pyerualjetwork 2.0.3__py3-none-any.whl → 2.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -16,7 +16,7 @@ import seaborn as sns
16
16
  def fit(
17
17
  x_train: List[Union[int, float]],
18
18
  y_train: List[Union[int, float, str]], # At least two.. and one hot encoded
19
- action_potential: Union[float],
19
+ activation_potential: Union[float],
20
20
  ) -> str:
21
21
 
22
22
  infoPLAN = """
@@ -25,13 +25,18 @@ def fit(
25
25
  Args:
26
26
  x_train (list[num]): List of input data.
27
27
  y_train (list[num]): List of y_train. (one hot encoded)
28
- action_potential (float): Input ACTION potential
28
+ activation_potential (float): Input activation potential
29
29
 
30
30
  Returns:
31
- list([num]): (Weight matrices list, train_predictions list, Trainacc).
31
+ list([num]): (Weight matrices list, train_predictions list, Train_acc).
32
32
  error handled ?: Process status ('e')
33
33
  """
34
34
 
35
+ if activation_potential < 0 or activation_potential > 1:
36
+
37
+ print(Fore.RED + "ERROR101: ACTIVATION potential value must be in range 0-1. from: fit",infoPLAN)
38
+ return 'e'
39
+
35
40
  if len(x_train) != len(y_train):
36
41
  print(Fore.RED + "ERROR301: x_train list and y_train list must be same length. from: fit",infoPLAN)
37
42
  return 'e'
@@ -92,9 +97,9 @@ def fit(
92
97
 
93
98
 
94
99
  if Layer == 'fex':
95
- neural_layer,W[Lindex] = fex(neural_layer, W[Lindex], action_potential, Piece[Windex], 1)
100
+ neural_layer,W[Lindex] = fex(neural_layer, W[Lindex], activation_potential, Piece[Windex], 1)
96
101
  elif Layer == 'cat':
97
- neural_layer,W[Lindex] = cat(neural_layer, W[Lindex], action_potential, 1, Piece[Windex])
102
+ neural_layer,W[Lindex] = cat(neural_layer, W[Lindex], activation_potential, 1, Piece[Windex])
98
103
 
99
104
  RealOutput = np.argmax(y_train[index])
100
105
  PredictedOutput = np.argmax(neural_layer)
@@ -314,25 +319,25 @@ def synaptic_dividing(
314
319
  def fex(
315
320
  Input, # list[num]: Input data.
316
321
  w, # list[list[num]]: Weight matrix of the neural network.,
317
- action_potential, # num: Threshold value for comparison.
322
+ activation_potential, # num: Threshold value for comparison.
318
323
  piece, # ???
319
324
  is_training # num: 1 or 0
320
325
  ) -> tuple:
321
326
  """
322
- Applies feature extraction process to the input data using synaptic pruning.
327
+ Applies feature extrACTIVATION process to the input data using synaptic pruning.
323
328
 
324
329
  Args:
325
330
  Input (list[num]): Input data.
326
331
  w (list[list[num]]): Weight matrix of the neural network.
327
- ACTION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
328
- action_potential (num): Threshold value for comparison.
332
+ ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
333
+ activation_potential (num): Threshold value for comparison.
329
334
 
330
335
  Returns:
331
336
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
332
337
  """
333
338
 
334
339
 
335
- PruneIndex = np.where(Input < action_potential)
340
+ PruneIndex = np.where(Input < activation_potential)
336
341
  w = synaptic_pruning(w, PruneIndex, 'col', 0, 0, piece, is_training)
337
342
 
338
343
  neural_layer = np.dot(w, Input)
@@ -342,7 +347,7 @@ def fex(
342
347
  def cat(
343
348
  Input, # list[num]: Input data.
344
349
  w, # list[list[num]]: Weight matrix of the neural network.
345
- action_potential, # num: Threshold value for comparison.
350
+ activation_potential, # num: Threshold value for comparison.
346
351
  isTrain,
347
352
  piece # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
348
353
  ) -> tuple:
@@ -352,8 +357,8 @@ def cat(
352
357
  Args:
353
358
  Input (list[num]): Input data.
354
359
  w (list[list[num]]): Weight matrix of the neural network.
355
- ACTION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
356
- action_potential (num): Threshold value for comparison.
360
+ ACTIVATION_threshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
361
+ activation_potential (num): Threshold value for comparison.
357
362
  isTrain (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
358
363
 
359
364
  Returns:
@@ -448,7 +453,7 @@ def Relu(
448
453
  def evaluate(
449
454
  x_test, # list[list[num]]: Test input data.
450
455
  y_test, # list[num]: Test labels.
451
- action_potential, # list[num]: List of ACTION POTENTIALS for each layer.
456
+ activation_potential, # list[num]: List of ACTIVATION POTENTIALS for each layer.
452
457
  visualize, # visualize Testing procces or not visualize ('y' or 'n')
453
458
  W # list[list[num]]: Weight matrix of the neural network.
454
459
  ) -> tuple:
@@ -458,7 +463,7 @@ def evaluate(
458
463
  Args:
459
464
  x_test (list[list[num]]): Test input data.
460
465
  y_test (list[num]): Test labels.
461
- action_potential (float): Input ACTION potential
466
+ activation_potential (float): Input activation potential
462
467
  visualize (str): Visualize test progress ? ('y' or 'n')
463
468
  W (list[list[num]]): Weight matrix of the neural network.
464
469
 
@@ -490,9 +495,9 @@ def evaluate(
490
495
  neural_layer = normalization(neural_layer)
491
496
 
492
497
  if layers[index] == 'fex':
493
- neural_layer = fex(neural_layer, W[index], action_potential, 0, 0)[0]
498
+ neural_layer = fex(neural_layer, W[index], activation_potential, 0, 0)[0]
494
499
  if layers[index] == 'cat':
495
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
500
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
496
501
 
497
502
  for i, w in enumerate(Wc):
498
503
  W[i] = np.copy(w)
@@ -567,7 +572,7 @@ def evaluate(
567
572
 
568
573
  except:
569
574
 
570
- print(Fore.RED + "ERROR: Testing model parameters like 'action_potential' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
575
+ print(Fore.RED + "ERROR: Testing model parameters like 'activation_potential' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
571
576
  return 'e'
572
577
 
573
578
 
@@ -577,7 +582,7 @@ def evaluate(
577
582
  def save_model(model_name,
578
583
  model_type,
579
584
  class_count,
580
- action_potential,
585
+ activation_potential,
581
586
  test_acc,
582
587
  weights_type,
583
588
  weights_format,
@@ -586,13 +591,13 @@ def save_model(model_name,
586
591
  ):
587
592
 
588
593
  infosave_model = """
589
- Function to save a deep learning model.
594
+ Function to save a pruning learning model.
590
595
 
591
596
  Arguments:
592
597
  model_name (str): Name of the model.
593
598
  model_type (str): Type of the model.(options: PLAN)
594
599
  class_count (int): Number of classes.
595
- action_potential (list): List containing ACTION POTENTIALS.
600
+ activation_potential (float): Activation potential.
596
601
  test_acc (float): Test accuracy of the model.
597
602
  weights_type (str): Type of weights to save (options: 'txt', 'npy', 'mat').
598
603
  WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
@@ -636,7 +641,7 @@ def save_model(model_name,
636
641
  'LAYERS': layers,
637
642
  'LAYER COUNT': len(layers),
638
643
  'CLASS COUNT': class_count,
639
- 'ACTION POTENTIAL': action_potential,
644
+ 'ACTIVATION POTENTIAL': activation_potential,
640
645
  'NEURON COUNT': NeuronCount,
641
646
  'SYNAPSE COUNT': SynapseCount,
642
647
  'TEST ACCURACY': test_acc,
@@ -733,7 +738,7 @@ def load_model(model_name,
733
738
  model_path,
734
739
  ):
735
740
  infoload_model = """
736
- Function to load a deep learning model.
741
+ Function to load a pruning learning model.
737
742
 
738
743
  Arguments:
739
744
  model_name (str): Name of the model.
@@ -741,7 +746,7 @@ def load_model(model_name,
741
746
  log_type (str): Type of log to load (options: 'csv', 'txt', 'hdf5').
742
747
 
743
748
  Returns:
744
- lists: W(list[num]), action_potential, df (DataFrame of the model)
749
+ lists: W(list[num]), activation_potential, df (DataFrame of the model)
745
750
  """
746
751
  pass
747
752
 
@@ -761,7 +766,7 @@ def load_model(model_name,
761
766
  layers = df['LAYERS'].tolist()
762
767
  layer_count = int(df['LAYER COUNT'].iloc[0])
763
768
  class_count = int(df['CLASS COUNT'].iloc[0])
764
- action_potential = int(df['ACTION POTENTIAL'].iloc[0])
769
+ activation_potential = int(df['ACTIVATION POTENTIAL'].iloc[0])
765
770
  NeuronCount = int(df['NEURON COUNT'].iloc[0])
766
771
  SynapseCount = int(df['SYNAPSE COUNT'].iloc[0])
767
772
  test_acc = int(df['TEST ACCURACY'].iloc[0])
@@ -784,12 +789,12 @@ def load_model(model_name,
784
789
  else:
785
790
  raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: load_model." + infoload_model + Style.RESET_ALL)
786
791
  print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
787
- return W,action_potential,df
792
+ return W,activation_potential,df
788
793
 
789
794
  def predict_model_ssd(Input,model_name,model_path):
790
795
 
791
796
  infopredict_model_ssd = """
792
- Function to make a prediction using a divided pruning deep learning neural network (PLAN).
797
+ Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
793
798
 
794
799
  Arguments:
795
800
  Input (list or ndarray): Input data for the model (single vector or single matrix).
@@ -798,7 +803,7 @@ def predict_model_ssd(Input,model_name,model_path):
798
803
  Returns:
799
804
  ndarray: Output from the model.
800
805
  """
801
- W,action_potential = load_model(model_name,model_path)[0:2]
806
+ W,activation_potential = load_model(model_name,model_path)[0:2]
802
807
 
803
808
  layers = ['fex','cat']
804
809
 
@@ -814,9 +819,9 @@ def predict_model_ssd(Input,model_name,model_path):
814
819
  neural_layer = normalization(neural_layer)
815
820
 
816
821
  if layers[index] == 'fex':
817
- neural_layer = fex(neural_layer, W[index], action_potential,0, 0)[0]
822
+ neural_layer = fex(neural_layer, W[index], activation_potential,0, 0)[0]
818
823
  if layers[index] == 'cat':
819
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
824
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
820
825
  except:
821
826
  print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: predict_model_ssd" + infopredict_model_ssd + Style.RESET_ALL)
822
827
  return 'e'
@@ -825,15 +830,15 @@ def predict_model_ssd(Input,model_name,model_path):
825
830
  return neural_layer
826
831
 
827
832
 
828
- def predict_model_ram(Input,action_potential,W):
833
+ def predict_model_ram(Input,activation_potential,W):
829
834
 
830
835
  infopredict_model_ram = """
831
- Function to make a prediction using a pruning learning artificial neural network (PLAN)
836
+ Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
832
837
  from weights and parameters stored in memory.
833
838
 
834
839
  Arguments:
835
840
  Input (list or ndarray): Input data for the model (single vector or single matrix).
836
- action_potential (list): ACTION POTENTIAL.
841
+ activation_potential (float): Activation potential.
837
842
  W (list of ndarrays): Weights of the model.
838
843
 
839
844
  Returns:
@@ -854,9 +859,9 @@ def predict_model_ram(Input,action_potential,W):
854
859
  neural_layer = normalization(neural_layer)
855
860
 
856
861
  if layers[index] == 'fex':
857
- neural_layer = fex(neural_layer, W[index], action_potential,0, 0)[0]
862
+ neural_layer = fex(neural_layer, W[index], activation_potential,0, 0)[0]
858
863
  if layers[index] == 'cat':
859
- neural_layer = cat(neural_layer, W[index], action_potential, 0, 0)[0]
864
+ neural_layer = cat(neural_layer, W[index], activation_potential, 0, 0)[0]
860
865
 
861
866
  except:
862
867
  print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + infopredict_model_ram + Style.RESET_ALL)
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.0.3
4
- Summary: Advanced python deep learning library. New features: More simple and practical, all functions and variables are snake_case. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
3
+ Version: 2.0.5
4
+ Summary: Advanced python deep learning library. New features: More simple and practical, action_potential changed to activation_potential, all functions and variables are snake_case. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classifcation,pruning learning artficial neural networks
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=TYPKx35TBM7X814H-RQmVK9DduX5GX0JdTW7_-b2ZUc,377
2
+ plan/plan.py,sha256=VAQ9D8vIMJgyavkzWVPvH-coCp31x3YNP1iRrS9kHFs,33195
3
+ pyerualjetwork-2.0.5.dist-info/METADATA,sha256=q1uNR-YyoJmZaUmD9GotSajEkhL9z8Nl0R9B7r_nt6M,481
4
+ pyerualjetwork-2.0.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.0.5.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.0.5.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=TYPKx35TBM7X814H-RQmVK9DduX5GX0JdTW7_-b2ZUc,377
2
- plan/plan.py,sha256=E91r0m4lt6XqnFlrpDq_ijWSFX-yMqT9CeTtMuRUzoA,32839
3
- pyerualjetwork-2.0.3.dist-info/METADATA,sha256=3WWM_e_w_6f7HsavoMHt1WzDP4W4x_Ak9ljawj1Mxcg,431
4
- pyerualjetwork-2.0.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.0.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.0.3.dist-info/RECORD,,