pyerualjetwork 2.0.6__tar.gz → 2.0.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.0.6
3
+ Version: 2.0.8
4
4
  Summary: Advanced python deep learning library. New features: BINARY INJECTION (OLD) NOW ADDED NEW DIRECT FEATURE INJECTION. AND 'standard_scaler' func. Important Note: If there are any data smaller than 0 among the input data of the entry model, import plan_bi; otherwise, import plan_di. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,5 @@
1
+ # pyerualjetwork/PLAN/__init__.py
2
+
3
+ # Bu dosya, plan modülünün ana giriş noktasıdır.
4
+
5
+ from .plan_bi import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler
@@ -0,0 +1,5 @@
1
+ # pyerualjetwork/PLAN/__init__.py
2
+
3
+ # Bu dosya, plan modülünün ana giriş noktasıdır.
4
+
5
+ from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler
@@ -87,7 +87,7 @@ def fit(
87
87
  for Lindex, Layer in enumerate(layers):
88
88
 
89
89
 
90
- # neural_layer = normalization(neural_layer)
90
+ neural_layer = normalization(neural_layer)
91
91
 
92
92
 
93
93
  if Layer == 'fex':
@@ -485,7 +485,7 @@ def evaluate(
485
485
 
486
486
  for index, Layer in enumerate(layers):
487
487
 
488
- # neural_layer = normalization(neural_layer)
488
+ neural_layer = normalization(neural_layer)
489
489
 
490
490
  if layers[index] == 'fex':
491
491
  neural_layer = fex(neural_layer, W[index], 0, 0)[0]
@@ -806,7 +806,7 @@ def predict_model_ssd(Input,model_name,model_path):
806
806
  neural_layer = neural_layer.ravel()
807
807
  for index, Layer in enumerate(layers):
808
808
 
809
- # neural_layer = normalization(neural_layer)
809
+ neural_layer = normalization(neural_layer)
810
810
 
811
811
  if layers[index] == 'fex':
812
812
  neural_layer = fex(neural_layer, W[index],0, 0)[0]
@@ -846,7 +846,7 @@ def predict_model_ram(Input,W):
846
846
  neural_layer = neural_layer.ravel()
847
847
  for index, Layer in enumerate(layers):
848
848
 
849
- # neural_layer = normalization(neural_layer)
849
+ neural_layer = normalization(neural_layer)
850
850
 
851
851
  if layers[index] == 'fex':
852
852
  neural_layer = fex(neural_layer, W[index],0, 0)[0]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.0.6
3
+ Version: 2.0.8
4
4
  Summary: Advanced python deep learning library. New features: BINARY INJECTION (OLD) NOW ADDED NEW DIRECT FEATURE INJECTION. AND 'standard_scaler' func. Important Note: If there are any data smaller than 0 among the input data of the entry model, import plan_bi; otherwise, import plan_di. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,7 +1,8 @@
1
1
  setup.py
2
- plan/__init__.py
3
- plan/plan_bi.py
4
- plan/plan_di.py
2
+ plan_bi/__init__.py
3
+ plan_bi/plan_bi.py
4
+ plan_di/__init__.py
5
+ plan_di/plan_di.py
5
6
  pyerualjetwork.egg-info/PKG-INFO
6
7
  pyerualjetwork.egg-info/SOURCES.txt
7
8
  pyerualjetwork.egg-info/dependency_links.txt
@@ -0,0 +1,2 @@
1
+ plan_bi
2
+ plan_di
@@ -5,7 +5,7 @@ from setuptools import setup, find_packages
5
5
  setup(
6
6
 
7
7
  name = "pyerualjetwork",
8
- version = "2.0.6",
8
+ version = "2.0.8",
9
9
  author = "Hasan Can Beydili",
10
10
  author_email = "tchasancan@gmail.com",
11
11
  description= "Advanced python deep learning library. New features: BINARY INJECTION (OLD) NOW ADDED NEW DIRECT FEATURE INJECTION. AND 'standard_scaler' func. Important Note: If there are any data smaller than 0 among the input data of the entry model, import plan_bi; otherwise, import plan_di. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)",
@@ -1,6 +0,0 @@
1
- # pyerualjetwork/PLAN/__init__.py
2
-
3
- # Bu dosya, plan modülünün ana giriş noktasıdır.
4
-
5
- from .plan_bi import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler
6
- from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler
File without changes