pydartdiags 0.0.3a0__tar.gz → 0.0.3b0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pydartdiags might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pydartdiags
3
- Version: 0.0.3a0
3
+ Version: 0.0.3b0
4
4
  Summary: Observation Sequence Diagnostics for DART
5
5
  Project-URL: Homepage, https://github.com/NCAR/pyDARTdiags.git
6
6
  Project-URL: Issues, https://github.com/NCAR/pyDARTdiags/issues
@@ -15,30 +15,34 @@ Requires-Dist: pandas>=2.2.0
15
15
  Requires-Dist: plotly>=5.22.0
16
16
  Description-Content-Type: text/markdown
17
17
 
18
- # pyDARTdiag
18
+ # pyDARTdiags
19
19
 
20
- pyDARTdiag is a python library for obsevation space diagnostics for the Data Assimilation Research Testbed ([DART](https://github.com/NCAR/DART)).
20
+ pyDARTdiags is a python library for obsevation space diagnostics for the Data Assimilation Research Testbed ([DART](https://github.com/NCAR/DART)).
21
21
 
22
- pyDARTdiag is under initial development, so please use caution.
22
+ pyDARTdiags is under initial development, so please use caution.
23
23
  The MATLAB [observation space diagnostics](https://docs.dart.ucar.edu/en/latest/guide/matlab-observation-space.html) are available through [DART](https://github.com/NCAR/DART).
24
24
 
25
- * obs\_sequence to DataFrame
25
+
26
+ pyDARTdiags can be installed through pip. We recommend installing pydartdiags in a virtual enviroment:
27
+
28
+
29
+ ```
30
+ python3 -m venv dartdiags
31
+ source dartdiags/bin/activate
32
+ pip install pydartdiags
33
+ ```
26
34
 
27
35
  ## Example importing the obs\_sequence and plots modules
28
36
 
29
37
  ```python
30
- import sys
31
- import os
32
- sys.path.append(os.path.abspath("/Users/hkershaw/DART/Projects/Diagnostics/pyDART/src/obs_sequence"))
33
-
34
- import obs_sequence as dart_os
35
- import plots as dart_plots
38
+ from pydartdiags.obs_sequence import obs_sequence as obs_seq
39
+ from pydartdiags.plots import plots
36
40
  ```
37
41
 
38
42
  ## Examining the dataframe
39
43
 
40
44
  ```python
41
- obs_seq = dart_os.obs_sequence('obs_seq.final.ascii')
45
+ obs_seq = obs_seq.obs_sequence('obs_seq.final.ascii')
42
46
  obs_seq.df.head()
43
47
  ```
44
48
 
@@ -196,9 +200,10 @@ obs_seq.df.head()
196
200
  </div>
197
201
 
198
202
 
203
+ Find the numeber of assimilated (used) observations vs. possible observations by type
199
204
 
200
205
  ```python
201
- dart_os.possible_vs_used(obs_seq.df)
206
+ obs_seq.possible_vs_used(obs_seq.df)
202
207
  ```
203
208
 
204
209
  <table border="1" class="dataframe">
@@ -349,17 +354,14 @@ dart_os.possible_vs_used(obs_seq.df)
349
354
 
350
355
  ## Example plotting
351
356
 
352
-
353
-
354
357
  ### rank histogram
355
358
 
356
359
  * Select only observations that were assimliated (QC === 0).
357
360
  * plot the rank histogram
358
361
 
359
362
  ```python
360
-
361
- df_qc0 = dart_os.select_by_dart_qc(obs_seq.df, 0) # only qc 0
362
- df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
363
+ df_qc0 = obs_seq.select_by_dart_qc(obs_seq.df, 0)
364
+ plots.plot_rank_histogram(df_qc0)
363
365
  ```
364
366
  ![Rank Histogram](docs/images/rankhist.png)
365
367
 
@@ -374,8 +376,8 @@ df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
374
376
  hPalevels = [0.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 700, 850, 925, 1000]# float("inf")] # Pa?
375
377
  plevels = [i * 100 for i in hPalevels]
376
378
 
377
- df_qc0 = dart_os.select_by_dart_qc(obs_seq.df, 0) # only qc 0
378
- df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
379
+ df_qc0 = obs_seq.select_by_dart_qc(obs_seq.df, 0) # only qc 0
380
+ df_profile, figrmse, figbias = plots.plot_profile(df_qc0, plevels)
379
381
  ```
380
382
 
381
383
  ![RMSE Plot](docs/images/rmse.png)
@@ -1,27 +1,31 @@
1
- # pyDARTdiag
1
+ # pyDARTdiags
2
2
 
3
- pyDARTdiag is a python library for obsevation space diagnostics for the Data Assimilation Research Testbed ([DART](https://github.com/NCAR/DART)).
3
+ pyDARTdiags is a python library for obsevation space diagnostics for the Data Assimilation Research Testbed ([DART](https://github.com/NCAR/DART)).
4
4
 
5
- pyDARTdiag is under initial development, so please use caution.
5
+ pyDARTdiags is under initial development, so please use caution.
6
6
  The MATLAB [observation space diagnostics](https://docs.dart.ucar.edu/en/latest/guide/matlab-observation-space.html) are available through [DART](https://github.com/NCAR/DART).
7
7
 
8
- * obs\_sequence to DataFrame
8
+
9
+ pyDARTdiags can be installed through pip. We recommend installing pydartdiags in a virtual enviroment:
10
+
11
+
12
+ ```
13
+ python3 -m venv dartdiags
14
+ source dartdiags/bin/activate
15
+ pip install pydartdiags
16
+ ```
9
17
 
10
18
  ## Example importing the obs\_sequence and plots modules
11
19
 
12
20
  ```python
13
- import sys
14
- import os
15
- sys.path.append(os.path.abspath("/Users/hkershaw/DART/Projects/Diagnostics/pyDART/src/obs_sequence"))
16
-
17
- import obs_sequence as dart_os
18
- import plots as dart_plots
21
+ from pydartdiags.obs_sequence import obs_sequence as obs_seq
22
+ from pydartdiags.plots import plots
19
23
  ```
20
24
 
21
25
  ## Examining the dataframe
22
26
 
23
27
  ```python
24
- obs_seq = dart_os.obs_sequence('obs_seq.final.ascii')
28
+ obs_seq = obs_seq.obs_sequence('obs_seq.final.ascii')
25
29
  obs_seq.df.head()
26
30
  ```
27
31
 
@@ -179,9 +183,10 @@ obs_seq.df.head()
179
183
  </div>
180
184
 
181
185
 
186
+ Find the numeber of assimilated (used) observations vs. possible observations by type
182
187
 
183
188
  ```python
184
- dart_os.possible_vs_used(obs_seq.df)
189
+ obs_seq.possible_vs_used(obs_seq.df)
185
190
  ```
186
191
 
187
192
  <table border="1" class="dataframe">
@@ -332,17 +337,14 @@ dart_os.possible_vs_used(obs_seq.df)
332
337
 
333
338
  ## Example plotting
334
339
 
335
-
336
-
337
340
  ### rank histogram
338
341
 
339
342
  * Select only observations that were assimliated (QC === 0).
340
343
  * plot the rank histogram
341
344
 
342
345
  ```python
343
-
344
- df_qc0 = dart_os.select_by_dart_qc(obs_seq.df, 0) # only qc 0
345
- df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
346
+ df_qc0 = obs_seq.select_by_dart_qc(obs_seq.df, 0)
347
+ plots.plot_rank_histogram(df_qc0)
346
348
  ```
347
349
  ![Rank Histogram](docs/images/rankhist.png)
348
350
 
@@ -357,8 +359,8 @@ df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
357
359
  hPalevels = [0.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 700, 850, 925, 1000]# float("inf")] # Pa?
358
360
  plevels = [i * 100 for i in hPalevels]
359
361
 
360
- df_qc0 = dart_os.select_by_dart_qc(obs_seq.df, 0) # only qc 0
361
- df_profile, figrmse, figbias = dart_plots.plot_profile(df_qc0, plevels)
362
+ df_qc0 = obs_seq.select_by_dart_qc(obs_seq.df, 0) # only qc 0
363
+ df_profile, figrmse, figbias = plots.plot_profile(df_qc0, plevels)
362
364
  ```
363
365
 
364
366
  ![RMSE Plot](docs/images/rmse.png)
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "pydartdiags"
7
- version = "0.0.3a"
7
+ version = "0.0.3b"
8
8
  authors = [
9
9
  { name="Helen Kershaw", email="hkershaw@ucar.edu" },
10
10
  ]
File without changes
File without changes