pyerualjetwork 2.0.4__py3-none-any.whl → 2.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -16,7 +16,7 @@ import seaborn as sns
16
16
  def fit(
17
17
  x_train: List[Union[int, float]],
18
18
  y_train: List[Union[int, float, str]], # At least two.. and one hot encoded
19
- action_potential: Union[float],
19
+ activation_potential: Union[float],
20
20
  ) -> str:
21
21
 
22
22
  infoPLAN = """
@@ -25,16 +25,16 @@ def fit(
25
25
  Args:
26
26
  x_train (list[num]): List of input data.
27
27
  y_train (list[num]): List of y_train. (one hot encoded)
28
- action_potential (float): Input ACTION potential
28
+ activation_potential (float): Input activation potential
29
29
 
30
30
  Returns:
31
- list([num]): (Weight matrices list, train_predictions list, Trainacc).
31
+ list([num]): (Weight matrices list, train_predictions list, Train_acc).
32
32
  error handled ?: Process status ('e')
33
33
  """
34
34
 
35
- if action_potential < 0 or action_potential > 1:
35
+ if activation_potential < 0 or activation_potential > 1:
36
36
 
37
- print(Fore.RED + "ERROR101: ACTION potential value must be in range 0-1. from: fit",infoPLAN)
37
+ print(Fore.RED + "ERROR101: ACTIVATION potential value must be in range 0-1. from: fit",infoPLAN)
38
38
  return 'e'
39
39
 
40
40
  if len(x_train) != len(y_train):
@@ -97,9 +97,9 @@ def fit(
97
97
 
98
98
 
99
99
  if Layer == 'fex':
100
- neural_layer,W[Lindex] = fex(neural_layer, W[Lindex], action_potential, Piece[Windex], 1)
100
+ neural_layer,W[Lindex] = fex(neural_layer, W[Lindex], activation_potential, Piece[Windex], 1)
101
101
  elif Layer == 'cat':
102
- neural_layer,W[Lindex] = cat(neural_layer, W[Lindex], action_potential, 1, Piece[Windex])
102
+ neural_layer,W[Lindex] = cat(neural_layer, W[Lindex], activation_potential, 1, Piece[Windex])
103
103
 
104
104
  RealOutput = np.argmax(y_train[index])
105
105
  PredictedOutput = np.argmax(neural_layer)
@@ -319,25 +319,25 @@ def synaptic_dividing(
319
319
  def fex(
320
320
  Input, # list[num]: Input data.
321
321
  w, # list[list[num]]: Weight matrix of the neural network.,
322
- action_potential, # num: Threshold value for comparison.
322
+ activation_potential, # num: Threshold value for comparison.
323
323
  piece, # ???
324
324
  is_training # num: 1 or 0
325
325
  ) -> tuple:
326
326
  """
327
- Applies feature extraction process to the input data using synaptic pruning.
327
+ Applies feature extrACTIVATION process to the input data using synaptic pruning.
328
328
 
329
329
  Args:
330
330
  Input (list[num]): Input data.
331
331
  w (list[list[num]]): Weight matrix of the neural network.
332
- ACTION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
333
- action_potential (num): Threshold value for comparison.
332
+ ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
333
+ activation_potential (num): Threshold value for comparison.
334
334
 
335
335
  Returns:
336
336
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
337
337
  """
338
338
 
339
339
 
340
- PruneIndex = np.where(Input < action_potential)
340
+ PruneIndex = np.where(Input < activation_potential)
341
341
  w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, is_training)
342
342
 
343
343
  neural_layer = np.dot(w, Input)
@@ -347,7 +347,7 @@ def fex(
347
347
  def cat(
348
348
  Input, # list[num]: Input data.
349
349
  w, # list[list[num]]: Weight matrix of the neural network.
350
- action_potential, # num: Threshold value for comparison.
350
+ activation_potential, # num: Threshold value for comparison.
351
351
  isTrain,
352
352
  piece # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
353
353
  ) -> tuple:
@@ -357,8 +357,8 @@ def cat(
357
357
  Args:
358
358
  Input (list[num]): Input data.
359
359
  w (list[list[num]]): Weight matrix of the neural network.
360
- ACTION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
361
- action_potential (num): Threshold value for comparison.
360
+ ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
361
+ activation_potential (num): Threshold value for comparison.
362
362
  isTrain (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
363
363
 
364
364
  Returns:
@@ -453,7 +453,7 @@ def Relu(
453
453
  def evaluate(
454
454
  x_test, # list[list[num]]: Test input data.
455
455
  y_test, # list[num]: Test labels.
456
- action_potential, # list[num]: List of ACTION POTENTIALS for each layer.
456
+ activation_potential, # list[num]: List of ACTIVATION POTENTIALS for each layer.
457
457
  visualize, # visualize Testing procces or not visualize ('y' or 'n')
458
458
  W # list[list[num]]: Weight matrix of the neural network.
459
459
  ) -> tuple:
@@ -463,7 +463,7 @@ def evaluate(
463
463
  Args:
464
464
  x_test (list[list[num]]): Test input data.
465
465
  y_test (list[num]): Test labels.
466
- action_potential (float): Input ACTION potential
466
+ activation_potential (float): Input activation potential
467
467
  visualize (str): Visualize test progress ? ('y' or 'n')
468
468
  W (list[list[num]]): Weight matrix of the neural network.
469
469
 
@@ -495,9 +495,9 @@ def evaluate(
495
495
  neural_layer = normalization(neural_layer)
496
496
 
497
497
  if layers[index] == 'fex':
498
- neural_layer = fex(neural_layer, W[index], action_potential, 0, 0)[0]
498
+ neural_layer = fex(neural_layer, W[index], activation_potential, 0, 0)[0]
499
499
  if layers[index] == 'cat':
500
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
500
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
501
501
 
502
502
  for i, w in enumerate(Wc):
503
503
  W[i] = np.copy(w)
@@ -572,7 +572,7 @@ def evaluate(
572
572
 
573
573
  except:
574
574
 
575
- print(Fore.RED + "ERROR: Testing model parameters like 'action_potential' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
575
+ print(Fore.RED + "ERROR: Testing model parameters like 'activation_potential' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
576
576
  return 'e'
577
577
 
578
578
 
@@ -582,7 +582,7 @@ def evaluate(
582
582
  def save_model(model_name,
583
583
  model_type,
584
584
  class_count,
585
- action_potential,
585
+ activation_potential,
586
586
  test_acc,
587
587
  weights_type,
588
588
  weights_format,
@@ -591,13 +591,13 @@ def save_model(model_name,
591
591
  ):
592
592
 
593
593
  infosave_model = """
594
- Function to save a deep learning model.
594
+ Function to save a pruning learning model.
595
595
 
596
596
  Arguments:
597
597
  model_name (str): Name of the model.
598
598
  model_type (str): Type of the model.(options: PLAN)
599
599
  class_count (int): Number of classes.
600
- action_potential (list): List containing ACTION POTENTIALS.
600
+ activation_potential (float): Activation potential.
601
601
  test_acc (float): Test accuracy of the model.
602
602
  weights_type (str): Type of weights to save (options: 'txt', 'npy', 'mat').
603
603
  WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
@@ -641,7 +641,7 @@ def save_model(model_name,
641
641
  'LAYERS': layers,
642
642
  'LAYER COUNT': len(layers),
643
643
  'CLASS COUNT': class_count,
644
- 'ACTION POTENTIAL': action_potential,
644
+ 'ACTIVATION POTENTIAL': activation_potential,
645
645
  'NEURON COUNT': NeuronCount,
646
646
  'SYNAPSE COUNT': SynapseCount,
647
647
  'TEST ACCURACY': test_acc,
@@ -738,7 +738,7 @@ def load_model(model_name,
738
738
  model_path,
739
739
  ):
740
740
  infoload_model = """
741
- Function to load a deep learning model.
741
+ Function to load a pruning learning model.
742
742
 
743
743
  Arguments:
744
744
  model_name (str): Name of the model.
@@ -746,7 +746,7 @@ def load_model(model_name,
746
746
  log_type (str): Type of log to load (options: 'csv', 'txt', 'hdf5').
747
747
 
748
748
  Returns:
749
- lists: W(list[num]), action_potential, df (DataFrame of the model)
749
+ lists: W(list[num]), activation_potential, df (DataFrame of the model)
750
750
  """
751
751
  pass
752
752
 
@@ -766,7 +766,7 @@ def load_model(model_name,
766
766
  layers = df['LAYERS'].tolist()
767
767
  layer_count = int(df['LAYER COUNT'].iloc[0])
768
768
  class_count = int(df['CLASS COUNT'].iloc[0])
769
- action_potential = int(df['ACTION POTENTIAL'].iloc[0])
769
+ activation_potential = int(df['ACTIVATION POTENTIAL'].iloc[0])
770
770
  NeuronCount = int(df['NEURON COUNT'].iloc[0])
771
771
  SynapseCount = int(df['SYNAPSE COUNT'].iloc[0])
772
772
  test_acc = int(df['TEST ACCURACY'].iloc[0])
@@ -789,12 +789,12 @@ def load_model(model_name,
789
789
  else:
790
790
  raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: load_model." + infoload_model + Style.RESET_ALL)
791
791
  print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
792
- return W,action_potential,df
792
+ return W,activation_potential,df
793
793
 
794
794
  def predict_model_ssd(Input,model_name,model_path):
795
795
 
796
796
  infopredict_model_ssd = """
797
- Function to make a prediction using a divided pruning deep learning neural network (PLAN).
797
+ Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
798
798
 
799
799
  Arguments:
800
800
  Input (list or ndarray): Input data for the model (single vector or single matrix).
@@ -803,7 +803,7 @@ def predict_model_ssd(Input,model_name,model_path):
803
803
  Returns:
804
804
  ndarray: Output from the model.
805
805
  """
806
- W,action_potential = load_model(model_name,model_path)[0:2]
806
+ W,activation_potential = load_model(model_name,model_path)[0:2]
807
807
 
808
808
  layers = ['fex','cat']
809
809
 
@@ -819,9 +819,9 @@ def predict_model_ssd(Input,model_name,model_path):
819
819
  neural_layer = normalization(neural_layer)
820
820
 
821
821
  if layers[index] == 'fex':
822
- neural_layer = fex(neural_layer, W[index], action_potential,0, 0)[0]
822
+ neural_layer = fex(neural_layer, W[index], activation_potential,0, 0)[0]
823
823
  if layers[index] == 'cat':
824
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
824
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
825
825
  except:
826
826
  print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: predict_model_ssd" + infopredict_model_ssd + Style.RESET_ALL)
827
827
  return 'e'
@@ -830,15 +830,15 @@ def predict_model_ssd(Input,model_name,model_path):
830
830
  return neural_layer
831
831
 
832
832
 
833
- def predict_model_ram(Input,action_potential,W):
833
+ def predict_model_ram(Input,activation_potential,W):
834
834
 
835
835
  infopredict_model_ram = """
836
- Function to make a prediction using a pruning learning artificial neural network (PLAN)
836
+ Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
837
837
  from weights and parameters stored in memory.
838
838
 
839
839
  Arguments:
840
840
  Input (list or ndarray): Input data for the model (single vector or single matrix).
841
- action_potential (list): ACTION POTENTIAL.
841
+ activation_potential (float): Activation potential.
842
842
  W (list of ndarrays): Weights of the model.
843
843
 
844
844
  Returns:
@@ -859,9 +859,9 @@ def predict_model_ram(Input,action_potential,W):
859
859
  neural_layer = normalization(neural_layer)
860
860
 
861
861
  if layers[index] == 'fex':
862
- neural_layer = fex(neural_layer, W[index], action_potential,0, 0)[0]
862
+ neural_layer = fex(neural_layer, W[index], activation_potential,0, 0)[0]
863
863
  if layers[index] == 'cat':
864
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
864
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
865
865
 
866
866
  except:
867
867
  print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + infopredict_model_ram + Style.RESET_ALL)
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.0.4
4
- Summary: Advanced python deep learning library. New features: More simple and practical, all functions and variables are snake_case. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
3
+ Version: 2.0.5
4
+ Summary: Advanced python deep learning library. New features: More simple and practical, action_potential changed to activation_potential, all functions and variables are snake_case. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classifcation,pruning learning artficial neural networks
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=TYPKx35TBM7X814H-RQmVK9DduX5GX0JdTW7_-b2ZUc,377
2
+ plan/plan.py,sha256=VAQ9D8vIMJgyavkzWVPvH-coCp31x3YNP1iRrS9kHFs,33195
3
+ pyerualjetwork-2.0.5.dist-info/METADATA,sha256=q1uNR-YyoJmZaUmD9GotSajEkhL9z8Nl0R9B7r_nt6M,481
4
+ pyerualjetwork-2.0.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.0.5.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.0.5.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=TYPKx35TBM7X814H-RQmVK9DduX5GX0JdTW7_-b2ZUc,377
2
- plan/plan.py,sha256=-41P4Rj5_-PrYWYXcaavYHlu8AninycX3FJRs33JrQQ,33028
3
- pyerualjetwork-2.0.4.dist-info/METADATA,sha256=GVCzZR_GTYxGb4TYWyFj4ff4dusUzBmtwt4ceGnyI-w,431
4
- pyerualjetwork-2.0.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.0.4.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.0.4.dist-info/RECORD,,