pyedahelper 1.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Chidiebere Christopher
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the β€œSoftware”), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED β€œAS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
@@ -0,0 +1,215 @@
1
+ Metadata-Version: 2.4
2
+ Name: pyedahelper
3
+ Version: 1.0.3
4
+ Summary: A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering.
5
+ Home-page: https://github.com/93Chidiebere/pyedahelper
6
+ Author: Chidiebere V. Christopher
7
+ Author-email: "Chidiebere V. Christopher" <vchidiebere.vc@gmail.com>
8
+ License: MIT
9
+ Project-URL: Homepage, https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper
10
+ Project-URL: Repository, https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
11
+ Project-URL: Documentation, https://pypi.org/project/pyedahelper/
12
+ Requires-Python: >=3.7
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: pandas>=1.3.0
16
+ Requires-Dist: numpy>=1.20
17
+ Requires-Dist: matplotlib>=3.4
18
+ Requires-Dist: seaborn>=0.11
19
+ Requires-Dist: rich>=13.0
20
+ Dynamic: author
21
+ Dynamic: license-file
22
+ Dynamic: requires-python
23
+
24
+ # 🧠 pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
25
+
26
+ **pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
27
+
28
+ It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β€” with guided suggestions, ready-to-use utilities, and clean visualizations.
29
+
30
+
31
+ 🌟 Key Features:
32
+ - ⚑ A **smart EDA cheat sheet** (interactive and collapsible),
33
+ - πŸ’¬ AI-guided EDA assistant β€” suggests the next logical step (e.g., β€œView top rows with df.head()”).
34
+ - 🧩 A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
35
+ - πŸ’¬ Handy **code hints and examples** you can copy directly into your notebook.
36
+
37
+ ---
38
+
39
+ ## 🌍 Why pyedahelper?
40
+
41
+ Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
42
+
43
+ `pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β€” you can *see, learn, and apply* the same steps.
44
+
45
+ ---
46
+
47
+ ## βš™οΈ Installation
48
+
49
+ ```bash
50
+
51
+ pip install pyedahelper==1.0.2
52
+
53
+ ```
54
+
55
+ ## Upgrade
56
+
57
+ ```bash
58
+
59
+ pip install --upgrade pyedahelper
60
+
61
+ ```
62
+ ## πŸš€ Quick Start
63
+
64
+ ``` python
65
+
66
+ import edahelper as eda
67
+ import pandas as pd
68
+
69
+ # Load your dataset
70
+ df = pd.read_csv("data.csv")
71
+
72
+ # πŸ“š Display the interactive EDA cheat-sheet
73
+ eda.show() -- for experienced analysts or
74
+ eda.core.show() -- for total newbies
75
+
76
+ # πŸ” Start guided suggestion
77
+ eda.next("read_csv") # Suggests: "View first rows with df.head()"
78
+
79
+ # πŸ’‘ View an example command with short explanation
80
+ eda.core.example("describe")
81
+ ```
82
+
83
+ From there, the assistant automatically continues:
84
+
85
+ ```bash
86
+ df.head() β†’ df.columns β†’ df.shape β†’ df.info() β†’ df.describe() β†’ ...
87
+
88
+ ```
89
+ If you want to skip a suggestion, simply type "Next".
90
+
91
+
92
+ # πŸ” Modules Overview
93
+
94
+ 1️⃣ EDA Guidance (AI Suggestion System)
95
+
96
+ The AI-powered step recommender helps complete beginners know what to do next.
97
+
98
+ Example flow:
99
+ ```python
100
+ eda.next("read_csv") # Suggests df.head()
101
+ eda.next("head") # Suggests df.columns
102
+ eda.next("columns") # Suggests df.shape
103
+
104
+ ```
105
+
106
+ It covers:
107
+
108
+ . Dataset overview (head, columns, shape, info, describe)
109
+
110
+ . Missing values (isnull, fillna, dropna)
111
+
112
+ . Data cleaning (duplicated, astype, replace)
113
+
114
+ . Visualization (plot_distribution, scatterplot, plot_correlation)
115
+
116
+ . Feature prep and modeling steps (label_encode, split, fit_model, predict)
117
+
118
+
119
+ ## 5️⃣ Visualization Module
120
+
121
+ Functions for exploring and visualizing data quickly.
122
+
123
+ ``` python
124
+ from edahelper import visualization as vis
125
+
126
+ vis.plot_correlation(df)
127
+ vis.plot_distribution(df, "Age")
128
+ vis.scatter(df, "Age", "Income", hue="Gender")
129
+
130
+ ```
131
+ 🎨 _Uses matplotlib and seaborn under the hood for fast, clean plots._
132
+
133
+ # πŸ“˜ The Interactive Cheat-Sheet
134
+
135
+ When you forget a syntax, simply call:
136
+ ``` python
137
+ eda.core.show()
138
+
139
+ ```
140
+
141
+ ✨ Displays a colorful grouped guide of:
142
+
143
+ Data Loading
144
+ Overview
145
+ Missing Values
146
+ Indexing & Grouping
147
+ Visualization
148
+ Feature Engineering
149
+ NumPy & sklearn tips
150
+
151
+
152
+ ## πŸ§‘πŸ½β€πŸ’» Example Workflow
153
+
154
+ ```
155
+ import pyedahelper as eda
156
+ import pandas as pd
157
+
158
+ # Load data
159
+ df = pd.read_csv("sales.csv")
160
+
161
+ # Start guided mode
162
+ eda.next("read_csv") # Suggests df.head()
163
+ eda.next('head') # Suggests df.info()
164
+
165
+ ```
166
+
167
+
168
+ ## πŸ“¦ Project Structure
169
+
170
+ ```ardiuno
171
+
172
+ pyedahelper/
173
+ β”‚
174
+ β”œβ”€β”€ __init__.py # Main entrypoint
175
+ β”œβ”€β”€ core.py # Cheat-sheet + examples
176
+ β”œβ”€β”€ show.py # Display logic
177
+ β”œβ”€β”€ stats_summary.py # Dataset summary helpers
178
+ β”œβ”€β”€ visualization.py # Quick plots (hist, scatter, heatmap)
179
+ β”œβ”€β”€ nextstep.py # AI-guided EDA assistant (eda.next)
180
+ └── __init__.py # Exports unified functions
181
+
182
+ ```
183
+
184
+ # πŸ›  Requirements
185
+
186
+ Python 3.8+
187
+ pandas
188
+ numpy
189
+ seaborn
190
+ scikit-learn
191
+ matplotlib
192
+ rich (for colored terminal output)
193
+
194
+ ## 🧾 License
195
+
196
+ MIT License Β© 2025 Chidiebere Christopher
197
+ Feel free to fork, contribute, or use it in your analytics workflow!
198
+
199
+ ## 🌟 Contributing
200
+
201
+ We welcome contributions β€” bug fixes, new EDA tools, or notebook examples.
202
+
203
+ 1. Fork the repo
204
+ 2. Create your feature branch (git checkout -b feature-name)
205
+ 3. Commit your changes
206
+ 4. Push and open a Pull Request πŸŽ‰
207
+
208
+ ## πŸ”— Links
209
+
210
+ πŸ“¦ PyPI: https://pypi.org/project/pyedahelper/
211
+ πŸ’» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
212
+ βœ‰οΈ Author: Chidiebere V. Christopher
213
+
214
+ πŸš€ _Learn. Explore. Analyze. Faster._
215
+ _pyedahelper β€” your friendly companion for every EDA project._
@@ -0,0 +1,192 @@
1
+ # 🧠 pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
2
+
3
+ **pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
4
+
5
+ It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β€” with guided suggestions, ready-to-use utilities, and clean visualizations.
6
+
7
+
8
+ 🌟 Key Features:
9
+ - ⚑ A **smart EDA cheat sheet** (interactive and collapsible),
10
+ - πŸ’¬ AI-guided EDA assistant β€” suggests the next logical step (e.g., β€œView top rows with df.head()”).
11
+ - 🧩 A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
12
+ - πŸ’¬ Handy **code hints and examples** you can copy directly into your notebook.
13
+
14
+ ---
15
+
16
+ ## 🌍 Why pyedahelper?
17
+
18
+ Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
19
+
20
+ `pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β€” you can *see, learn, and apply* the same steps.
21
+
22
+ ---
23
+
24
+ ## βš™οΈ Installation
25
+
26
+ ```bash
27
+
28
+ pip install pyedahelper==1.0.2
29
+
30
+ ```
31
+
32
+ ## Upgrade
33
+
34
+ ```bash
35
+
36
+ pip install --upgrade pyedahelper
37
+
38
+ ```
39
+ ## πŸš€ Quick Start
40
+
41
+ ``` python
42
+
43
+ import edahelper as eda
44
+ import pandas as pd
45
+
46
+ # Load your dataset
47
+ df = pd.read_csv("data.csv")
48
+
49
+ # πŸ“š Display the interactive EDA cheat-sheet
50
+ eda.show() -- for experienced analysts or
51
+ eda.core.show() -- for total newbies
52
+
53
+ # πŸ” Start guided suggestion
54
+ eda.next("read_csv") # Suggests: "View first rows with df.head()"
55
+
56
+ # πŸ’‘ View an example command with short explanation
57
+ eda.core.example("describe")
58
+ ```
59
+
60
+ From there, the assistant automatically continues:
61
+
62
+ ```bash
63
+ df.head() β†’ df.columns β†’ df.shape β†’ df.info() β†’ df.describe() β†’ ...
64
+
65
+ ```
66
+ If you want to skip a suggestion, simply type "Next".
67
+
68
+
69
+ # πŸ” Modules Overview
70
+
71
+ 1️⃣ EDA Guidance (AI Suggestion System)
72
+
73
+ The AI-powered step recommender helps complete beginners know what to do next.
74
+
75
+ Example flow:
76
+ ```python
77
+ eda.next("read_csv") # Suggests df.head()
78
+ eda.next("head") # Suggests df.columns
79
+ eda.next("columns") # Suggests df.shape
80
+
81
+ ```
82
+
83
+ It covers:
84
+
85
+ . Dataset overview (head, columns, shape, info, describe)
86
+
87
+ . Missing values (isnull, fillna, dropna)
88
+
89
+ . Data cleaning (duplicated, astype, replace)
90
+
91
+ . Visualization (plot_distribution, scatterplot, plot_correlation)
92
+
93
+ . Feature prep and modeling steps (label_encode, split, fit_model, predict)
94
+
95
+
96
+ ## 5️⃣ Visualization Module
97
+
98
+ Functions for exploring and visualizing data quickly.
99
+
100
+ ``` python
101
+ from edahelper import visualization as vis
102
+
103
+ vis.plot_correlation(df)
104
+ vis.plot_distribution(df, "Age")
105
+ vis.scatter(df, "Age", "Income", hue="Gender")
106
+
107
+ ```
108
+ 🎨 _Uses matplotlib and seaborn under the hood for fast, clean plots._
109
+
110
+ # πŸ“˜ The Interactive Cheat-Sheet
111
+
112
+ When you forget a syntax, simply call:
113
+ ``` python
114
+ eda.core.show()
115
+
116
+ ```
117
+
118
+ ✨ Displays a colorful grouped guide of:
119
+
120
+ Data Loading
121
+ Overview
122
+ Missing Values
123
+ Indexing & Grouping
124
+ Visualization
125
+ Feature Engineering
126
+ NumPy & sklearn tips
127
+
128
+
129
+ ## πŸ§‘πŸ½β€πŸ’» Example Workflow
130
+
131
+ ```
132
+ import pyedahelper as eda
133
+ import pandas as pd
134
+
135
+ # Load data
136
+ df = pd.read_csv("sales.csv")
137
+
138
+ # Start guided mode
139
+ eda.next("read_csv") # Suggests df.head()
140
+ eda.next('head') # Suggests df.info()
141
+
142
+ ```
143
+
144
+
145
+ ## πŸ“¦ Project Structure
146
+
147
+ ```ardiuno
148
+
149
+ pyedahelper/
150
+ β”‚
151
+ β”œβ”€β”€ __init__.py # Main entrypoint
152
+ β”œβ”€β”€ core.py # Cheat-sheet + examples
153
+ β”œβ”€β”€ show.py # Display logic
154
+ β”œβ”€β”€ stats_summary.py # Dataset summary helpers
155
+ β”œβ”€β”€ visualization.py # Quick plots (hist, scatter, heatmap)
156
+ β”œβ”€β”€ nextstep.py # AI-guided EDA assistant (eda.next)
157
+ └── __init__.py # Exports unified functions
158
+
159
+ ```
160
+
161
+ # πŸ›  Requirements
162
+
163
+ Python 3.8+
164
+ pandas
165
+ numpy
166
+ seaborn
167
+ scikit-learn
168
+ matplotlib
169
+ rich (for colored terminal output)
170
+
171
+ ## 🧾 License
172
+
173
+ MIT License Β© 2025 Chidiebere Christopher
174
+ Feel free to fork, contribute, or use it in your analytics workflow!
175
+
176
+ ## 🌟 Contributing
177
+
178
+ We welcome contributions β€” bug fixes, new EDA tools, or notebook examples.
179
+
180
+ 1. Fork the repo
181
+ 2. Create your feature branch (git checkout -b feature-name)
182
+ 3. Commit your changes
183
+ 4. Push and open a Pull Request πŸŽ‰
184
+
185
+ ## πŸ”— Links
186
+
187
+ πŸ“¦ PyPI: https://pypi.org/project/pyedahelper/
188
+ πŸ’» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
189
+ βœ‰οΈ Author: Chidiebere V. Christopher
190
+
191
+ πŸš€ _Learn. Explore. Analyze. Faster._
192
+ _pyedahelper β€” your friendly companion for every EDA project._
@@ -0,0 +1,215 @@
1
+ Metadata-Version: 2.4
2
+ Name: pyedahelper
3
+ Version: 1.0.3
4
+ Summary: A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering.
5
+ Home-page: https://github.com/93Chidiebere/pyedahelper
6
+ Author: Chidiebere V. Christopher
7
+ Author-email: "Chidiebere V. Christopher" <vchidiebere.vc@gmail.com>
8
+ License: MIT
9
+ Project-URL: Homepage, https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper
10
+ Project-URL: Repository, https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
11
+ Project-URL: Documentation, https://pypi.org/project/pyedahelper/
12
+ Requires-Python: >=3.7
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: pandas>=1.3.0
16
+ Requires-Dist: numpy>=1.20
17
+ Requires-Dist: matplotlib>=3.4
18
+ Requires-Dist: seaborn>=0.11
19
+ Requires-Dist: rich>=13.0
20
+ Dynamic: author
21
+ Dynamic: license-file
22
+ Dynamic: requires-python
23
+
24
+ # 🧠 pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
25
+
26
+ **pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
27
+
28
+ It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β€” with guided suggestions, ready-to-use utilities, and clean visualizations.
29
+
30
+
31
+ 🌟 Key Features:
32
+ - ⚑ A **smart EDA cheat sheet** (interactive and collapsible),
33
+ - πŸ’¬ AI-guided EDA assistant β€” suggests the next logical step (e.g., β€œView top rows with df.head()”).
34
+ - 🧩 A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
35
+ - πŸ’¬ Handy **code hints and examples** you can copy directly into your notebook.
36
+
37
+ ---
38
+
39
+ ## 🌍 Why pyedahelper?
40
+
41
+ Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
42
+
43
+ `pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β€” you can *see, learn, and apply* the same steps.
44
+
45
+ ---
46
+
47
+ ## βš™οΈ Installation
48
+
49
+ ```bash
50
+
51
+ pip install pyedahelper==1.0.2
52
+
53
+ ```
54
+
55
+ ## Upgrade
56
+
57
+ ```bash
58
+
59
+ pip install --upgrade pyedahelper
60
+
61
+ ```
62
+ ## πŸš€ Quick Start
63
+
64
+ ``` python
65
+
66
+ import edahelper as eda
67
+ import pandas as pd
68
+
69
+ # Load your dataset
70
+ df = pd.read_csv("data.csv")
71
+
72
+ # πŸ“š Display the interactive EDA cheat-sheet
73
+ eda.show() -- for experienced analysts or
74
+ eda.core.show() -- for total newbies
75
+
76
+ # πŸ” Start guided suggestion
77
+ eda.next("read_csv") # Suggests: "View first rows with df.head()"
78
+
79
+ # πŸ’‘ View an example command with short explanation
80
+ eda.core.example("describe")
81
+ ```
82
+
83
+ From there, the assistant automatically continues:
84
+
85
+ ```bash
86
+ df.head() β†’ df.columns β†’ df.shape β†’ df.info() β†’ df.describe() β†’ ...
87
+
88
+ ```
89
+ If you want to skip a suggestion, simply type "Next".
90
+
91
+
92
+ # πŸ” Modules Overview
93
+
94
+ 1️⃣ EDA Guidance (AI Suggestion System)
95
+
96
+ The AI-powered step recommender helps complete beginners know what to do next.
97
+
98
+ Example flow:
99
+ ```python
100
+ eda.next("read_csv") # Suggests df.head()
101
+ eda.next("head") # Suggests df.columns
102
+ eda.next("columns") # Suggests df.shape
103
+
104
+ ```
105
+
106
+ It covers:
107
+
108
+ . Dataset overview (head, columns, shape, info, describe)
109
+
110
+ . Missing values (isnull, fillna, dropna)
111
+
112
+ . Data cleaning (duplicated, astype, replace)
113
+
114
+ . Visualization (plot_distribution, scatterplot, plot_correlation)
115
+
116
+ . Feature prep and modeling steps (label_encode, split, fit_model, predict)
117
+
118
+
119
+ ## 5️⃣ Visualization Module
120
+
121
+ Functions for exploring and visualizing data quickly.
122
+
123
+ ``` python
124
+ from edahelper import visualization as vis
125
+
126
+ vis.plot_correlation(df)
127
+ vis.plot_distribution(df, "Age")
128
+ vis.scatter(df, "Age", "Income", hue="Gender")
129
+
130
+ ```
131
+ 🎨 _Uses matplotlib and seaborn under the hood for fast, clean plots._
132
+
133
+ # πŸ“˜ The Interactive Cheat-Sheet
134
+
135
+ When you forget a syntax, simply call:
136
+ ``` python
137
+ eda.core.show()
138
+
139
+ ```
140
+
141
+ ✨ Displays a colorful grouped guide of:
142
+
143
+ Data Loading
144
+ Overview
145
+ Missing Values
146
+ Indexing & Grouping
147
+ Visualization
148
+ Feature Engineering
149
+ NumPy & sklearn tips
150
+
151
+
152
+ ## πŸ§‘πŸ½β€πŸ’» Example Workflow
153
+
154
+ ```
155
+ import pyedahelper as eda
156
+ import pandas as pd
157
+
158
+ # Load data
159
+ df = pd.read_csv("sales.csv")
160
+
161
+ # Start guided mode
162
+ eda.next("read_csv") # Suggests df.head()
163
+ eda.next('head') # Suggests df.info()
164
+
165
+ ```
166
+
167
+
168
+ ## πŸ“¦ Project Structure
169
+
170
+ ```ardiuno
171
+
172
+ pyedahelper/
173
+ β”‚
174
+ β”œβ”€β”€ __init__.py # Main entrypoint
175
+ β”œβ”€β”€ core.py # Cheat-sheet + examples
176
+ β”œβ”€β”€ show.py # Display logic
177
+ β”œβ”€β”€ stats_summary.py # Dataset summary helpers
178
+ β”œβ”€β”€ visualization.py # Quick plots (hist, scatter, heatmap)
179
+ β”œβ”€β”€ nextstep.py # AI-guided EDA assistant (eda.next)
180
+ └── __init__.py # Exports unified functions
181
+
182
+ ```
183
+
184
+ # πŸ›  Requirements
185
+
186
+ Python 3.8+
187
+ pandas
188
+ numpy
189
+ seaborn
190
+ scikit-learn
191
+ matplotlib
192
+ rich (for colored terminal output)
193
+
194
+ ## 🧾 License
195
+
196
+ MIT License Β© 2025 Chidiebere Christopher
197
+ Feel free to fork, contribute, or use it in your analytics workflow!
198
+
199
+ ## 🌟 Contributing
200
+
201
+ We welcome contributions β€” bug fixes, new EDA tools, or notebook examples.
202
+
203
+ 1. Fork the repo
204
+ 2. Create your feature branch (git checkout -b feature-name)
205
+ 3. Commit your changes
206
+ 4. Push and open a Pull Request πŸŽ‰
207
+
208
+ ## πŸ”— Links
209
+
210
+ πŸ“¦ PyPI: https://pypi.org/project/pyedahelper/
211
+ πŸ’» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
212
+ βœ‰οΈ Author: Chidiebere V. Christopher
213
+
214
+ πŸš€ _Learn. Explore. Analyze. Faster._
215
+ _pyedahelper β€” your friendly companion for every EDA project._
@@ -0,0 +1,11 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ setup.cfg
5
+ setup.py
6
+ pyedahelper.egg-info/PKG-INFO
7
+ pyedahelper.egg-info/SOURCES.txt
8
+ pyedahelper.egg-info/dependency_links.txt
9
+ pyedahelper.egg-info/requires.txt
10
+ pyedahelper.egg-info/top_level.txt
11
+ tests/test_basic.py
@@ -0,0 +1,5 @@
1
+ pandas>=1.3.0
2
+ numpy>=1.20
3
+ matplotlib>=3.4
4
+ seaborn>=0.11
5
+ rich>=13.0
@@ -0,0 +1,30 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "pyedahelper"
7
+ version = "1.0.3"
8
+ description = "A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering."
9
+ readme = "README.md"
10
+ license = {text = "MIT"}
11
+ authors = [
12
+ { name = "Chidiebere V. Christopher", email = "vchidiebere.vc@gmail.com" }
13
+ ]
14
+ requires-python = ">=3.7"
15
+ dependencies = [
16
+ "pandas>=1.3.0",
17
+ "numpy>=1.20",
18
+ "matplotlib>=3.4",
19
+ "seaborn>=0.11",
20
+ "rich>=13.0"
21
+ ]
22
+
23
+ [project.urls]
24
+ Homepage = "https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper"
25
+ Repository = "https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper"
26
+ Documentation = "https://pypi.org/project/pyedahelper/"
27
+
28
+ [tool.setuptools.packages.find]
29
+ where = ["."]
30
+ include = ["pyedahelper*"]
@@ -0,0 +1,31 @@
1
+ [metadata]
2
+ name = pyedahelper
3
+ version = 1.0.3
4
+ author = Chidiebere V. Christopher
5
+ author_email = vchidieberevc@gmail.com
6
+ description = An interactive cheat sheet, AI-powered guide for exploratory data analysis (EDA), and tools for data visualization, cleaning and feature engineering.
7
+ long_description = file: README.md
8
+ long_description_content_type = text/markdown
9
+ url = https://github.com/93Chidiebere/pyedahelper
10
+ license = MIT
11
+ classifiers =
12
+ Programming Language :: Python :: 3
13
+ License :: OSI Approved :: MIT License
14
+ Operating System :: OS Independent
15
+ Intended Audience :: Education
16
+ Topic :: Scientific/Engineering :: Information Analysis
17
+
18
+ [options]
19
+ packages = find:
20
+ python_requires = >=3.8
21
+ install_requires =
22
+ pandas>=1.3.0
23
+ numpy>=1.20
24
+ matplotlib>=3.4
25
+ seaborn>=0.11
26
+ rich>=13.0
27
+
28
+ [egg_info]
29
+ tag_build =
30
+ tag_date = 0
31
+
@@ -0,0 +1,37 @@
1
+ # from setuptools import setup, find_packages
2
+
3
+ # setup(
4
+ # name='pyedahelper',
5
+ # version='0.1.0',
6
+ # packages=find_packages(),
7
+ # install_requires=[
8
+ # 'pandas',
9
+ # 'numpy',
10
+ # 'matplotlib',
11
+ # 'seaborn'
12
+ # ],
13
+ # )
14
+
15
+ from setuptools import setup, find_packages
16
+
17
+ with open("README.md", "r", encoding="utf-8") as fh:
18
+ long_description = fh.read()
19
+
20
+ setup(
21
+ name="pyedahelper",
22
+ version="1.0.3",
23
+ author="Chidiebere V. Christopher",
24
+ author_email="vchidiebere.vc@gmail.com",
25
+ description="An interactive cheat sheet, AI-powered guide for exploratory data analysis (EDA), and tools for data visualization, cleaning and feature engineering.",
26
+ long_description=long_description,
27
+ long_description_content_type="text/markdown",
28
+ packages=find_packages(),
29
+ install_requires=[
30
+ "pandas",
31
+ "numpy",
32
+ "matplotlib",
33
+ "seaborn",
34
+ "scikit-learn",
35
+ ],
36
+ python_requires=">=3.7",
37
+ )
@@ -0,0 +1,11 @@
1
+ import pandas as pd
2
+ from edahelper.data_loading import load_data
3
+
4
+ def test_csv_load(tmp_path):
5
+ # Create sample CSV
6
+ data = pd.DataFrame({"A": [1, 2], "B": [3, 4]})
7
+ file = tmp_path / "test.csv"
8
+ data.to_csv(file, index=False)
9
+
10
+ df = load_data(file)
11
+ assert df.shape == (2, 2)