pyedahelper 1.0.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyedahelper-1.0.3/LICENSE +21 -0
- pyedahelper-1.0.3/PKG-INFO +215 -0
- pyedahelper-1.0.3/README.md +192 -0
- pyedahelper-1.0.3/pyedahelper.egg-info/PKG-INFO +215 -0
- pyedahelper-1.0.3/pyedahelper.egg-info/SOURCES.txt +11 -0
- pyedahelper-1.0.3/pyedahelper.egg-info/dependency_links.txt +1 -0
- pyedahelper-1.0.3/pyedahelper.egg-info/requires.txt +5 -0
- pyedahelper-1.0.3/pyedahelper.egg-info/top_level.txt +1 -0
- pyedahelper-1.0.3/pyproject.toml +30 -0
- pyedahelper-1.0.3/setup.cfg +31 -0
- pyedahelper-1.0.3/setup.py +37 -0
- pyedahelper-1.0.3/tests/test_basic.py +11 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Chidiebere Christopher
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the βSoftwareβ), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
|
13
|
+
all copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED βAS ISβ, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
21
|
+
THE SOFTWARE.
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pyedahelper
|
|
3
|
+
Version: 1.0.3
|
|
4
|
+
Summary: A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering.
|
|
5
|
+
Home-page: https://github.com/93Chidiebere/pyedahelper
|
|
6
|
+
Author: Chidiebere V. Christopher
|
|
7
|
+
Author-email: "Chidiebere V. Christopher" <vchidiebere.vc@gmail.com>
|
|
8
|
+
License: MIT
|
|
9
|
+
Project-URL: Homepage, https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper
|
|
10
|
+
Project-URL: Repository, https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
|
|
11
|
+
Project-URL: Documentation, https://pypi.org/project/pyedahelper/
|
|
12
|
+
Requires-Python: >=3.7
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
License-File: LICENSE
|
|
15
|
+
Requires-Dist: pandas>=1.3.0
|
|
16
|
+
Requires-Dist: numpy>=1.20
|
|
17
|
+
Requires-Dist: matplotlib>=3.4
|
|
18
|
+
Requires-Dist: seaborn>=0.11
|
|
19
|
+
Requires-Dist: rich>=13.0
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: license-file
|
|
22
|
+
Dynamic: requires-python
|
|
23
|
+
|
|
24
|
+
# π§ pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
|
|
25
|
+
|
|
26
|
+
**pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
|
|
27
|
+
|
|
28
|
+
It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β with guided suggestions, ready-to-use utilities, and clean visualizations.
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
π Key Features:
|
|
32
|
+
- β‘ A **smart EDA cheat sheet** (interactive and collapsible),
|
|
33
|
+
- π¬ AI-guided EDA assistant β suggests the next logical step (e.g., βView top rows with df.head()β).
|
|
34
|
+
- π§© A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
|
|
35
|
+
- π¬ Handy **code hints and examples** you can copy directly into your notebook.
|
|
36
|
+
|
|
37
|
+
---
|
|
38
|
+
|
|
39
|
+
## π Why pyedahelper?
|
|
40
|
+
|
|
41
|
+
Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
|
|
42
|
+
|
|
43
|
+
`pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β you can *see, learn, and apply* the same steps.
|
|
44
|
+
|
|
45
|
+
---
|
|
46
|
+
|
|
47
|
+
## βοΈ Installation
|
|
48
|
+
|
|
49
|
+
```bash
|
|
50
|
+
|
|
51
|
+
pip install pyedahelper==1.0.2
|
|
52
|
+
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
## Upgrade
|
|
56
|
+
|
|
57
|
+
```bash
|
|
58
|
+
|
|
59
|
+
pip install --upgrade pyedahelper
|
|
60
|
+
|
|
61
|
+
```
|
|
62
|
+
## π Quick Start
|
|
63
|
+
|
|
64
|
+
``` python
|
|
65
|
+
|
|
66
|
+
import edahelper as eda
|
|
67
|
+
import pandas as pd
|
|
68
|
+
|
|
69
|
+
# Load your dataset
|
|
70
|
+
df = pd.read_csv("data.csv")
|
|
71
|
+
|
|
72
|
+
# π Display the interactive EDA cheat-sheet
|
|
73
|
+
eda.show() -- for experienced analysts or
|
|
74
|
+
eda.core.show() -- for total newbies
|
|
75
|
+
|
|
76
|
+
# π Start guided suggestion
|
|
77
|
+
eda.next("read_csv") # Suggests: "View first rows with df.head()"
|
|
78
|
+
|
|
79
|
+
# π‘ View an example command with short explanation
|
|
80
|
+
eda.core.example("describe")
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
From there, the assistant automatically continues:
|
|
84
|
+
|
|
85
|
+
```bash
|
|
86
|
+
df.head() β df.columns β df.shape β df.info() β df.describe() β ...
|
|
87
|
+
|
|
88
|
+
```
|
|
89
|
+
If you want to skip a suggestion, simply type "Next".
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
# π Modules Overview
|
|
93
|
+
|
|
94
|
+
1οΈβ£ EDA Guidance (AI Suggestion System)
|
|
95
|
+
|
|
96
|
+
The AI-powered step recommender helps complete beginners know what to do next.
|
|
97
|
+
|
|
98
|
+
Example flow:
|
|
99
|
+
```python
|
|
100
|
+
eda.next("read_csv") # Suggests df.head()
|
|
101
|
+
eda.next("head") # Suggests df.columns
|
|
102
|
+
eda.next("columns") # Suggests df.shape
|
|
103
|
+
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
It covers:
|
|
107
|
+
|
|
108
|
+
. Dataset overview (head, columns, shape, info, describe)
|
|
109
|
+
|
|
110
|
+
. Missing values (isnull, fillna, dropna)
|
|
111
|
+
|
|
112
|
+
. Data cleaning (duplicated, astype, replace)
|
|
113
|
+
|
|
114
|
+
. Visualization (plot_distribution, scatterplot, plot_correlation)
|
|
115
|
+
|
|
116
|
+
. Feature prep and modeling steps (label_encode, split, fit_model, predict)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
## 5οΈβ£ Visualization Module
|
|
120
|
+
|
|
121
|
+
Functions for exploring and visualizing data quickly.
|
|
122
|
+
|
|
123
|
+
``` python
|
|
124
|
+
from edahelper import visualization as vis
|
|
125
|
+
|
|
126
|
+
vis.plot_correlation(df)
|
|
127
|
+
vis.plot_distribution(df, "Age")
|
|
128
|
+
vis.scatter(df, "Age", "Income", hue="Gender")
|
|
129
|
+
|
|
130
|
+
```
|
|
131
|
+
π¨ _Uses matplotlib and seaborn under the hood for fast, clean plots._
|
|
132
|
+
|
|
133
|
+
# π The Interactive Cheat-Sheet
|
|
134
|
+
|
|
135
|
+
When you forget a syntax, simply call:
|
|
136
|
+
``` python
|
|
137
|
+
eda.core.show()
|
|
138
|
+
|
|
139
|
+
```
|
|
140
|
+
|
|
141
|
+
β¨ Displays a colorful grouped guide of:
|
|
142
|
+
|
|
143
|
+
Data Loading
|
|
144
|
+
Overview
|
|
145
|
+
Missing Values
|
|
146
|
+
Indexing & Grouping
|
|
147
|
+
Visualization
|
|
148
|
+
Feature Engineering
|
|
149
|
+
NumPy & sklearn tips
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
## π§π½βπ» Example Workflow
|
|
153
|
+
|
|
154
|
+
```
|
|
155
|
+
import pyedahelper as eda
|
|
156
|
+
import pandas as pd
|
|
157
|
+
|
|
158
|
+
# Load data
|
|
159
|
+
df = pd.read_csv("sales.csv")
|
|
160
|
+
|
|
161
|
+
# Start guided mode
|
|
162
|
+
eda.next("read_csv") # Suggests df.head()
|
|
163
|
+
eda.next('head') # Suggests df.info()
|
|
164
|
+
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
## π¦ Project Structure
|
|
169
|
+
|
|
170
|
+
```ardiuno
|
|
171
|
+
|
|
172
|
+
pyedahelper/
|
|
173
|
+
β
|
|
174
|
+
βββ __init__.py # Main entrypoint
|
|
175
|
+
βββ core.py # Cheat-sheet + examples
|
|
176
|
+
βββ show.py # Display logic
|
|
177
|
+
βββ stats_summary.py # Dataset summary helpers
|
|
178
|
+
βββ visualization.py # Quick plots (hist, scatter, heatmap)
|
|
179
|
+
βββ nextstep.py # AI-guided EDA assistant (eda.next)
|
|
180
|
+
βββ __init__.py # Exports unified functions
|
|
181
|
+
|
|
182
|
+
```
|
|
183
|
+
|
|
184
|
+
# π Requirements
|
|
185
|
+
|
|
186
|
+
Python 3.8+
|
|
187
|
+
pandas
|
|
188
|
+
numpy
|
|
189
|
+
seaborn
|
|
190
|
+
scikit-learn
|
|
191
|
+
matplotlib
|
|
192
|
+
rich (for colored terminal output)
|
|
193
|
+
|
|
194
|
+
## π§Ύ License
|
|
195
|
+
|
|
196
|
+
MIT License Β© 2025 Chidiebere Christopher
|
|
197
|
+
Feel free to fork, contribute, or use it in your analytics workflow!
|
|
198
|
+
|
|
199
|
+
## π Contributing
|
|
200
|
+
|
|
201
|
+
We welcome contributions β bug fixes, new EDA tools, or notebook examples.
|
|
202
|
+
|
|
203
|
+
1. Fork the repo
|
|
204
|
+
2. Create your feature branch (git checkout -b feature-name)
|
|
205
|
+
3. Commit your changes
|
|
206
|
+
4. Push and open a Pull Request π
|
|
207
|
+
|
|
208
|
+
## π Links
|
|
209
|
+
|
|
210
|
+
π¦ PyPI: https://pypi.org/project/pyedahelper/
|
|
211
|
+
π» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
|
|
212
|
+
βοΈ Author: Chidiebere V. Christopher
|
|
213
|
+
|
|
214
|
+
π _Learn. Explore. Analyze. Faster._
|
|
215
|
+
_pyedahelper β your friendly companion for every EDA project._
|
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
# π§ pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
|
|
2
|
+
|
|
3
|
+
**pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
|
|
4
|
+
|
|
5
|
+
It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β with guided suggestions, ready-to-use utilities, and clean visualizations.
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
π Key Features:
|
|
9
|
+
- β‘ A **smart EDA cheat sheet** (interactive and collapsible),
|
|
10
|
+
- π¬ AI-guided EDA assistant β suggests the next logical step (e.g., βView top rows with df.head()β).
|
|
11
|
+
- π§© A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
|
|
12
|
+
- π¬ Handy **code hints and examples** you can copy directly into your notebook.
|
|
13
|
+
|
|
14
|
+
---
|
|
15
|
+
|
|
16
|
+
## π Why pyedahelper?
|
|
17
|
+
|
|
18
|
+
Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
|
|
19
|
+
|
|
20
|
+
`pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β you can *see, learn, and apply* the same steps.
|
|
21
|
+
|
|
22
|
+
---
|
|
23
|
+
|
|
24
|
+
## βοΈ Installation
|
|
25
|
+
|
|
26
|
+
```bash
|
|
27
|
+
|
|
28
|
+
pip install pyedahelper==1.0.2
|
|
29
|
+
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
## Upgrade
|
|
33
|
+
|
|
34
|
+
```bash
|
|
35
|
+
|
|
36
|
+
pip install --upgrade pyedahelper
|
|
37
|
+
|
|
38
|
+
```
|
|
39
|
+
## π Quick Start
|
|
40
|
+
|
|
41
|
+
``` python
|
|
42
|
+
|
|
43
|
+
import edahelper as eda
|
|
44
|
+
import pandas as pd
|
|
45
|
+
|
|
46
|
+
# Load your dataset
|
|
47
|
+
df = pd.read_csv("data.csv")
|
|
48
|
+
|
|
49
|
+
# π Display the interactive EDA cheat-sheet
|
|
50
|
+
eda.show() -- for experienced analysts or
|
|
51
|
+
eda.core.show() -- for total newbies
|
|
52
|
+
|
|
53
|
+
# π Start guided suggestion
|
|
54
|
+
eda.next("read_csv") # Suggests: "View first rows with df.head()"
|
|
55
|
+
|
|
56
|
+
# π‘ View an example command with short explanation
|
|
57
|
+
eda.core.example("describe")
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
From there, the assistant automatically continues:
|
|
61
|
+
|
|
62
|
+
```bash
|
|
63
|
+
df.head() β df.columns β df.shape β df.info() β df.describe() β ...
|
|
64
|
+
|
|
65
|
+
```
|
|
66
|
+
If you want to skip a suggestion, simply type "Next".
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
# π Modules Overview
|
|
70
|
+
|
|
71
|
+
1οΈβ£ EDA Guidance (AI Suggestion System)
|
|
72
|
+
|
|
73
|
+
The AI-powered step recommender helps complete beginners know what to do next.
|
|
74
|
+
|
|
75
|
+
Example flow:
|
|
76
|
+
```python
|
|
77
|
+
eda.next("read_csv") # Suggests df.head()
|
|
78
|
+
eda.next("head") # Suggests df.columns
|
|
79
|
+
eda.next("columns") # Suggests df.shape
|
|
80
|
+
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
It covers:
|
|
84
|
+
|
|
85
|
+
. Dataset overview (head, columns, shape, info, describe)
|
|
86
|
+
|
|
87
|
+
. Missing values (isnull, fillna, dropna)
|
|
88
|
+
|
|
89
|
+
. Data cleaning (duplicated, astype, replace)
|
|
90
|
+
|
|
91
|
+
. Visualization (plot_distribution, scatterplot, plot_correlation)
|
|
92
|
+
|
|
93
|
+
. Feature prep and modeling steps (label_encode, split, fit_model, predict)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
## 5οΈβ£ Visualization Module
|
|
97
|
+
|
|
98
|
+
Functions for exploring and visualizing data quickly.
|
|
99
|
+
|
|
100
|
+
``` python
|
|
101
|
+
from edahelper import visualization as vis
|
|
102
|
+
|
|
103
|
+
vis.plot_correlation(df)
|
|
104
|
+
vis.plot_distribution(df, "Age")
|
|
105
|
+
vis.scatter(df, "Age", "Income", hue="Gender")
|
|
106
|
+
|
|
107
|
+
```
|
|
108
|
+
π¨ _Uses matplotlib and seaborn under the hood for fast, clean plots._
|
|
109
|
+
|
|
110
|
+
# π The Interactive Cheat-Sheet
|
|
111
|
+
|
|
112
|
+
When you forget a syntax, simply call:
|
|
113
|
+
``` python
|
|
114
|
+
eda.core.show()
|
|
115
|
+
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
β¨ Displays a colorful grouped guide of:
|
|
119
|
+
|
|
120
|
+
Data Loading
|
|
121
|
+
Overview
|
|
122
|
+
Missing Values
|
|
123
|
+
Indexing & Grouping
|
|
124
|
+
Visualization
|
|
125
|
+
Feature Engineering
|
|
126
|
+
NumPy & sklearn tips
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
## π§π½βπ» Example Workflow
|
|
130
|
+
|
|
131
|
+
```
|
|
132
|
+
import pyedahelper as eda
|
|
133
|
+
import pandas as pd
|
|
134
|
+
|
|
135
|
+
# Load data
|
|
136
|
+
df = pd.read_csv("sales.csv")
|
|
137
|
+
|
|
138
|
+
# Start guided mode
|
|
139
|
+
eda.next("read_csv") # Suggests df.head()
|
|
140
|
+
eda.next('head') # Suggests df.info()
|
|
141
|
+
|
|
142
|
+
```
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
## π¦ Project Structure
|
|
146
|
+
|
|
147
|
+
```ardiuno
|
|
148
|
+
|
|
149
|
+
pyedahelper/
|
|
150
|
+
β
|
|
151
|
+
βββ __init__.py # Main entrypoint
|
|
152
|
+
βββ core.py # Cheat-sheet + examples
|
|
153
|
+
βββ show.py # Display logic
|
|
154
|
+
βββ stats_summary.py # Dataset summary helpers
|
|
155
|
+
βββ visualization.py # Quick plots (hist, scatter, heatmap)
|
|
156
|
+
βββ nextstep.py # AI-guided EDA assistant (eda.next)
|
|
157
|
+
βββ __init__.py # Exports unified functions
|
|
158
|
+
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
# π Requirements
|
|
162
|
+
|
|
163
|
+
Python 3.8+
|
|
164
|
+
pandas
|
|
165
|
+
numpy
|
|
166
|
+
seaborn
|
|
167
|
+
scikit-learn
|
|
168
|
+
matplotlib
|
|
169
|
+
rich (for colored terminal output)
|
|
170
|
+
|
|
171
|
+
## π§Ύ License
|
|
172
|
+
|
|
173
|
+
MIT License Β© 2025 Chidiebere Christopher
|
|
174
|
+
Feel free to fork, contribute, or use it in your analytics workflow!
|
|
175
|
+
|
|
176
|
+
## π Contributing
|
|
177
|
+
|
|
178
|
+
We welcome contributions β bug fixes, new EDA tools, or notebook examples.
|
|
179
|
+
|
|
180
|
+
1. Fork the repo
|
|
181
|
+
2. Create your feature branch (git checkout -b feature-name)
|
|
182
|
+
3. Commit your changes
|
|
183
|
+
4. Push and open a Pull Request π
|
|
184
|
+
|
|
185
|
+
## π Links
|
|
186
|
+
|
|
187
|
+
π¦ PyPI: https://pypi.org/project/pyedahelper/
|
|
188
|
+
π» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
|
|
189
|
+
βοΈ Author: Chidiebere V. Christopher
|
|
190
|
+
|
|
191
|
+
π _Learn. Explore. Analyze. Faster._
|
|
192
|
+
_pyedahelper β your friendly companion for every EDA project._
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pyedahelper
|
|
3
|
+
Version: 1.0.3
|
|
4
|
+
Summary: A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering.
|
|
5
|
+
Home-page: https://github.com/93Chidiebere/pyedahelper
|
|
6
|
+
Author: Chidiebere V. Christopher
|
|
7
|
+
Author-email: "Chidiebere V. Christopher" <vchidiebere.vc@gmail.com>
|
|
8
|
+
License: MIT
|
|
9
|
+
Project-URL: Homepage, https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper
|
|
10
|
+
Project-URL: Repository, https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
|
|
11
|
+
Project-URL: Documentation, https://pypi.org/project/pyedahelper/
|
|
12
|
+
Requires-Python: >=3.7
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
License-File: LICENSE
|
|
15
|
+
Requires-Dist: pandas>=1.3.0
|
|
16
|
+
Requires-Dist: numpy>=1.20
|
|
17
|
+
Requires-Dist: matplotlib>=3.4
|
|
18
|
+
Requires-Dist: seaborn>=0.11
|
|
19
|
+
Requires-Dist: rich>=13.0
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: license-file
|
|
22
|
+
Dynamic: requires-python
|
|
23
|
+
|
|
24
|
+
# π§ pyedahelper - Simplify Your Exploratory Data Analysis (EDA)
|
|
25
|
+
|
|
26
|
+
**pyedahelper** is an educational and practical Python library designed to make **Exploratory Data Analysis (EDA)** simple, guided, and fast, especially for **data analysts, students, and early-career data scientists** who want to spend more time analyzing data and less time remembering syntax.
|
|
27
|
+
|
|
28
|
+
It's a lightweight, educational, and intelligent Python library that helps you perform Exploratory Data Analysis (EDA) faster β with guided suggestions, ready-to-use utilities, and clean visualizations.
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
π Key Features:
|
|
32
|
+
- β‘ A **smart EDA cheat sheet** (interactive and collapsible),
|
|
33
|
+
- π¬ AI-guided EDA assistant β suggests the next logical step (e.g., βView top rows with df.head()β).
|
|
34
|
+
- π§© A suite of **data tools** for real-world EDA tasks (loading, cleaning, feature engineering, visualization, and summaries),
|
|
35
|
+
- π¬ Handy **code hints and examples** you can copy directly into your notebook.
|
|
36
|
+
|
|
37
|
+
---
|
|
38
|
+
|
|
39
|
+
## π Why pyedahelper?
|
|
40
|
+
|
|
41
|
+
Performing EDA often involves the use of numerous syntaxes to understand the dataset, it forces the narrative that good data professionals are those who know all the *Python syntaxes* by heart rather than those who can interprete accurately, the output of each of the EDA steps. And more importantly, Data Analysts spend more than 80% of their analytics time on iterative *EDA*, some of these hours spent checking documentary and *Googling* stuffs.
|
|
42
|
+
|
|
43
|
+
`pyedahelper` solves this by combining **ready-to-use functions** for your data workflow, AI-powered guide with **inline learning** β you can *see, learn, and apply* the same steps.
|
|
44
|
+
|
|
45
|
+
---
|
|
46
|
+
|
|
47
|
+
## βοΈ Installation
|
|
48
|
+
|
|
49
|
+
```bash
|
|
50
|
+
|
|
51
|
+
pip install pyedahelper==1.0.2
|
|
52
|
+
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
## Upgrade
|
|
56
|
+
|
|
57
|
+
```bash
|
|
58
|
+
|
|
59
|
+
pip install --upgrade pyedahelper
|
|
60
|
+
|
|
61
|
+
```
|
|
62
|
+
## π Quick Start
|
|
63
|
+
|
|
64
|
+
``` python
|
|
65
|
+
|
|
66
|
+
import edahelper as eda
|
|
67
|
+
import pandas as pd
|
|
68
|
+
|
|
69
|
+
# Load your dataset
|
|
70
|
+
df = pd.read_csv("data.csv")
|
|
71
|
+
|
|
72
|
+
# π Display the interactive EDA cheat-sheet
|
|
73
|
+
eda.show() -- for experienced analysts or
|
|
74
|
+
eda.core.show() -- for total newbies
|
|
75
|
+
|
|
76
|
+
# π Start guided suggestion
|
|
77
|
+
eda.next("read_csv") # Suggests: "View first rows with df.head()"
|
|
78
|
+
|
|
79
|
+
# π‘ View an example command with short explanation
|
|
80
|
+
eda.core.example("describe")
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
From there, the assistant automatically continues:
|
|
84
|
+
|
|
85
|
+
```bash
|
|
86
|
+
df.head() β df.columns β df.shape β df.info() β df.describe() β ...
|
|
87
|
+
|
|
88
|
+
```
|
|
89
|
+
If you want to skip a suggestion, simply type "Next".
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
# π Modules Overview
|
|
93
|
+
|
|
94
|
+
1οΈβ£ EDA Guidance (AI Suggestion System)
|
|
95
|
+
|
|
96
|
+
The AI-powered step recommender helps complete beginners know what to do next.
|
|
97
|
+
|
|
98
|
+
Example flow:
|
|
99
|
+
```python
|
|
100
|
+
eda.next("read_csv") # Suggests df.head()
|
|
101
|
+
eda.next("head") # Suggests df.columns
|
|
102
|
+
eda.next("columns") # Suggests df.shape
|
|
103
|
+
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
It covers:
|
|
107
|
+
|
|
108
|
+
. Dataset overview (head, columns, shape, info, describe)
|
|
109
|
+
|
|
110
|
+
. Missing values (isnull, fillna, dropna)
|
|
111
|
+
|
|
112
|
+
. Data cleaning (duplicated, astype, replace)
|
|
113
|
+
|
|
114
|
+
. Visualization (plot_distribution, scatterplot, plot_correlation)
|
|
115
|
+
|
|
116
|
+
. Feature prep and modeling steps (label_encode, split, fit_model, predict)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
## 5οΈβ£ Visualization Module
|
|
120
|
+
|
|
121
|
+
Functions for exploring and visualizing data quickly.
|
|
122
|
+
|
|
123
|
+
``` python
|
|
124
|
+
from edahelper import visualization as vis
|
|
125
|
+
|
|
126
|
+
vis.plot_correlation(df)
|
|
127
|
+
vis.plot_distribution(df, "Age")
|
|
128
|
+
vis.scatter(df, "Age", "Income", hue="Gender")
|
|
129
|
+
|
|
130
|
+
```
|
|
131
|
+
π¨ _Uses matplotlib and seaborn under the hood for fast, clean plots._
|
|
132
|
+
|
|
133
|
+
# π The Interactive Cheat-Sheet
|
|
134
|
+
|
|
135
|
+
When you forget a syntax, simply call:
|
|
136
|
+
``` python
|
|
137
|
+
eda.core.show()
|
|
138
|
+
|
|
139
|
+
```
|
|
140
|
+
|
|
141
|
+
β¨ Displays a colorful grouped guide of:
|
|
142
|
+
|
|
143
|
+
Data Loading
|
|
144
|
+
Overview
|
|
145
|
+
Missing Values
|
|
146
|
+
Indexing & Grouping
|
|
147
|
+
Visualization
|
|
148
|
+
Feature Engineering
|
|
149
|
+
NumPy & sklearn tips
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
## π§π½βπ» Example Workflow
|
|
153
|
+
|
|
154
|
+
```
|
|
155
|
+
import pyedahelper as eda
|
|
156
|
+
import pandas as pd
|
|
157
|
+
|
|
158
|
+
# Load data
|
|
159
|
+
df = pd.read_csv("sales.csv")
|
|
160
|
+
|
|
161
|
+
# Start guided mode
|
|
162
|
+
eda.next("read_csv") # Suggests df.head()
|
|
163
|
+
eda.next('head') # Suggests df.info()
|
|
164
|
+
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
## π¦ Project Structure
|
|
169
|
+
|
|
170
|
+
```ardiuno
|
|
171
|
+
|
|
172
|
+
pyedahelper/
|
|
173
|
+
β
|
|
174
|
+
βββ __init__.py # Main entrypoint
|
|
175
|
+
βββ core.py # Cheat-sheet + examples
|
|
176
|
+
βββ show.py # Display logic
|
|
177
|
+
βββ stats_summary.py # Dataset summary helpers
|
|
178
|
+
βββ visualization.py # Quick plots (hist, scatter, heatmap)
|
|
179
|
+
βββ nextstep.py # AI-guided EDA assistant (eda.next)
|
|
180
|
+
βββ __init__.py # Exports unified functions
|
|
181
|
+
|
|
182
|
+
```
|
|
183
|
+
|
|
184
|
+
# π Requirements
|
|
185
|
+
|
|
186
|
+
Python 3.8+
|
|
187
|
+
pandas
|
|
188
|
+
numpy
|
|
189
|
+
seaborn
|
|
190
|
+
scikit-learn
|
|
191
|
+
matplotlib
|
|
192
|
+
rich (for colored terminal output)
|
|
193
|
+
|
|
194
|
+
## π§Ύ License
|
|
195
|
+
|
|
196
|
+
MIT License Β© 2025 Chidiebere Christopher
|
|
197
|
+
Feel free to fork, contribute, or use it in your analytics workflow!
|
|
198
|
+
|
|
199
|
+
## π Contributing
|
|
200
|
+
|
|
201
|
+
We welcome contributions β bug fixes, new EDA tools, or notebook examples.
|
|
202
|
+
|
|
203
|
+
1. Fork the repo
|
|
204
|
+
2. Create your feature branch (git checkout -b feature-name)
|
|
205
|
+
3. Commit your changes
|
|
206
|
+
4. Push and open a Pull Request π
|
|
207
|
+
|
|
208
|
+
## π Links
|
|
209
|
+
|
|
210
|
+
π¦ PyPI: https://pypi.org/project/pyedahelper/
|
|
211
|
+
π» GitHub: https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper
|
|
212
|
+
βοΈ Author: Chidiebere V. Christopher
|
|
213
|
+
|
|
214
|
+
π _Learn. Explore. Analyze. Faster._
|
|
215
|
+
_pyedahelper β your friendly companion for every EDA project._
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
LICENSE
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
setup.cfg
|
|
5
|
+
setup.py
|
|
6
|
+
pyedahelper.egg-info/PKG-INFO
|
|
7
|
+
pyedahelper.egg-info/SOURCES.txt
|
|
8
|
+
pyedahelper.egg-info/dependency_links.txt
|
|
9
|
+
pyedahelper.egg-info/requires.txt
|
|
10
|
+
pyedahelper.egg-info/top_level.txt
|
|
11
|
+
tests/test_basic.py
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "pyedahelper"
|
|
7
|
+
version = "1.0.3"
|
|
8
|
+
description = "A beginner-friendly Python library that simplifies Exploratory Data Analysis (EDA) with AI-powered guide, and provides an interactive cheat-sheet for quick reference and tools for data visualization, cleaning and feature engineering."
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
license = {text = "MIT"}
|
|
11
|
+
authors = [
|
|
12
|
+
{ name = "Chidiebere V. Christopher", email = "vchidiebere.vc@gmail.com" }
|
|
13
|
+
]
|
|
14
|
+
requires-python = ">=3.7"
|
|
15
|
+
dependencies = [
|
|
16
|
+
"pandas>=1.3.0",
|
|
17
|
+
"numpy>=1.20",
|
|
18
|
+
"matplotlib>=3.4",
|
|
19
|
+
"seaborn>=0.11",
|
|
20
|
+
"rich>=13.0"
|
|
21
|
+
]
|
|
22
|
+
|
|
23
|
+
[project.urls]
|
|
24
|
+
Homepage = "https://github.com/93Cidiebere/pyedahelper-Python-EDA-Helper"
|
|
25
|
+
Repository = "https://github.com/93Chidiebere/pyedahelper-Python-EDA-Helper"
|
|
26
|
+
Documentation = "https://pypi.org/project/pyedahelper/"
|
|
27
|
+
|
|
28
|
+
[tool.setuptools.packages.find]
|
|
29
|
+
where = ["."]
|
|
30
|
+
include = ["pyedahelper*"]
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
[metadata]
|
|
2
|
+
name = pyedahelper
|
|
3
|
+
version = 1.0.3
|
|
4
|
+
author = Chidiebere V. Christopher
|
|
5
|
+
author_email = vchidieberevc@gmail.com
|
|
6
|
+
description = An interactive cheat sheet, AI-powered guide for exploratory data analysis (EDA), and tools for data visualization, cleaning and feature engineering.
|
|
7
|
+
long_description = file: README.md
|
|
8
|
+
long_description_content_type = text/markdown
|
|
9
|
+
url = https://github.com/93Chidiebere/pyedahelper
|
|
10
|
+
license = MIT
|
|
11
|
+
classifiers =
|
|
12
|
+
Programming Language :: Python :: 3
|
|
13
|
+
License :: OSI Approved :: MIT License
|
|
14
|
+
Operating System :: OS Independent
|
|
15
|
+
Intended Audience :: Education
|
|
16
|
+
Topic :: Scientific/Engineering :: Information Analysis
|
|
17
|
+
|
|
18
|
+
[options]
|
|
19
|
+
packages = find:
|
|
20
|
+
python_requires = >=3.8
|
|
21
|
+
install_requires =
|
|
22
|
+
pandas>=1.3.0
|
|
23
|
+
numpy>=1.20
|
|
24
|
+
matplotlib>=3.4
|
|
25
|
+
seaborn>=0.11
|
|
26
|
+
rich>=13.0
|
|
27
|
+
|
|
28
|
+
[egg_info]
|
|
29
|
+
tag_build =
|
|
30
|
+
tag_date = 0
|
|
31
|
+
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# from setuptools import setup, find_packages
|
|
2
|
+
|
|
3
|
+
# setup(
|
|
4
|
+
# name='pyedahelper',
|
|
5
|
+
# version='0.1.0',
|
|
6
|
+
# packages=find_packages(),
|
|
7
|
+
# install_requires=[
|
|
8
|
+
# 'pandas',
|
|
9
|
+
# 'numpy',
|
|
10
|
+
# 'matplotlib',
|
|
11
|
+
# 'seaborn'
|
|
12
|
+
# ],
|
|
13
|
+
# )
|
|
14
|
+
|
|
15
|
+
from setuptools import setup, find_packages
|
|
16
|
+
|
|
17
|
+
with open("README.md", "r", encoding="utf-8") as fh:
|
|
18
|
+
long_description = fh.read()
|
|
19
|
+
|
|
20
|
+
setup(
|
|
21
|
+
name="pyedahelper",
|
|
22
|
+
version="1.0.3",
|
|
23
|
+
author="Chidiebere V. Christopher",
|
|
24
|
+
author_email="vchidiebere.vc@gmail.com",
|
|
25
|
+
description="An interactive cheat sheet, AI-powered guide for exploratory data analysis (EDA), and tools for data visualization, cleaning and feature engineering.",
|
|
26
|
+
long_description=long_description,
|
|
27
|
+
long_description_content_type="text/markdown",
|
|
28
|
+
packages=find_packages(),
|
|
29
|
+
install_requires=[
|
|
30
|
+
"pandas",
|
|
31
|
+
"numpy",
|
|
32
|
+
"matplotlib",
|
|
33
|
+
"seaborn",
|
|
34
|
+
"scikit-learn",
|
|
35
|
+
],
|
|
36
|
+
python_requires=">=3.7",
|
|
37
|
+
)
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from edahelper.data_loading import load_data
|
|
3
|
+
|
|
4
|
+
def test_csv_load(tmp_path):
|
|
5
|
+
# Create sample CSV
|
|
6
|
+
data = pd.DataFrame({"A": [1, 2], "B": [3, 4]})
|
|
7
|
+
file = tmp_path / "test.csv"
|
|
8
|
+
data.to_csv(file, index=False)
|
|
9
|
+
|
|
10
|
+
df = load_data(file)
|
|
11
|
+
assert df.shape == (2, 2)
|