pyerualjetwork 1.2.6__tar.gz → 1.2.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork-1.2.8/PKG-INFO +7 -0
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/plan/plan.py +74 -74
- pyerualjetwork-1.2.8/pyerualjetwork.egg-info/PKG-INFO +7 -0
- pyerualjetwork-1.2.8/setup.py +15 -0
- pyerualjetwork-1.2.6/PKG-INFO +0 -7
- pyerualjetwork-1.2.6/pyerualjetwork.egg-info/PKG-INFO +0 -7
- pyerualjetwork-1.2.6/setup.py +0 -15
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/plan/__init__.py +0 -0
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/pyerualjetwork.egg-info/SOURCES.txt +0 -0
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/pyerualjetwork.egg-info/dependency_links.txt +0 -0
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/pyerualjetwork.egg-info/top_level.txt +0 -0
- {pyerualjetwork-1.2.6 → pyerualjetwork-1.2.8}/setup.cfg +0 -0
@@ -0,0 +1,7 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: pyerualjetwork
|
3
|
+
Version: 1.2.8
|
4
|
+
Summary: Advanced python deep learning library. 'ThresholdSigns' changed to 'MembranThresholds' and 'ThresholdValues' changed to 'MembranPotentials'. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
|
+
Author: Hasan Can Beydili
|
6
|
+
Author-email: tchasancan@gmail.com
|
7
|
+
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
@@ -12,8 +12,8 @@ def TrainPLAN(
|
|
12
12
|
ClassCount: int,
|
13
13
|
Layers: List[str],
|
14
14
|
Neurons: List[Union[int, float]],
|
15
|
-
|
16
|
-
|
15
|
+
MembranThresholds: List[str],
|
16
|
+
MembranPotentials: List[Union[int, float]],
|
17
17
|
Normalizations: List[str],
|
18
18
|
Activations: List[str]
|
19
19
|
) -> str:
|
@@ -27,8 +27,8 @@ def TrainPLAN(
|
|
27
27
|
ClassCount (int): Number of classes.
|
28
28
|
Layers (list[str]): List of layer names. (options: 'fex' (Feature Extraction), 'cat' (Catalyser))
|
29
29
|
Neurons (list[num]): List of neuron counts for each layer.
|
30
|
-
|
31
|
-
|
30
|
+
MembranThresholds (list[str]): List of MembranThresholds.
|
31
|
+
MembranPotentials (list[num]): List of MembranPotentials.
|
32
32
|
Normalizations (List[str]): Whether normalization will be performed at indexed layers ("y" or "n").
|
33
33
|
Activations (list[str]): List of activation functions.
|
34
34
|
|
@@ -42,43 +42,43 @@ def TrainPLAN(
|
|
42
42
|
print(Fore.RED + "ERROR108: Last layer of neuron count must be equal class count. from: TrainPLAN",infoPLAN)
|
43
43
|
return 'e'
|
44
44
|
|
45
|
-
if len(Normalizations) != len(
|
45
|
+
if len(Normalizations) != len(MembranPotentials):
|
46
46
|
|
47
|
-
print(Fore.RED + "ERROR307: Normalization list length must be equal to length of
|
47
|
+
print(Fore.RED + "ERROR307: Normalization list length must be equal to length of MembranThresholds List,MembranPotentials List,Layers List,Neurons List. from: TrainPLAN",infoPLAN)
|
48
48
|
return 'e'
|
49
49
|
|
50
50
|
if len(TrainInputs) != len(TrainLabels):
|
51
51
|
print(Fore.RED + "ERROR301: TrainInputs list and TrainLabels list must be same length.",infoPLAN)
|
52
52
|
return 'e'
|
53
53
|
|
54
|
-
for i, Value in enumerate(
|
54
|
+
for i, Value in enumerate(MembranPotentials):
|
55
55
|
|
56
56
|
if Normalizations[i] != 'y' and Normalizations[i] != 'n':
|
57
57
|
print(Fore.RED + "ERROR105: Normalization list must be 'y' or 'n'.",infoPLAN)
|
58
58
|
return 'e'
|
59
59
|
|
60
|
-
if
|
60
|
+
if MembranThresholds[i] == 'none':
|
61
61
|
print(Fore.MAGENTA + "WARNING102: We are advise to do not put 'none' Threshold sign. But some cases improves performance of the model from: TrainPLAN",infoPLAN + Style.RESET_ALL)
|
62
62
|
time.sleep(3)
|
63
63
|
|
64
64
|
if isinstance(Value, str):
|
65
|
-
print(Fore.RED + "ERROR201:
|
65
|
+
print(Fore.RED + "ERROR201: MEMBRAN POTENTIALS must be numeric. from: TrainPLAN")
|
66
66
|
return 'e'
|
67
67
|
|
68
68
|
if isinstance(Neurons[i], str):
|
69
69
|
print(Fore.RED + "ERROR202: Neurons list must be numeric.")
|
70
70
|
return 'e'
|
71
71
|
|
72
|
-
if len(
|
73
|
-
print(Fore.RED + "ERROR302:
|
72
|
+
if len(MembranThresholds) != len(MembranPotentials):
|
73
|
+
print(Fore.RED + "ERROR302: MEMBRAN THRESHOLDS list and MEMBRAN POTENTIALS list must be same length. from: TrainPLAN",infoPLAN)
|
74
74
|
return 'e'
|
75
75
|
|
76
76
|
if len(Layers) != len(Neurons):
|
77
77
|
print(Fore.RED + "ERROR303: Layers list and Neurons list must same length. from: TrainPLAN",infoPLAN)
|
78
78
|
return 'e'
|
79
79
|
|
80
|
-
if len(
|
81
|
-
print(Fore.RED + "ERROR306:
|
80
|
+
if len(MembranPotentials) != len(Layers) or len(MembranThresholds) != len(Layers):
|
81
|
+
print(Fore.RED + "ERROR306: MEMBRAN POTENTIALS and MEMBRAN THRESHOLDS lists length must be same Layers list length. from: TrainPLAN",infoPLAN)
|
82
82
|
return 'e'
|
83
83
|
|
84
84
|
|
@@ -105,14 +105,14 @@ def TrainPLAN(
|
|
105
105
|
print(Fore.RED + "ERROR107: Layers list must be 'fex'(Feature Extraction Layer) or 'cat' (Catalyser Layer). from: TrainPLAN",infoPLAN)
|
106
106
|
return 'e'
|
107
107
|
|
108
|
-
if len(
|
109
|
-
print(Fore.RED + "ERROR305:
|
108
|
+
if len(MembranThresholds) != len(MembranPotentials):
|
109
|
+
print(Fore.RED + "ERROR305: MEMBRAN THRESHOLDS list and MEMBRAN POTENTIALS list must be same length. from: TrainPLAN",infoPLAN)
|
110
110
|
return 'e'
|
111
111
|
|
112
112
|
|
113
|
-
for i, Sign in enumerate(
|
113
|
+
for i, Sign in enumerate(MembranThresholds):
|
114
114
|
if Sign != '>' and Sign != '<' and Sign != '==' and Sign != '!=' and Sign != 'none':
|
115
|
-
print(Fore.RED + "ERROR104:
|
115
|
+
print(Fore.RED + "ERROR104: MEMBRAN THRESHOLDS must be '>' or '<' or '==' or '!='. or 'none' WE SUGGEST '<' FOR FEX LAYER AND '==' FOR CAT LAYER (Your data, your hyperparameter) from: TrainPLAN",infoPLAN)
|
116
116
|
return 'e'
|
117
117
|
|
118
118
|
if Layers[i] == 'fex' and Sign == 'none':
|
@@ -181,9 +181,9 @@ def TrainPLAN(
|
|
181
181
|
NeuralLayer = Softmax(NeuralLayer)
|
182
182
|
|
183
183
|
if Layer == 'fex':
|
184
|
-
NeuralLayer,W[Lindex] = Fex(NeuralLayer, W[Lindex],
|
184
|
+
NeuralLayer,W[Lindex] = Fex(NeuralLayer, W[Lindex], MembranThresholds[Lindex], MembranPotentials[Lindex])
|
185
185
|
elif Layer == 'cat':
|
186
|
-
NeuralLayer,W[Lindex] = Cat(NeuralLayer, W[Lindex],
|
186
|
+
NeuralLayer,W[Lindex] = Cat(NeuralLayer, W[Lindex], MembranThresholds[Lindex], MembranPotentials[Lindex],1)
|
187
187
|
|
188
188
|
RealOutput = np.argmax(TrainLabels[index])
|
189
189
|
PredictedOutput = np.argmax(NeuralLayer)
|
@@ -391,8 +391,8 @@ def SynapticDividing(
|
|
391
391
|
def Fex(
|
392
392
|
Input, # list[num]: Input data.
|
393
393
|
w, # list[list[num]]: Weight matrix of the neural network.
|
394
|
-
|
395
|
-
|
394
|
+
MembranThreshold, # str: Sign for threshold comparison ('<', '>', '==', '!=').
|
395
|
+
MembranPotential # num: Threshold value for comparison.
|
396
396
|
) -> tuple:
|
397
397
|
"""
|
398
398
|
Applies feature extraction process to the input data using synaptic pruning.
|
@@ -400,21 +400,21 @@ def Fex(
|
|
400
400
|
Args:
|
401
401
|
Input (list[num]): Input data.
|
402
402
|
w (list[list[num]]): Weight matrix of the neural network.
|
403
|
-
|
404
|
-
|
403
|
+
MembranThreshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
|
404
|
+
MembranPotential (num): Threshold value for comparison.
|
405
405
|
|
406
406
|
Returns:
|
407
407
|
tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
|
408
408
|
"""
|
409
409
|
|
410
|
-
if
|
411
|
-
PruneIndex = np.where(Input <
|
412
|
-
elif
|
413
|
-
PruneIndex = np.where(Input >
|
414
|
-
elif
|
415
|
-
PruneIndex = np.where(Input ==
|
416
|
-
elif
|
417
|
-
PruneIndex = np.where(Input !=
|
410
|
+
if MembranThreshold == '<':
|
411
|
+
PruneIndex = np.where(Input < MembranPotential)
|
412
|
+
elif MembranThreshold == '>':
|
413
|
+
PruneIndex = np.where(Input > MembranPotential)
|
414
|
+
elif MembranThreshold == '==':
|
415
|
+
PruneIndex = np.where(Input == MembranPotential)
|
416
|
+
elif MembranThreshold == '!=':
|
417
|
+
PruneIndex = np.where(Input != MembranPotential)
|
418
418
|
|
419
419
|
w = SynapticPruning(w, PruneIndex, 'col', 0, 0)
|
420
420
|
|
@@ -424,8 +424,8 @@ def Fex(
|
|
424
424
|
def Cat(
|
425
425
|
Input, # list[num]: Input data.
|
426
426
|
w, # list[list[num]]: Weight matrix of the neural network.
|
427
|
-
|
428
|
-
|
427
|
+
MembranThreshold, # str: Sign for threshold comparison ('<', '>', '==', '!=').
|
428
|
+
MembranPotential, # num: Threshold value for comparison.
|
429
429
|
isTrain # int: Flag indicating if the function is called during training (1 for training, 0 otherwise).
|
430
430
|
) -> tuple:
|
431
431
|
"""
|
@@ -434,23 +434,23 @@ def Cat(
|
|
434
434
|
Args:
|
435
435
|
Input (list[num]): Input data.
|
436
436
|
w (list[list[num]]): Weight matrix of the neural network.
|
437
|
-
|
438
|
-
|
437
|
+
MembranThreshold (str): Sign for threshold comparison ('<', '>', '==', '!=').
|
438
|
+
MembranPotential (num): Threshold value for comparison.
|
439
439
|
isTrain (int): Flag indicating if the function is called during training (1 for training, 0 otherwise).
|
440
440
|
|
441
441
|
Returns:
|
442
442
|
tuple: A tuple containing the neural layer (vector) result and the possibly updated weight matrix.
|
443
443
|
"""
|
444
444
|
|
445
|
-
if
|
446
|
-
PruneIndex = np.where(Input <
|
447
|
-
elif
|
448
|
-
PruneIndex = np.where(Input >
|
449
|
-
elif
|
450
|
-
PruneIndex = np.where(Input ==
|
451
|
-
elif
|
452
|
-
PruneIndex = np.where(Input !=
|
453
|
-
if isTrain == 1 and
|
445
|
+
if MembranThreshold == '<':
|
446
|
+
PruneIndex = np.where(Input < MembranPotential)
|
447
|
+
elif MembranThreshold == '>':
|
448
|
+
PruneIndex = np.where(Input > MembranPotential)
|
449
|
+
elif MembranThreshold == '==':
|
450
|
+
PruneIndex = np.where(Input == MembranPotential)
|
451
|
+
elif MembranThreshold == '!=':
|
452
|
+
PruneIndex = np.where(Input != MembranPotential)
|
453
|
+
if isTrain == 1 and MembranThreshold != 'none':
|
454
454
|
|
455
455
|
w = SynapticPruning(w, PruneIndex, 'col', 0, 0)
|
456
456
|
|
@@ -534,8 +534,8 @@ def TestPLAN(
|
|
534
534
|
TestInputs, # list[list[num]]: Test input data.
|
535
535
|
TestLabels, # list[num]: Test labels.
|
536
536
|
Layers, # list[str]: List of layer names.
|
537
|
-
|
538
|
-
|
537
|
+
MembranThresholds, # list[str]: List of MEMBRAN THRESHOLDS for each layer.
|
538
|
+
MembranPotentials, # list[num]: List of MEMBRAN POTENTIALS for each layer.
|
539
539
|
Normalizations, # str: Whether normalization will be performed ("y" or "n").
|
540
540
|
Activations, # str: Activation function list for the neural network.
|
541
541
|
W # list[list[num]]: Weight matrix of the neural network.
|
@@ -547,8 +547,8 @@ def TestPLAN(
|
|
547
547
|
TestInputs (list[list[num]]): Test input data.
|
548
548
|
TestLabels (list[num]): Test labels.
|
549
549
|
Layers (list[str]): List of layer names.
|
550
|
-
|
551
|
-
|
550
|
+
MembranThresholds (list[str]): List of MEMBRAN THRESHOLDS for each layer.
|
551
|
+
MembranPotentials (list[num]): List of MEMBRAN POTENTIALS for each layer.
|
552
552
|
Normalizatios list([str]): Whether normalization will be performed ("yes" or "no").
|
553
553
|
Activation (str): Activation function for the neural network.
|
554
554
|
W (list[list[num]]): Weight matrix of the neural network.
|
@@ -585,9 +585,9 @@ def TestPLAN(
|
|
585
585
|
NeuralLayer = Softmax(NeuralLayer)
|
586
586
|
|
587
587
|
if Layers[index] == 'fex':
|
588
|
-
NeuralLayer,useless = Fex(NeuralLayer, W[index],
|
588
|
+
NeuralLayer,useless = Fex(NeuralLayer, W[index], MembranThresholds[index], MembranPotentials[index])
|
589
589
|
if Layers[index] == 'cat':
|
590
|
-
NeuralLayer,useless = Cat(NeuralLayer, W[index],
|
590
|
+
NeuralLayer,useless = Cat(NeuralLayer, W[index], MembranThresholds[index], MembranPotentials[index],0)
|
591
591
|
for i, w in enumerate(Wc):
|
592
592
|
W[i] = np.copy(w)
|
593
593
|
RealOutput = np.argmax(TestLabels[inpIndex])
|
@@ -640,7 +640,7 @@ def TestPLAN(
|
|
640
640
|
|
641
641
|
except:
|
642
642
|
|
643
|
-
print(Fore.RED + "ERROR: Testing model parameters like 'Layers' '
|
643
|
+
print(Fore.RED + "ERROR: Testing model parameters like 'Layers' 'MembranCounts' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: TestPLAN" + infoTestModel + Style.RESET_ALL)
|
644
644
|
return 'e'
|
645
645
|
|
646
646
|
return W,TestPredictions,Acc
|
@@ -649,8 +649,8 @@ def SavePLAN(ModelName,
|
|
649
649
|
ModelType,
|
650
650
|
Layers,
|
651
651
|
ClassCount,
|
652
|
-
|
653
|
-
|
652
|
+
MembranThresholds,
|
653
|
+
MembranPotentials,
|
654
654
|
Normalizations,
|
655
655
|
Activations,
|
656
656
|
TestAcc,
|
@@ -669,8 +669,8 @@ def SavePLAN(ModelName,
|
|
669
669
|
ModelType (str): Type of the model.(options: PLAN)
|
670
670
|
Layers (list): List containing 'fex' and 'cat' layers.
|
671
671
|
ClassCount (int): Number of classes.
|
672
|
-
|
673
|
-
|
672
|
+
MembranThresholds (list): List containing MEMBRAN THRESHOLDS.
|
673
|
+
MembranPotentials (list): List containing MEMBRAN POTENTIALS.
|
674
674
|
DoNormalization (str): is that normalized data ? 'y' or 'n'.
|
675
675
|
Activations (list): List containing activation functions for each layer.
|
676
676
|
TestAcc (float): Test accuracy of the model.
|
@@ -718,8 +718,8 @@ def SavePLAN(ModelName,
|
|
718
718
|
'LAYERS': Layers,
|
719
719
|
'LAYER COUNT': len(Layers),
|
720
720
|
'CLASS COUNT': ClassCount,
|
721
|
-
'
|
722
|
-
'
|
721
|
+
'MEMBRAN THRESHOLDS': MembranThresholds,
|
722
|
+
'MEMBRAN POTENTIALS': MembranPotentials,
|
723
723
|
'NORMALIZATION': Normalizations,
|
724
724
|
'ACTIVATIONS': Activations,
|
725
725
|
'NEURON COUNT': NeuronCount,
|
@@ -748,7 +748,7 @@ def SavePLAN(ModelName,
|
|
748
748
|
|
749
749
|
except:
|
750
750
|
|
751
|
-
print(Fore.RED + "ERROR: Model log not saved. Check the log parameters from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
751
|
+
print(Fore.RED + "ERROR: Model log not saved probably ModelPath incorrect. Check the log parameters from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
752
752
|
return 'e'
|
753
753
|
try:
|
754
754
|
|
@@ -835,7 +835,7 @@ def LoadPLAN(ModelName,
|
|
835
835
|
LogType (str): Type of log to load (options: 'csv', 'txt', 'hdf5').
|
836
836
|
|
837
837
|
Returns:
|
838
|
-
lists: W(list[num]), Layers,
|
838
|
+
lists: W(list[num]), Layers, MembranThresholds, MembranPotentials, Normalization,Activations
|
839
839
|
"""
|
840
840
|
pass
|
841
841
|
|
@@ -862,8 +862,8 @@ def LoadPLAN(ModelName,
|
|
862
862
|
Layers = df['LAYERS'].tolist()
|
863
863
|
LayerCount = int(df['LAYER COUNT'].iloc[0])
|
864
864
|
ClassCount = int(df['CLASS COUNT'].iloc[0])
|
865
|
-
|
866
|
-
|
865
|
+
MembranThresholds = df['MEMBRAN THRESHOLDS'].tolist()
|
866
|
+
MembranPotentials = df['MEMBRAN POTENTIALS'].tolist()
|
867
867
|
Normalizations = df['NORMALIZATION'].tolist()
|
868
868
|
Activations = df['ACTIVATIONS'].tolist()
|
869
869
|
NeuronCount = int(df['NEURON COUNT'].iloc[0])
|
@@ -888,7 +888,7 @@ def LoadPLAN(ModelName,
|
|
888
888
|
else:
|
889
889
|
raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: LoadPLAN." + infoLoadPLAN + Style.RESET_ALL)
|
890
890
|
print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
|
891
|
-
return W,Layers,
|
891
|
+
return W,Layers,MembranThresholds,MembranPotentials,Normalizations,Activations,df
|
892
892
|
|
893
893
|
def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
|
894
894
|
infoPredictFromDİscPLAN = """
|
@@ -903,7 +903,7 @@ def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
|
|
903
903
|
Returns:
|
904
904
|
ndarray: Output from the model.
|
905
905
|
"""
|
906
|
-
W,Layers,
|
906
|
+
W,Layers,MembranThresholds,MembranPotentials,Normalizations,Activations = LoadPLAN(ModelName,ModelPath,
|
907
907
|
LogType)[0:6]
|
908
908
|
Wc = [0] * len(W)
|
909
909
|
for i, w in enumerate(W):
|
@@ -924,12 +924,12 @@ def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
|
|
924
924
|
|
925
925
|
if Layers[index] == 'fex':
|
926
926
|
NeuralLayer,useless = Fex(NeuralLayer, W[index],
|
927
|
-
|
928
|
-
|
927
|
+
MembranThresholds[index],
|
928
|
+
MembranPotentials[index])
|
929
929
|
if Layers[index] == 'cat':
|
930
930
|
NeuralLayer,useless = Cat(NeuralLayer, W[index],
|
931
|
-
|
932
|
-
|
931
|
+
MembranThresholds[index],
|
932
|
+
MembranPotentials[index],
|
933
933
|
0)
|
934
934
|
except:
|
935
935
|
print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: PredictFromDiscPLAN" + infoPredictFromDİscPLAN + Style.RESET_ALL)
|
@@ -939,7 +939,7 @@ def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
|
|
939
939
|
return NeuralLayer
|
940
940
|
|
941
941
|
|
942
|
-
def PredictFromRamPLAN(Input,Layers,
|
942
|
+
def PredictFromRamPLAN(Input,Layers,MembranThresholds,MembranPotentials,Normalizations,Activations,W):
|
943
943
|
infoPredictFromRamPLAN = """
|
944
944
|
Function to make a prediction using a pruning learning artificial neural network (PLAN)
|
945
945
|
from weights and parameters stored in memory.
|
@@ -947,8 +947,8 @@ def PredictFromRamPLAN(Input,Layers,ThresholdSigns,ThresholdValues,Normalization
|
|
947
947
|
Arguments:
|
948
948
|
Input (list or ndarray): Input data for the model (single vector or single matrix).
|
949
949
|
Layers (list): Number and types of layers.
|
950
|
-
|
951
|
-
|
950
|
+
MembranThresholds (list): MEMBRAN THRESHOLDS.
|
951
|
+
MembranPotentials (list): MEMBRAN POTENTIALS.
|
952
952
|
DoNormalization (str): Whether to normalize ('y' or 'n').
|
953
953
|
Activations (list): Activation functions for each layer.
|
954
954
|
W (list of ndarrays): Weights of the model.
|
@@ -976,12 +976,12 @@ def PredictFromRamPLAN(Input,Layers,ThresholdSigns,ThresholdValues,Normalization
|
|
976
976
|
|
977
977
|
if Layers[index] == 'fex':
|
978
978
|
NeuralLayer,useless = Fex(NeuralLayer, W[index],
|
979
|
-
|
980
|
-
|
979
|
+
MembranThresholds[index],
|
980
|
+
MembranPotentials[index])
|
981
981
|
if Layers[index] == 'cat':
|
982
982
|
NeuralLayer,useless = Cat(NeuralLayer, W[index],
|
983
|
-
|
984
|
-
|
983
|
+
MembranThresholds[index],
|
984
|
+
MembranPotentials[index],0)
|
985
985
|
except:
|
986
986
|
print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: PredictFromRamPLAN." + infoPredictFromRamPLAN + Style.RESET_ALL)
|
987
987
|
return 'e'
|
@@ -0,0 +1,7 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: pyerualjetwork
|
3
|
+
Version: 1.2.8
|
4
|
+
Summary: Advanced python deep learning library. 'ThresholdSigns' changed to 'MembranThresholds' and 'ThresholdValues' changed to 'MembranPotentials'. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
|
+
Author: Hasan Can Beydili
|
6
|
+
Author-email: tchasancan@gmail.com
|
7
|
+
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
@@ -0,0 +1,15 @@
|
|
1
|
+
from setuptools import setup, find_packages
|
2
|
+
|
3
|
+
# Setting Up
|
4
|
+
|
5
|
+
setup(
|
6
|
+
|
7
|
+
name = "pyerualjetwork",
|
8
|
+
version = "1.2.8",
|
9
|
+
author = "Hasan Can Beydili",
|
10
|
+
author_email = "tchasancan@gmail.com",
|
11
|
+
description= "Advanced python deep learning library. 'ThresholdSigns' changed to 'MembranThresholds' and 'ThresholdValues' changed to 'MembranPotentials'. (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)",
|
12
|
+
packages = find_packages(),
|
13
|
+
keywords = ["model evaluation", "classifcation", 'pruning learning artficial neural networks']
|
14
|
+
|
15
|
+
)
|
pyerualjetwork-1.2.6/PKG-INFO
DELETED
@@ -1,7 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: pyerualjetwork
|
3
|
-
Version: 1.2.6
|
4
|
-
Summary: Advanced python deep learning library.UPDATED TO 1.2.2 NEW FEATURES: GetWeights() func for TrainPLAN, TestPLAN and LoadPLAN, GetPreds() and GetAcc() funcs for TrainPLAN and TestPLAN, GetDf() func for LoadPLAN (Documentation in desc. Examples in GİTHUB: HCB06)
|
5
|
-
Author: Hasan Can Beydili
|
6
|
-
Author-email: tchasancan@gmail.com
|
7
|
-
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
@@ -1,7 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: pyerualjetwork
|
3
|
-
Version: 1.2.6
|
4
|
-
Summary: Advanced python deep learning library.UPDATED TO 1.2.2 NEW FEATURES: GetWeights() func for TrainPLAN, TestPLAN and LoadPLAN, GetPreds() and GetAcc() funcs for TrainPLAN and TestPLAN, GetDf() func for LoadPLAN (Documentation in desc. Examples in GİTHUB: HCB06)
|
5
|
-
Author: Hasan Can Beydili
|
6
|
-
Author-email: tchasancan@gmail.com
|
7
|
-
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
pyerualjetwork-1.2.6/setup.py
DELETED
@@ -1,15 +0,0 @@
|
|
1
|
-
from setuptools import setup, find_packages
|
2
|
-
|
3
|
-
# Setting Up
|
4
|
-
|
5
|
-
setup(
|
6
|
-
|
7
|
-
name = "pyerualjetwork",
|
8
|
-
version = "1.2.6",
|
9
|
-
author = "Hasan Can Beydili",
|
10
|
-
author_email = "tchasancan@gmail.com",
|
11
|
-
description= "Advanced python deep learning library.UPDATED TO 1.2.2 NEW FEATURES: GetWeights() func for TrainPLAN, TestPLAN and LoadPLAN, GetPreds() and GetAcc() funcs for TrainPLAN and TestPLAN, GetDf() func for LoadPLAN (Documentation in desc. Examples in GİTHUB: HCB06)",
|
12
|
-
packages = find_packages(),
|
13
|
-
keywords = ["model evaluation", "classifcation", 'pruning learning artficial neural networks']
|
14
|
-
|
15
|
-
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|