pyerualjetwork 2.0.1__py3-none-any.whl → 2.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/__init__.py CHANGED
@@ -2,5 +2,4 @@
2
2
 
3
3
  # Bu dosya, plan modülünün ana giriş noktasıdır.
4
4
 
5
- from .plan import auto_balancer, normalization, Softmax, Syy
6
- igmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation
5
+ from .plan import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, cat, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation
plan/plan.py CHANGED
@@ -16,7 +16,7 @@ import seaborn as sns
16
16
  def fit(
17
17
  x_train: List[Union[int, float]],
18
18
  y_train: List[Union[int, float, str]], # At least two.. and one hot encoded
19
- action_potential: List[Union[int, float]],
19
+ action_potential: Union[float],
20
20
  ) -> str:
21
21
 
22
22
  infoPLAN = """
@@ -31,11 +31,7 @@ def fit(
31
31
  list([num]): (Weight matrices list, train_predictions list, Trainacc).
32
32
  error handled ?: Process status ('e')
33
33
  """
34
- if action_potential < 0 or action_potential > 1:
35
-
36
- print(Fore.RED + "ERROR101: ACTION potential value must be in range 0-1. from: fit",infoPLAN)
37
- return 'e'
38
-
34
+
39
35
  if len(x_train) != len(y_train):
40
36
  print(Fore.RED + "ERROR301: x_train list and y_train list must be same length. from: fit",infoPLAN)
41
37
  return 'e'
@@ -51,7 +47,7 @@ def fit(
51
47
  y_train = [tuple(sublist) for sublist in y_train]
52
48
 
53
49
  neurons = [len(class_count),len(class_count)]
54
- layers = ['fex', 'cat']
50
+ layers = ['fex','cat']
55
51
 
56
52
  x_train[0] = np.array(x_train[0])
57
53
  x_train[0] = x_train[0].ravel()
@@ -93,7 +89,8 @@ def fit(
93
89
 
94
90
 
95
91
  neural_layer = normalization(neural_layer)
96
-
92
+
93
+
97
94
  if Layer == 'fex':
98
95
  neural_layer,W[Lindex] = fex(neural_layer, W[Lindex], action_potential, Piece[Windex], 1)
99
96
  elif Layer == 'cat':
@@ -363,7 +360,7 @@ def cat(
363
360
  tuple: A tuple containing the neural layer (vector) result and the possibly updated weight matrix.
364
361
  """
365
362
 
366
- PruneIndex = np.where(Input == action_potential)
363
+ PruneIndex = np.where(Input == 0)
367
364
 
368
365
  if isTrain == 1:
369
366
 
@@ -973,4 +970,4 @@ def get_acc():
973
970
 
974
971
  def get_pot():
975
972
 
976
- return 1
973
+ return 1
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.0.1
3
+ Version: 2.0.3
4
4
  Summary: Advanced python deep learning library. New features: More simple and practical, all functions and variables are snake_case. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=TYPKx35TBM7X814H-RQmVK9DduX5GX0JdTW7_-b2ZUc,377
2
+ plan/plan.py,sha256=E91r0m4lt6XqnFlrpDq_ijWSFX-yMqT9CeTtMuRUzoA,32839
3
+ pyerualjetwork-2.0.3.dist-info/METADATA,sha256=3WWM_e_w_6f7HsavoMHt1WzDP4W4x_Ak9ljawj1Mxcg,431
4
+ pyerualjetwork-2.0.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.0.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.0.3.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=I8tSmV3wEwAdpVm2w0nVD-EW6p1n2DYcqPKx600odCs,381
2
- plan/plan.py,sha256=eK0-QW-PDDGOIKUd7M4UZDcUBNPBM8yHWcf7_2BuaNQ,33061
3
- pyerualjetwork-2.0.1.dist-info/METADATA,sha256=fCI3b8VAWMTfuhonoz7zufBi-ktccWLJYJjmJmD317Y,431
4
- pyerualjetwork-2.0.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.0.1.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.0.1.dist-info/RECORD,,