be transformed using sigmoid function.
394
+ x # num: Input data to be transformed using sigmoid function.
415
395
  ):
416
396
  """
417
397
  Applies the sigmoid function to the input data.
418
398
 
419
399
  Args:
420
- x (list[num]): Input data to be transformed using sigmoid function.
400
+ (num): Input data to be transformed using sigmoid function.
421
401
 
422
402
  Returns:
423
- list[num]: Transformed data after applying sigmoid function.
403
+ (num): Transformed data after applying sigmoid function.
424
404
  """
425
405
  return expit(x)
426
406
 
427
407
 
428
408
  def Relu(
429
- x # list[num]: Input data to be transformed using ReLU function.
409
+ x # num: Input data to be transformed using ReLU function.
430
410
  ):
431
411
  """
432
412
  Applies the Rectified Linear Unit (ReLU) function to the input data.
433
413
 
434
414
  Args:
435
- x (list[num]): Input data to be transformed using ReLU function.
415
+ (num): Input data to be transformed using ReLU function.
436
416
 
437
417
  Returns:
438
- list[num]: Transformed data after applying ReLU function.
418
+ (num): Transformed data after applying ReLU function.
439
419
  """
440
420
 
441
421
 
@@ -445,20 +425,20 @@ def Relu(
445
425
 
446
426
 
447
427
  def evaluate(
448
- x_test, # list[list[num]]: Test input data.
428
+ x_test, # list[num]: Test input data.
449
429
  y_test, # list[num]: Test labels.
450
- visualize, # visualize Testing procces or not visualize ('y' or 'n')
451
- W # list[list[num]]: Weight matrix of the neural network.
430
+ visualize, # str: visualize Testing procces or not visualize ('y' or 'n')
431
+ W # list[num]: Weight matrix list of the neural network.
452
432
  ) -> tuple:
453
433
  infoTestModel = """
454
434
  Tests the neural network model with the given test data.
455
435
 
456
436
  Args:
457
- x_test (list[list[num]]): Test input data.
437
+ x_test (list[num]): Test input data.
458
438
  y_test (list[num]): Test labels.
459
439
  activation_potential (float): Input activation potential
460
440
  visualize (str): Visualize test progress ? ('y' or 'n')
461
- W (list[list[num]]): Weight matrix of the neural network.
441
+ W (list[num]): Weight matrix list of the neural network.
462
442
 
463
443
  Returns:
464
444
  tuple: A tuple containing the predicted labels and the accuracy of the model.
@@ -468,7 +448,7 @@ def evaluate(
468
448
 
469
449
 
470
450
  try:
471
- Wc = [0] * len(W)
451
+ Wc = [0] * len(W) # Wc = Weight copy
472
452
  true = 0
473
453
  TestPredictions = [None] * len(y_test)
474
454
  for i, w in enumerate(W):
@@ -734,10 +714,9 @@ def load_model(model_name,
734
714
  Arguments:
735
715
  model_name (str): Name of the model.
736
716
  model_path (str): Path where the model is saved.
737
- log_type (str): Type of log to load (options: 'csv', 'txt', 'hdf5').
738
717
 
739
718
  Returns:
740
- lists: W(list[num]), activation_potential, df (DataFrame of the model)
719
+ lists: W(list[num]), activation_potential, DataFrame of the model
741
720
  """
742
721
  pass
743
722
 
@@ -0,0 +1,8 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyerualjetwork
3
+ Version: 2.1.0
4
+ Summary: Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
+ Author: Hasan Can Beydili
6
+ Author-email: tchasancan@gmail.com
7
+ Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
+
@@ -0,0 +1,8 @@
1
+ plan_bi/__init__.py,sha256=itKrgkPwaA0VKwo2etQkiXv6m4pUwV7N06tRxZOVhuU,397
2
+ plan_bi/plan_bi.py,sha256=ZbSUejhr_onrLhQXTvkY2Y2vLEaobaAqLTwkVPpwO58,33183
3
+ plan_di/__init__.py,sha256=F4PPBzkY-_HXDjzA0Xyx2cMlcHtNBs7OHb-AxStZjP4,397
4
+ plan_di/plan_di.py,sha256=06XsMuNUeDV7HDYni4-wk-B4MzRt8cW90kx-QyhR-Us,32205
5
+ pyerualjetwork-2.1.0.dist-info/METADATA,sha256=loYTjaQ1BtdWwmo2bKxG-f_6oTCS_LEQcDeyhsiwf2A,325
6
+ pyerualjetwork-2.1.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ pyerualjetwork-2.1.0.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
+ pyerualjetwork-2.1.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pyerualjetwork
3
- Version: 2.0.8
4
- Summary: Advanced python deep learning library. New features: BINARY INJECTION (OLD) NOW ADDED NEW DIRECT FEATURE INJECTION. AND 'standard_scaler' func. Important Note: If there are any data smaller than 0 among the input data of the entry model, import plan_bi; otherwise, import plan_di. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
- Author: Hasan Can Beydili
6
- Author-email: tchasancan@gmail.com
7
- Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
-
@@ -1,8 +0,0 @@
1
- plan_bi/__init__.py,sha256=itKrgkPwaA0VKwo2etQkiXv6m4pUwV7N06tRxZOVhuU,397
2
- plan_bi/plan_bi.py,sha256=RL2Yu2NN3KoXU5OEnijkSEXabo2fsJt-ZpCvV_WiHFI,33909
3
- plan_di/__init__.py,sha256=F4PPBzkY-_HXDjzA0Xyx2cMlcHtNBs7OHb-AxStZjP4,397
4
- plan_di/plan_di.py,sha256=fmPuSIDl-x3W51aETEhXNx1W2DSFCLRJF3-1rDARgSA,32873
5
- pyerualjetwork-2.0.8.dist-info/METADATA,sha256=IwLoEHpItc5cWg94uuONijwxwuOTS5RQ43oS6rjsBJw,588
6
- pyerualjetwork-2.0.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
- pyerualjetwork-2.0.8.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
- pyerualjetwork-2.0.8.dist-info/RECORD,,