pydantic-ai 0.1.3__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pydantic-ai might be problematic. Click here for more details.

Files changed (170) hide show
  1. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/PKG-INFO +3 -3
  2. pydantic_ai-0.1.4/tests/mcp_server.py +38 -0
  3. pydantic_ai-0.1.4/tests/models/cassettes/test_openai/test_document_as_binary_content_input.yaml +84 -0
  4. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_document_url_input.yaml +38 -15
  5. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_openai.py +23 -0
  6. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_agent.py +15 -1
  7. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_mcp.py +25 -2
  8. pydantic_ai-0.1.3/tests/mcp_server.py +0 -19
  9. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/.gitignore +0 -0
  10. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/LICENSE +0 -0
  11. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/Makefile +0 -0
  12. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/README.md +0 -0
  13. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/pyproject.toml +0 -0
  14. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/__init__.py +0 -0
  15. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/assets/dummy.pdf +0 -0
  16. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/assets/kiwi.png +0 -0
  17. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/assets/marcelo.mp3 +0 -0
  18. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/assets/small_video.mp4 +0 -0
  19. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_mcp/test_agent_with_stdio_server.yaml +0 -0
  20. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[anthropic].yaml +0 -0
  21. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[bedrock].yaml +0 -0
  22. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[cohere].yaml +0 -0
  23. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[gemini].yaml +0 -0
  24. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[groq].yaml +0 -0
  25. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[mistral].yaml +0 -0
  26. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/cassettes/test_settings/test_stop_settings[openai].yaml +0 -0
  27. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/conftest.py +0 -0
  28. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/__init__.py +0 -0
  29. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_dataset.py +0 -0
  30. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_evaluator_base.py +0 -0
  31. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_evaluator_common.py +0 -0
  32. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_evaluator_context.py +0 -0
  33. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_evaluator_spec.py +0 -0
  34. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_evaluators.py +0 -0
  35. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_llm_as_a_judge.py +0 -0
  36. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_otel.py +0 -0
  37. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_render_numbers.py +0 -0
  38. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_reporting.py +0 -0
  39. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_reports.py +0 -0
  40. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/test_utils.py +0 -0
  41. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/evals/utils.py +0 -0
  42. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/example_modules/README.md +0 -0
  43. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/example_modules/bank_database.py +0 -0
  44. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/example_modules/fake_database.py +0 -0
  45. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/example_modules/weather_service.py +0 -0
  46. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/__init__.py +0 -0
  47. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_file_persistence.py +0 -0
  48. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_graph.py +0 -0
  49. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_mermaid.py +0 -0
  50. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_persistence.py +0 -0
  51. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_state.py +0 -0
  52. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/graph/test_utils.py +0 -0
  53. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/import_examples.py +0 -0
  54. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/json_body_serializer.py +0 -0
  55. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/__init__.py +0 -0
  56. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_anthropic_model_instructions.yaml +0 -0
  57. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_document_binary_content_input.yaml +0 -0
  58. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_document_url_input.yaml +0 -0
  59. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_image_url_input.yaml +0 -0
  60. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_image_url_input_invalid_mime_type.yaml +0 -0
  61. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_multiple_parallel_tool_calls.yaml +0 -0
  62. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_anthropic/test_text_document_url_input.yaml +0 -0
  63. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_empty_system_prompt.yaml +0 -0
  64. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model.yaml +0 -0
  65. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_anthropic_model_without_tools.yaml +0 -0
  66. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_guardrail_config.yaml +0 -0
  67. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_instructions.yaml +0 -0
  68. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_iter_stream.yaml +0 -0
  69. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_max_tokens.yaml +0 -0
  70. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_other_parameters.yaml +0 -0
  71. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_performance_config.yaml +0 -0
  72. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_retry.yaml +0 -0
  73. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_stream.yaml +0 -0
  74. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_structured_response.yaml +0 -0
  75. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_model_top_p.yaml +0 -0
  76. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_bedrock_multiple_documents_in_history.yaml +0 -0
  77. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_document_url_input.yaml +0 -0
  78. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_image_as_binary_content_input.yaml +0 -0
  79. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_image_url_input.yaml +0 -0
  80. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_text_as_binary_content_input.yaml +0 -0
  81. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_text_document_url_input.yaml +0 -0
  82. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_video_as_binary_content_input.yaml +0 -0
  83. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_bedrock/test_video_url_input.yaml +0 -0
  84. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_cohere/test_cohere_model_instructions.yaml +0 -0
  85. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_cohere/test_request_simple_success_with_vcr.yaml +0 -0
  86. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_document_url_input.yaml +0 -0
  87. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_gemini_additional_properties_is_false.yaml +0 -0
  88. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_gemini_additional_properties_is_true.yaml +0 -0
  89. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_gemini_drop_exclusive_maximum.yaml +0 -0
  90. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_gemini_exclusive_minimum_and_maximum.yaml +0 -0
  91. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_gemini_model_instructions.yaml +0 -0
  92. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_image_as_binary_content_input.yaml +0 -0
  93. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_gemini/test_image_url_input.yaml +0 -0
  94. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_groq/test_groq_model_instructions.yaml +0 -0
  95. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_groq/test_image_as_binary_content_input.yaml +0 -0
  96. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_groq/test_image_url_input.yaml +0 -0
  97. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_mistral/test_mistral_model_instructions.yaml +0 -0
  98. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_audio_as_binary_content_input.yaml +0 -0
  99. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_image_as_binary_content_input.yaml +0 -0
  100. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_max_completion_tokens[gpt-4.5-preview].yaml +0 -0
  101. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_max_completion_tokens[gpt-4o-mini].yaml +0 -0
  102. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_max_completion_tokens[o3-mini].yaml +0 -0
  103. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_multiple_agent_tool_calls.yaml +0 -0
  104. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_openai_instructions.yaml +0 -0
  105. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_openai_instructions_with_tool_calls_keep_instructions.yaml +0 -0
  106. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_openai_model_without_system_prompt.yaml +0 -0
  107. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_openai_o1_mini_system_role[developer].yaml +0 -0
  108. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_openai_o1_mini_system_role[system].yaml +0 -0
  109. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai/test_user_id.yaml +0 -0
  110. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_audio_as_binary_content_input.yaml +0 -0
  111. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_image_as_binary_content_input.yaml +0 -0
  112. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_document_as_binary_content_input.yaml +0 -0
  113. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_document_url_input.yaml +0 -0
  114. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_image_url_input.yaml +0 -0
  115. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_builtin_tools.yaml +0 -0
  116. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_http_error.yaml +0 -0
  117. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_instructions.yaml +0 -0
  118. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_retry.yaml +0 -0
  119. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_simple_response.yaml +0 -0
  120. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_model_simple_response_with_tool_call.yaml +0 -0
  121. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_output_type.yaml +0 -0
  122. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_reasoning_effort.yaml +0 -0
  123. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_reasoning_generate_summary.yaml +0 -0
  124. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_stream.yaml +0 -0
  125. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_system_prompt.yaml +0 -0
  126. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/cassettes/test_openai_responses/test_openai_responses_text_document_url_input.yaml +0 -0
  127. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/mock_async_stream.py +0 -0
  128. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_anthropic.py +0 -0
  129. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_bedrock.py +0 -0
  130. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_cohere.py +0 -0
  131. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_fallback.py +0 -0
  132. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_gemini.py +0 -0
  133. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_groq.py +0 -0
  134. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_instrumented.py +0 -0
  135. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_mistral.py +0 -0
  136. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_model.py +0 -0
  137. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_model_function.py +0 -0
  138. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_model_names.py +0 -0
  139. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_model_test.py +0 -0
  140. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/models/test_openai_responses.py +0 -0
  141. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/__init__.py +0 -0
  142. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/cassettes/test_azure/test_azure_provider_call.yaml +0 -0
  143. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/cassettes/test_google_vertex/test_vertexai_provider.yaml +0 -0
  144. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_anthropic.py +0 -0
  145. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_azure.py +0 -0
  146. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_bedrock.py +0 -0
  147. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_cohere.py +0 -0
  148. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_deepseek.py +0 -0
  149. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_google_gla.py +0 -0
  150. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_google_vertex.py +0 -0
  151. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_groq.py +0 -0
  152. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_mistral.py +0 -0
  153. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_openai.py +0 -0
  154. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/providers/test_provider_names.py +0 -0
  155. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_cli.py +0 -0
  156. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_deps.py +0 -0
  157. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_examples.py +0 -0
  158. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_format_as_xml.py +0 -0
  159. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_json_body_serializer.py +0 -0
  160. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_live.py +0 -0
  161. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_logfire.py +0 -0
  162. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_messages.py +0 -0
  163. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_parts_manager.py +0 -0
  164. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_settings.py +0 -0
  165. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_streaming.py +0 -0
  166. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_tools.py +0 -0
  167. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_usage_limits.py +0 -0
  168. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/test_utils.py +0 -0
  169. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/typed_agent.py +0 -0
  170. {pydantic_ai-0.1.3 → pydantic_ai-0.1.4}/tests/typed_graph.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pydantic-ai
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: Agent Framework / shim to use Pydantic with LLMs
5
5
  Project-URL: Homepage, https://ai.pydantic.dev
6
6
  Project-URL: Source, https://github.com/pydantic/pydantic-ai
@@ -28,9 +28,9 @@ Classifier: Topic :: Internet
28
28
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
29
29
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
30
30
  Requires-Python: >=3.9
31
- Requires-Dist: pydantic-ai-slim[anthropic,bedrock,cli,cohere,evals,groq,mcp,mistral,openai,vertexai]==0.1.3
31
+ Requires-Dist: pydantic-ai-slim[anthropic,bedrock,cli,cohere,evals,groq,mcp,mistral,openai,vertexai]==0.1.4
32
32
  Provides-Extra: examples
33
- Requires-Dist: pydantic-ai-examples==0.1.3; extra == 'examples'
33
+ Requires-Dist: pydantic-ai-examples==0.1.4; extra == 'examples'
34
34
  Provides-Extra: logfire
35
35
  Requires-Dist: logfire>=3.11.0; extra == 'logfire'
36
36
  Description-Content-Type: text/markdown
@@ -0,0 +1,38 @@
1
+ from mcp.server.fastmcp import Context, FastMCP
2
+
3
+ mcp = FastMCP('PydanticAI MCP Server')
4
+ log_level = 'unset'
5
+
6
+
7
+ @mcp.tool()
8
+ async def celsius_to_fahrenheit(celsius: float) -> float:
9
+ """Convert Celsius to Fahrenheit.
10
+
11
+ Args:
12
+ celsius: Temperature in Celsius
13
+
14
+ Returns:
15
+ Temperature in Fahrenheit
16
+ """
17
+ return (celsius * 9 / 5) + 32
18
+
19
+
20
+ @mcp.tool()
21
+ async def get_log_level(ctx: Context) -> str: # type: ignore
22
+ """Get the current log level.
23
+
24
+ Returns:
25
+ The current log level.
26
+ """
27
+ await ctx.info('this is a log message')
28
+ return log_level
29
+
30
+
31
+ @mcp._mcp_server.set_logging_level() # pyright: ignore[reportPrivateUsage]
32
+ async def set_logging_level(level: str) -> None:
33
+ global log_level
34
+ log_level = level
35
+
36
+
37
+ if __name__ == '__main__':
38
+ mcp.run()
@@ -0,0 +1,84 @@
1
+ interactions:
2
+ - request:
3
+ headers:
4
+ accept:
5
+ - application/json
6
+ accept-encoding:
7
+ - gzip, deflate
8
+ connection:
9
+ - keep-alive
10
+ content-length:
11
+ - '17930'
12
+ content-type:
13
+ - application/json
14
+ host:
15
+ - api.openai.com
16
+ method: POST
17
+ parsed_body:
18
+ messages:
19
+ - content:
20
+ - text: What is the main content on this document?
21
+ type: text
22
+ - file:
23
+ file_data: data:application/pdf;base64,JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nD2OywoCMQxF9/mKu3YRk7bptDAIDuh+oOAP+AAXgrOZ37etjmSTe3ISIljpDYGwwrKxRwrKGcsNlx1e31mt5UFTIYucMFiqcrlif1ZobP0do6g48eIPKE+ydk6aM0roJG/RegwcNhDr5tChd+z+miTJnWqoT/3oUabOToVmmvEBy5IoCgplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjEzNAplbmRvYmoKCjUgMCBvYmoKPDwvTGVuZ3RoIDYgMCBSL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGgxIDIzMTY0Pj4Kc3RyZWFtCnic7Xx5fFvVlf+59z0tdrzIu7xFz1G8Kl7i2HEWE8vxQlI3iRM71A6ksSwrsYptKZYUE9omYStgloZhaSlMMbTsbSPLAZwEGgNlusxQ0mHa0k4Z8muhlJb8ynQoZVpi/b736nkjgWlnfn/8Pp9fpNx3zz33bPecc899T4oVHA55KIEOkUJO96DLvyQxM5WI/omIpbr3BbU/3J61FPBpItOa3f49g1948t/vI4rLIzL8dM/A/t3vn77ZSpT0LlH8e/0eV98jn3k0mSj7bchY2Q/EpdNXm4hyIIOW9g8Gr+gyrq3EeAPGVQM+t+uw5VrQ51yBcc6g6wr/DywvGAHegbE25Br0bFR/ezPGR4kq6/y+QPCnVBYl2ijka/5hjz95S8kmok8kEFl8wDG8xQtjZhRjrqgGo8kcF7+I/r98GY5TnmwPU55aRIhb9PWZNu2Nvi7mRM9/C2flx5r+itA36KeshGk0wf5MWfQ+y2bLaSOp9CdkyxE6S3dSOnXSXSyVllImbaeNTAWNg25m90T3Rd+ii+jv6IHoU+zq6GOY/yL9A70PC/5NZVRHm0G/nTz0lvIGdUe/Qma6nhbRWtrGMslFP8H7j7DhdrqDvs0+F30fWtPpasirp0ZqjD4b/YDK6Gb1sOGVuCfoNjrBjFF31EuLaQmNckf0J9HXqIi66Wv0DdjkYFPqBiqgy+k6+jLLVv4B0J30dZpmCXyn0mQ4CU0b6RIaohEapcfoByyVtRteMbwT/Wz0TTJSGpXAJi+9xWrZJv6gmhBdF/05XUrH6HtYr3hPqZeqDxsunW6I/n30Ocqgp1g8e5o9a6g23Hr2quj90W8hI4toOTyyGXp66Rp6lr5P/05/4AejB2kDdUDzCyyfaawIHv8Jz+YH+AHlZarAanfC2hDdR2FE5DidoGfgm3+l0/QGS2e57BOsl93G/sATeB9/SblHOar8i8rUR+FvOxXCR0F6kJ7Efn6RXmIGyK9i7ewzzMe+xP6eneZh/jb/k2pWr1H/op41FE2fnv5LdHP0j2SlHPokXUkH4duv0QQdpR/Sj+kP9B/0HrOwVayf3c/C7DR7m8fxJXwL9/O7+IP8m8pm5TblWbVWXa9err6o/tzwBcNNJpdp+oOHpm+f/ub0j6JPRX+E3EmC/CJqhUevQlY8SCfpZUj/Gb1KvxT5A/lr2Q72aWgJsBvYHeyb7AX2I/ZbrJLkewlfy5uh1ceH4aer+e38Dmh/Ce9T/Of8Vf47/kfFoCxRVip7lfuVsDKpnFJ+rVrUIrVCXa5uUXeoUUSm2nCxocPwiOFxw3OGd4z1xj6j3/gb09Wma83/dLbs7L9N03T/dHh6ArlrRiZdCU98lR5A3h9FDH4Aj/4QFp+mdxGFHFbAimH3atbK2tgm9il2GfOwq9n17O/Yl9k97AH2LawAa+Am2O7gjbyDu7iHX8uv57fwo3gf59/nP+Gv8DOwPEuxKw5lubJR2aFcqgxhDUHlgHItPHub8pjykvKy8qbyG+UMopalLlZD6pXq3erD6lH1R4ZPGgbxfsBw0jBl+JHhA8MHRm7MMeYZK42fMT5i/KXJaFppajfdaPoX03+Y/SyPlcFybX614NnYg4v5YzxdPcjOAJHPVErGyh2IQwd2xX9QgzKNuCSJediWwbPVNMFpdKph8AfZCaplL9BBI1dQidXTFGG/4KfV5/lF9GPWw7LVh5Uhww94AT2OanSYP81PsPV0lNfzS/i9CrE32CP0BvL9CrqDXc4C9Dg7w9awz7M6dpD+hWcqHexaqo8+wFUWxzaydwgW0FVqH33646sgW02/oLemv6omqp9DfZqkuxDRb9Br7FH6MzNE30Z1U1CNXKgyNyPfryNR9XZinx3EfsxGBRkwvkRHxYliqjOuU6+kd+g/6S3DcWTUelTSN6e96lfVX0XrouXYYdhl9Aj2XT9djB3zBrLkGYzF6DLs9HjUkmrs6nbaQX30eVS926Lh6L3Ra6L7oz76R/D+mS1jf2Zj2BGT4Kin7+H9RfoZuwn78OL/3ikw3UdT9FtmZYWsGvvhjGGf4bDhMcNRw7cNLxqXw9vX0j3I6F8im+OxAjf9iH5Lf2JmxCabllEN7F0F27togHcrz1ATyyE/9mwJ6vh6fSUBSLka3rsX+/kZ7I13UCcuo2/TK4yzLKzIDf1myGmDn3eB+iFE8Bo2AUwfqnYZ/Q7rTmKreBD6nJB0F6rWFGz6Bf0a3o5Ku5ahLjSzSyDrT/Qp6oOGldTOxhGBJ2k1Kmuz8k/w91JmofVsCfs6+HqwQ5Mon1YbfsU4LZveHF3FvcozOGOiwI/h9Mqli9heWJGMdZylDLaFaqe3wYaXiZyNnc6GdRfVr12zelVdbc2K6uVVlRXlyxxlpSXFRYVL7UsKNNvi/LzcnGxrVmZGelpqiiU5KTFhUXyc2WQ0qApntKzF3tqjhYt6wmqRfcOGcjG2u4BwzUP0hDWgWhfShLUeSaYtpHSCcveHKJ0xSucsJbNo9VRfvkxrsWvhF5vt2iTbsbUL8C3N9m4tfEbCmyR8WMKJgAsKwKC1WPubtTDr0VrCrfv6R1t6miFufFF8k73JE1++jMbjFwFcBCicZfePs6x1TAI8q2XNOCdzIowK59ibW8LZ9mZhQVgpbHH1hdu3drU05xYUdJcvC7Mmt703TPb14WSHJKEmqSZsbAqbpBrNK1ZDN2njy6ZGb560UG+PI6HP3ue6rCusuLqFjhQH9DaHs6583To3hPDUpq7r58/mKqMtVq8mhqOj12vhqa1d82cLxLW7GzLAywtbe0ZbofpmOLGtQ4M2fl13V5hdB5WaWIlYVWx9HnuLwPR8RgvH2dfb+0c/04PQ5IyGadv+gkhOjvNY9DTltGijnV32gnBDrr3b1Zw3nk6j2/ZPZDu17IUz5cvGLSkxx44nJetAQuJ8wDM7JyFJLqC2bbOeZcIi+0YkRFhza7Cky441rRIXzyoada8CGV7dDFzhPkTEG45r6hm1rBF4wR82FFrs2ugfCRlgP/P2QoxLxxgLLX8kAYo8mU01zM/AYYcjXFYmUsTUhJjCxnVyXFu+bN8kX2n3WzR0cB+1w7eu7jWVcH9BgQjwTZNO6sUgfGhrV2ysUW9uhJyVju4w7xEzUzMzGdvFzKGZmVn2Hjsy+ah8EMgIm4tm/yVbMtNa+teEWebHTHti820d9ratO7q0ltEe3bdtnQtGsflVs3M6FE5r6lJyuQ7xXEXOIikvmyUWg66EsFqIf0aZ1H1hBUkpEUxrDVt6NsSu3fEFBR/JM2kyz2OajL4juGQ3x6ZbGV7jWDheu2C8wLqEUQX2qkW8rXPH6Gj8grlWFKDR0Va71jraM+qajB7qtWsW++gx/jB/eNTf0jMT0Mno8Ztyw603d2MR/WwNkpXT+nE7u2HruJPd0LGj65gFT283dHZFOONNPeu7x5dirusYbkWcEstnsWKkiRG1MSR6hJvlVO4xJ9EhOatKhBy7JxlJnHkGx8g9yWM4i8ThVY7bFBF8A9449U20/ihn00bTJG9wppFBnVYo3qROM8o2Gw3TXHmaFVEcbnatZHVY3qs/W7/Z8m79prP11ADY8gEuy6sKUgpSCnFhuIH4QFOmPnAa6C+kqVPQhScYMrjwnGUhGx10rigxlMRfnOVRPQmGsqzVWRsyuzP7Mw2rs1bmXp97t+GuRQZbSiEjnpZamGwxZxcfMTHTZHRqIm5RDUy82Zl2qIBpBVUFvCAlVSPNUmXhlkl+04S2vMPqgGk7hW2bLDv3vufYu+mMNLJB2kg797KdaQXVWZmZqRnpuBfE217AUlZU163jtTVFRcVF9jt4/lM9V032lNft3nRN79fPvsxKXv1c3YZd9fUDHeueMBzPK3pu+s0fPnHNmLutzKY+90FtUuolLzz22JO7U5PEs/ct0d+oHbivy6R7nVmfStmTcpdBiTNmG+t5fUobb0t5k5uSJ3nQmaIuyqT4jPT0+DhjWnpRRgZNslJnUqZTW1pzJJNFM1lmjhWLdmYuWVpz2Dpm5X7rO1b+eyuzxi8qijOLqWTQjpnZO2Zmzs5qqJdr3zvsEKvfjNUPO95D23Sm3iIjVW+BFxrOCC+wnQW1RqN9SVFRLaKWnpm5onrlSgEqm9c84738sU+ybNu2hg3DZSz7vu29n37sLj42bT3tWbsl9Dqb+svPxToP4H73y+o6KmZrj1EpjNmZEt9gMBoTMoyZCTVKjbnGWmNv5i3mFmuzPUFTKks74npKD5XeV/p148OmhxKeMD6REC49VXq6NIlKK0vbMXGy9LVSY6kzJ6+mAeNDctJgKlBNOfmZcFkk3lQgPLdYNVlSUopz8/KKiuMZGZMtRakpzh21PSnMl8JSJnmrMzkntyg/DzhfHuvJY3nAHS1EdBl8HCEqFsmUHNcgeudK2F0M0mJnI1o92tLimmLnmotqKotfKn6tWEkuthUfKlaoWCuuKo4Wq8XZJb+K+Vq4OPZCtp2Bl9/budeBRHtv707RwefS6+LdcKbhDEtJXU1oy6vYsGPvToTBkVaQsXJFdWbWSnnNzEAIapCDS4xGCRbNgAeYctPU7ruqWh+4LPRASf70m/nFW9f2V0y/ubhhZWN/+fSbatFtj3Zu396567LmL5/t5ru+WlG/4aa7pjlvvWfHstZr7z77AWKWNL1V3YbcTGM1R1NLDCxtMnraaU1IrjFnJibXmMTFKC6GTOC4cI4tZ00NgqomLkoyWjilGdU0rioKg9vTeizMMsmOOFMXJSdWJpWQllGV0ZOhvJPBMoR/lxTViN6Zmre4JiMrK0ddrTit2TUHFaZMsmJnHJcjVD8xSsXTiTNvZY1GVagW2enfGYs52LHpbDau+Gc9u7nF0/xrh2Pv8CbLu69Tw5mdlQ3StSx1dYr0a+pqAKYki9joDibjsrMtbOloC69BxY+oFjoefYdY9J1xBc/veHXjRDlGhuhvnEmJKQ1plrRsXFKtDQacIRMYiD6CcUxWd1pBWloBMyUp9iXFxWLL1CUxx/T7zD59Y1Nh06cOtm/dnL2+tvfT2WrR2ST+hw/4sZ29Fy1J+UVioFvUwDvxLPg+amAy7rdHnIVGw7H0Y1blYgPbY/iJgaemFCYmJVGupRAuSSZz5jlVL9OWX5Xfk+/PP5RvyLckayzmLFH48hYWvtm6J6pe6urKudq3IqVAQ/HLSDeKymfP5nLj14i6dyf7V5a07cBjvV/a/JnvP/vAkX1Nn95QO2Y4nlnw6pHrJ70pGWd/qj433VPR29jenxiPbPoS1nMt1hNHw84Gs0E1GgpNmrnKfNL8mlmtNB82c7OZFFWsJ47MpgbjFjyKb1Nw8vAcbVHVIr5IjZu/iPj5i0D9eg8ABnPL2LkXvWKw1GM1WEhGgWxfUs6cXcv7zt5rOP7+9IPvn71NVCcrHP5rw8uowpPO6pUqK1M1i5bSrR6yGszqSSvPyEzh6amZKUlpyWRJSmNk4elx5uRFbNeiKAwTZSbeyFKSY4VYVh2c13jYFomPkr2iwbzF3G5WzCWWypRdKTxlkqnOxKS0Ip6+i8YypzJ5JkL3ZFxCTWZ21hXHuJfk0hx76zeJ0/KDnfXv7sx+naxYm1gVWgMuq6uT8UJ5EMUhbUVtjSgLWSZRBDIyVmTYURLs1ntX3x26IlDUtO6i2n/+5+k371WL2r9wbcfS71hWb2179YOnlI0i126Hsd9AbMTZPnKM4rAPG1DnnHHtcfxQXDhuKu5U3O/jDLa4nriDcWNAGBSjCQe/kkzMSafwxKjQTtwiGA1GkxrPTUVMFXs5rmBpjZpt1o8ah34LIAOEJcjQyOhgAcOONJjL0G5n2dNvsmz1SaZOf/CXT6hFOEDYPAs7xBaccpYK+wztBn7IEDZMGU4Zfm8w2Aw9hoOGMSAMMAY3JVwpYjRjCWWr51ii614R02s4/udWeKMRZ3Ixzqp0ymNfO0aW6PvO1kWr7477SuJdlkcMD8efiDuROJljNqezDfxiY2v8lsWPJD5pfDLnu/HfS/hJ/CsJ75v+lJiYl5yX4czNr8lwJqXUJGeczHgpQ5GFLnlxg+yTstDzW5wJyUmp7Uk9STzJmspEFmTn1rAVqcLsiXytRvZLSmO9ozzWW/Nk70xOSq4ZE/flFpi9KzUVmTehLkq1igxcushEBawyo2BLEkvKqVy8a7Fv8X2L1cXJBWYnirY5O9/bGPPGpjNy+2w68y6KwBkUOWe61VmS3mB1Lk7GJdeCS15KgyxqDWdlEUyFEaBIFcaASPagE31khhTnnSyEkoEwgeNMzGeJLjwRF79ODhsLGhwk6F93oCjvlOqTnPBSklCaJNQnOeEskkJRnBwOHKP1uAtD8HbupZ0OhiPHrhUX1VpoRTUpBfL+JE0chiZjFv8zs65868j0767zsvSXz7BU41mncrVr/Y5i5YpLLquvZ2xb5Vfuf+K2V5kZ1fm70898/qYNbODKg01NAfkxmPiI79d7nvlx/8ldyfV/NGeb5adDD/yqfu5Tf5reavwyqgdDbWMzH58RmdZNb6amuQ/UPvQBU4IRKMN36Q71V3SLKZ8OqAFK4qtx53sJ3Qncl/hjZMX4dtEw1wielfQ4s7H/5JN8UtGUIeV/qw1qyPBZXXoClSANxIsjISppO+65Nlt82AgCu0u9ksTduzRYXhXJFy9HiuTCnaEOK9TFLDqsUjrr12EDWdnndNgI+A4dNtF32Dd02ExF3K/DcTTK79LhePU5RdPhRdRr+qUOJ9Buc7MOJxqPmh/T4SS6LPnTs347mHxch+E2y2od5qRa1umwQsss63VYpXjLkA4bKMFyhQ4bAV+rwybqtRzWYTOlWf6gw3HUkmLQ4XjuSvmEDi+i5WmPz35btiLtFzqcqOxIT9bhJKrI8sISpgqvJ2V9SYdVysl6UMIG4OOzTuqwSplZ35ewEXhj1ms6rFJq1hsSNom4ZP1JhxGLrKiEzcAnWNN0WCWr1SbhOBFfa50OI77ZtToMOdkNOoz4Zl+sw5CZfZ8OI77ZEzqM+Gb/ow4jvtm/0mHEN+dhHUZ8c17UYcQ391M6jPhq2TqM+Gqf1WHEV/tfOoz4Ft8p4Xjhq+J/12H4qji2xkXAp5Zk67BKi0scEk4QaynZqMOwv2SrhJNE5pd4dFilvJKQhC1Szm06LOR8TcJpwuclz+owfF7yXQmnC3tKfqbDsKfkTQlnAJ9eynRYJa00Q8KZgr60VodBX9ok4WxJv1OHBf1eCeeKHCi9TYeRA6X3SDhf2FM6rsOwp/QpCdsk/fd1WNC/LOGlIgdK39Jh5EDpHyVcJvxTlqjD8E9ZzM5yUQnKSnVYnYHN0v+zMOwvk/ljlusq26rDAr9LwAkx+v06LPDXS1jGpex+HRZ6H6VO2k9+8tBucpEbvUaPonVSv4Q3kY+G0II6lYaK6aNhwOLqAt4rKTRgBsBfAahZ4l3/Q0mVs5Zp1IGZAQrN0gSA24g+pm85rca7isp1qFpiG8ExgH4bePbAhqDk2gZ5AbRh2odrH6iGMe8C5Xqpo+8cO9fMo9FmqdbQJVJKYNbqFdBahbeGKr8JWDdmfZj3wbNBKj2vlI+SMUdbPs+uznn4b0nPCr/1QcYg+mG6HDih7b/vcw1YD7zlhU1BaZvwkYaxoAnqUrcjHhq1S36NiqS+Tbhuge7d0vcu0As+D6QKb49ITiGt4jw2xeLsg15hkx+0+z+SyiPzS9CNSKv2zOr16tlbLqPso17d6s1ypl960QVrls3aPixnvDJTO3ANSatjEYll1SrkUpO0JCi9POO3Ydiigcql52Iso7zS930yw0TODUld8+Pu1mW5pG2Cc1BKFHb3Q/+glBjzviatdkl9bj0asRlhdUCPh0uuMca3fzb+Xj3b/XoEPdI3AZmNsdXNRMil2x+S2jSpYb5VM5EXvhHjESm7f142CFqflBXTPYOPeTuoe8StZ2rgHLogZHqkV7zoY7LdOiYkPS0yai6nfXLnDkuPDkh+YamI56DONaPBLfn36Vq9+kpj+1FImPPCblAKaTHsnF+9und9+kq8kj4kR3NRDcgsHZDWnT8nZmprYHYtYm5QypuTIerF5bq1Lt3/bln1NH2XzvisT+reI7ExfrHDvHoM++W+8+s54sNV7Oh9urdjEuaqvUvGKpYdmvShW1+/V0ZtQNL45d6LZeOQ5IytZH52e2czS+z8K/TIDEprRG7u0/dWrO4MzNoxKEdz2Rv80IkU+ND63LqOXikhJD3dtyA3PbQX+BnPitx2z65wt8xtTebAFdK3AZl3wdl6Eou6sD2234N61YjtpoCeZXPVMzY7KCPioislf8xqIdctZ+cyLaa9T3rLL3fJ/tlVzOgekjVTzLukJ4Z1HWIPxbwYlPwzFs9I98scGpR1c8a2Cnn2BTG3BmdqJeSKd4Wkml9hK2R1GgRFv9xLA4AGAQ3JCHnkKEC7ZA7EIl4xS/l/V8OIzJgYrWeels2o9J0491vRmpB5At4CrDgBWnH9pMS3ANOBq8jNi3EStOC9SWI7KRFPU6J1ymwKnCfXtFl8bJ/EPOrXfT6Xo3/dKTYXmZmKPBPnXjm7H/ShWZ3u2doWy+e582h+tYxVjrk6Gtu/Xr1mBvQ9vUdK8czWRLFbu3VtYnfv02tp7+xpFNMZ/BjPzNTOkdnq5NF3nGc2p4dl/Qjq+3m3no/n89fMLhQe88yTMreLz9XXp5+AIgN7ZWWMWd2rR2ZIl3y+CBXLVS30VKwin5sV52qeqW2iirnkvagLWgd0bwf0GvJRuoX3twMzV2f3nxMLj36XMf+eK1a9XdIiv/SsV7/T+Wtirum5ODSvts3oFZWkT3raO+8UGZ53r7xslnp4Xt7Ond0f7ylh3aCUP5NXvgXyRmT8L5fRnH8fOlMf5yh9oI3doYakx4X8/tn1xOyan92DekWN+T+2q/x6fsxV3oU59HErmsuPjXLt50Zu5t5LnDke/Q4ttprY/Z5bRnXoQzEY/pC/5yQH5N1qSN71x86hffLeaITm313919GfkTes3/959Wee893FnRvHmLfm7ljdUua5+3gmYq4P+Xr332TtnJfP1bDwvF9okUe/iw3i7JmRIJ5PGin2JFCCe/gaqsPzl4brcozK8XxVI5+yxKcj26lNp6zC7HLM1OhwHZ7G6iTXSqrFs4BoQvrfdtb990/GmbnKD3lv9jzs3O/37Ha5PdqjWme/R9vkG/IFgdKafMN+37Ar6PUNaf4Bd4XW7Aq6/guiSiFM6/ANhAQmoG0cAt/y1aurynGprtAaBwa0bd49/cGAts0T8Azv8/Q1DntdA+t9A30zMtdIjCZQay7xDAeE6BUVVVVaySave9gX8O0Ols6RzKeQ2HIpq1PCj2idw64+z6Br+HLNt/tjLdeGPXu8gaBn2NOneYe0IEi3d2jtrqBWpHVu0rbs3l2huYb6NM9AwDPSD7KKWUlYs2/PsMvfv38+yqM1D7tGvEN7BK8X7i3Xtvl6IXqz193vG3AFlgnpw16316V1uEJDfVgIXLWqusk3FPQMCtuG92sBF7wIR3l3a32egHfP0DIttnY3qFxeTA76hj1af2jQNQTzNXe/a9jlxjIw8LoDWIdrSMPcfrF+L9zuxwI9bk8g4IM6sSAX5Ifc/ZpXFyUWHxryaCPeYL90w6DP1ye4BQyzgzDEDacGZnDBEc9Q0OsBtRtAaHh/hSY97dvnGXYh3sFhjys4iCnB4A4h5gGhTMTRMyxN2B0aGAAobYX6QR+UeIf6QoGgXGoguH/AM98TIlsDQotneNA7JCmGfZdDrAv2u0NQFAtgn9e1xyfmR/rhc63fM+CHR3zaHu8+jySQae/SBuAObdAD3w153SB3+f0euHHI7YGSmLu9wlma5wosZtAzsF/D2gLInQEhY9A7IN0b1DdSQNfnBkevRwsFkFLSm569IWFsyC38r+32YcmQiEUFgyJPsPRhD+IeRGogTAG4TKYnhoOuPa4rvUMQ7Qm6l8WcBvY+b8A/4NovVAjuIc9IwO/ywzSQ9MHEoDcgBAty/7Bv0CelVfQHg/41lZUjIyMVg3rCVrh9g5X9wcGBysGg+NuSysHALpdYeIVA/pUMI54BYD2SZfOWzo2tG5saOzdu2axtadU+ubGpZXNHi9Z48baWlk0tmzsT4xPjO/vh1hmvCReLmMBQrCAoPXqeLSYXIxJZrLl3v7bfFxKcbpFt8LPcR7G0RHLIHEV8sf2GQO7aM+zxiEys0LrB1u9CGvh6xTYCZ3CBMSI7R0Q6eRA4j/D0sMcdRJx3w49zdokQ+vZ4JIkM8SwfQoPs7Q0FIRpm+rCj5i2oODBjFBJ51hWzzCLbtH2ugZCrFxnmCiBD5nNXaNuHZM7un1kF1qRXLqS3Swv4PW4vis65K9fgxSGZbYLX1dfnFTmBrByWVXmZQA9L38rd/SGjBryDXrEgKJF0I77hywOxJJX5KJG+ERTUUO+AN9Av9EBWzN2DSFTYj1D592ux5NU9tFCR9MfG3XOLE9Vrb8gTkGpQ99ye4SF9BcO63ZI40O8LDfRhD+3zekZi5eqc5Qs6RNKDCtA3V+Jm1wizZGF1B+diLBbm0q3efX6x0uRZBn3f64KgxxVcIwi2dzTiEChZVVNXqtUtX1VeVVNVFRe3vQ3IquXLa2pwrVtRp9WtrF1duzox/iN23cduRjGq1M2T+xCPqx79Jknc6sz/mGXhTJBCLBG3Bm8toJnD7qaFH3NrOqZV/9Bj/oyOU25QnlG+o5zEdXz+/AL8ha8NLnxtcOFrgwtfG1z42uDC1wYXvja48LXBha8NLnxtcOFrgwtfG1z42uDC1wYXvjb4f/hrg9nPD7z0UZ8sxGY+iT6WrT6JCS2gPXf2Ylk1AguoZnCt9BbGl9N7oH8LuIWfOiycm+GZub/ynVfi3OwlEppPE8NskKN98vOOhfMLZ9r10zckn/18clfOpz7f/HxP+T7Shz7Vpq5T16pN6kp1lepUL1Lb1NXzqc8733neT3TmsK3nrCeGaRMjthw08+fmsG36venlH7J4Hp6l0C8VO7Jk3vws7q/Nm7/SN3+1vI/LK/3/y1O0mH5K53l9mzqVr1AyY2SLTilfnrCkVzsnlbsnktOqnY0W5U5qR+MUVjbRFBonn3IbHUTjIG+LlC+vPiaAifikagvobyIN7RCaQmO4Mjl2ogn6mybSMoX4ayLJKZLvs5GqmhgwYbFWtzemK1cQUzzKENnJphxAvxi9G30++l6lD5VC2OmcSLZUH4K+BpA3KBkoQzalUcmkavTNSg7lSrJQJCmmJxQpKatujFeaFKskSVYSUY9silkxRapt2glF/NmwU7lhIm6RsO+GiCWj+hnlOsVE6aA6BKosW/IzSjxVoomVdE7EJVYfbkxQOrHMTrjFpoj/rH+fvDqVoQgEQV+LkkeZmLtcyacM9K3K4kiGbeqEcrsk+zshBfrWRcwrRDeRmFQ91RiniL8HCCu3wuO3Sm2HJ4pWVVNjkVJCVYr4EwlNOQjooPjP4soooFGEaRShGUVoRmHFKBkR+RsxcyNoKpUrya+M0GG0+wCrEJkRgQePSWBpSfUxJVuxwhOWE/AdAzZnIi5JWGaNpKZJMutEQlJ1wzNKgLagcRgfnMiyVvtOKGVyKcsmrLmCwR+JS4DrsmKxAGOmiMEzSp6yWHoiX3og3GjDmFGyYiPGf8BPCe/wl/mPRXzFT/rI/h/1/kW9/2Gsj07xUxPQ4pzk/yz60415/A0I28VfpfsAcX6CP4+jxsZ/zieFFfxn/Bg1oH8F4z70x9CvQH88UvA92ySfnEAH2++JJGaKxfLnI45KHbAV6kBWrg6kZlY3FvLn+LOUBxE/Rb8U/bN8ipagP4nein6KB+l76J/gtbQW/VG9/w5/WuQ0f4o/iTPTxiciScKEcMQkuiMRo+i+FaHYqL3S9jT/Fn+cckD6zUhRDrCPTBQttSWfgDzGH+TBSL4ttTGe38+62LsgGqNXRE+p/IFInRByOPK0ZjvGD/PDTmuds9BZ7nxIqSqsKq96SNEKtXKtTntIa7TwW8kA52HD8ptwxfnMkT1oTrTD/MaIWhduPIs1iXVxOoTrmIR6cPVLiHC1zM6+I6EGfh1tQeOQcQDtINohtKtIxfVKtM+ifQ7t8xITRAuhjaB8+MHhB4cfHH7J4QeHHxx+cPglh19qD6EJjh5w9ICjBxw9kqMHHD3g6AFHj+QQ9vaAo0dytIOjHRzt4GiXHO3gaAdHOzjaJUc7ONrB0S45nOBwgsMJDqfkcILDCQ4nOJySwwkOJzickqMKHFXgqAJHleSoAkcVOKrAUSU5qsBRBY4qyaGBQwOHBg5Ncmjg0MChgUOTHBo4NHBoksMCDgs4LOCwSA4LOCzgsIDDIjksMj4hNMFxGhynwXEaHKclx2lwnAbHaXCclhynwXEaHKf5yLhyqvEFsJwCyymwnJIsp8ByCiynwHJKspwCyymwnNKXHpTO4EibA2gH0Q6hCd4p8E6Bdwq8U5J3SqZXCE3whsERBkcYHGHJEQZHGBxhcIQlRxgcYXCEJccYOMbAMQaOMckxBo4xcIyBY0xyjMnEDaEJjr89Kf/m0PCrWJcZhys/xEplf5Delv0BekX2n6dx2X+OHpL9Z+lq2V9JdbIfoSLZQ57sg2Qzs4itLrkxEyVgC9ouNB/afWhH0E6imST0EtpraFFe61yiJpu2mO4zHTGdNBmOmE6beLJxi/E+4xHjSaPhiPG0kWuNuTxR1lGUFvqivB7E9fdoOERwbZBQA6+B3hrU2Vq8a3iNM+WM9vsy9lIZO1nGjpSxL5axxjh+MVNlpcOdPofhrMuZULTO9gpaXVHxOlSmW598O8sWKVppm2RPx7pSpwP922jjaA+hXY1Wh1aNVo5WiGaTuDLQdzmX6CKfRitGK0DThArKzMTdTWqK2XmMJ7KHJl5IpDihp7gEfCcixVXoJiPFW9A9FSnutTXGsSepWNwGsScQucfRH4nYXsf0N2PdNyK2E+geidhq0O2MFFeguzRS/KKtMZFtJ5sqWDv1vgPrFv22iO0SkG2N2ErROSLFRYK6DIoKMVvKuuh19IU619KYJnvEthbdkohttaA2U7EIPDNSuTTPgCZ6ZQIG/f4Y61KZc5HtjO1229tg/x0ci/T4mTaponupcJJd4oy3PV3+VRA32iKN8YIe58O43odF/4TtocIbbfdAFit80na3rcJ2a/mkGehbYPeNUkXEdrU2yR93ptkO2apswfLXbQHbJ2wu2zbbzkLgI7bLbE8LM6mbdfHHn7S1Q+BGrKIwYru4cFKa2Grbb3Paim2rtaeFf2lVTG5d+dPCA1Qd074M/i0rnBQ5vr1ukqU4y0zvmA6bLjWtN6012U1LTItN+aZ0c6rZYk4yJ5jjzWaz0ayauZnM6eLnHRzizyvTjeKv18moiqsqYQsXVx77S1POzJw+QeE0pY23daxnbeEpN7X1auH3OuyTLH7rjrDBvp6FU9uorXN9eJWjbdIU3Rauc7SFTe2Xdo0zdms3sGF+wySjzq5JFhWo63LFD1GNM7rultxjxFj2dbd0d5M1c1+DtSF1Xcrq1ubzXHr0q2PuZZ0P5ofvauvoCj+W3x2uFkA0v7stfJX4mapjPJkntjQf40mi6+46pvp5css2gVf9zd0ge12SIZuTQEbFogOZeT1pggz1ZL0gQ4xidEVgB12B6EAXn0hFkq4oPlHSqUzQjb+itTSPa5qkKSR6RdK8UkjzaJAx4G0eLyqSVHaNdQkq1mXXpGGlUpDNBpJymyTBk5tNCrIxqSxcOUdSqJPUzpLUSl0Km6OxxWjSS2Zo0ktA4/gfvjzrHWxieejA8+KXv3rsLR60nvBN+/qt4UO9mjZ+IKT/JFhRT6+7X/QuTzhk9zSHD9ibtfHlz59n+nkxvdzePE7Pt3R2jT/v9DRHljuXt9hdzd0TDfVdjQt03Tirq6v+PMLqhbAuoauh8TzTjWK6QehqFLoaha4GZ4PU1eIVed/eNW6m9eJ3QWQ/wRfFI4d7cgu612da/OtEQh9bW2A9kHtcJfYILXJ0hxPs68OJaGKqvLG8UUxhn4mpJPHzbvqU9cDagtzj7BF9ygJ0in09zbiWBFFbuHZrW7igY0eXSJWw03X+mAXES05bqcXbjH8YB2XDez4lBc77Cp7vFQqFAuIScuApuS1c1tEWXrkVlphMUNXT3A1cxQxOUSRuPC6uZTI6hUkHjGBBoU5ADiZ+I8AZj6cuEx8zjpm4eFQITuTkV/uewQl+EA3PcXwkUimfl/nIxJJC8fwSnKisjfV4PhV9JKegWvwUQR1YRV8Y650p5QAOFx4uP1w3VjhWPlZnFD+08BCQtofEURqpfEihoCMw4wiAwW6K/XQB9N0fycuXiscE4HB0OwLyN17ow6526L8jA6fPOjagSw1I8cGZgMTwAYoRxyYdoRmmkM4iJ0OSRSr8P1jbNhMKZW5kc3RyZWFtCmVuZG9iagoKNiAwIG9iagoxMDgyNQplbmRvYmoKCjcgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9CQUFBQUErQXJpYWwtQm9sZE1UCi9GbGFncyA0Ci9Gb250QkJveFstNjI3IC0zNzYgMjAwMCAxMDExXS9JdGFsaWNBbmdsZSAwCi9Bc2NlbnQgOTA1Ci9EZXNjZW50IDIxMQovQ2FwSGVpZ2h0IDEwMTAKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNSAwIFI+PgplbmRvYmoKCjggMCBvYmoKPDwvTGVuZ3RoIDI3Mi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJxdkc9uhCAQxu88BcftYQNadbuJMdm62cRD/6S2D6AwWpKKBPHg2xcG2yY9QH7DzDf5ZmB1c220cuzVzqIFRwelpYVlXq0A2sOoNElSKpVwe4S3mDpDmNe22+JgavQwlyVhbz63OLvRw0XOPdwR9mIlWKVHevioWx+3qzFfMIF2lJOqohIG3+epM8/dBAxVx0b6tHLb0Uv+Ct43AzTFOIlWxCxhMZ0A2+kRSMl5RcvbrSKg5b9cskv6QXx21pcmvpTzLKs8p8inPPA9cnENnMX3c+AcOeWBC+Qc+RT7FIEfohb5HBm1l8h14MfIOZrc3QS7YZ8/a6BitdavAJeOs4eplYbffzGzCSo83zuVhO0KZW5kc3RyZWFtCmVuZG9iagoKOSAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9CQUFBQUErQXJpYWwtQm9sZE1UCi9GaXJzdENoYXIgMAovTGFzdENoYXIgMTEKL1dpZHRoc1s3NTAgNzIyIDYxMCA4ODkgNTU2IDI3NyA2NjYgNjEwIDMzMyAyNzcgMjc3IDU1NiBdCi9Gb250RGVzY3JpcHRvciA3IDAgUgovVG9Vbmljb2RlIDggMCBSCj4+CmVuZG9iagoKMTAgMCBvYmoKPDwKL0YxIDkgMCBSCj4+CmVuZG9iagoKMTEgMCBvYmoKPDwvRm9udCAxMCAwIFIKL1Byb2NTZXRbL1BERi9UZXh0XT4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDQgMCBSL1Jlc291cmNlcyAxMSAwIFIvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4KZW5kb2JqCgoxMiAwIG9iago8PC9Db3VudCAxL0ZpcnN0IDEzIDAgUi9MYXN0IDEzIDAgUgo+PgplbmRvYmoKCjEzIDAgb2JqCjw8L1RpdGxlPEZFRkYwMDQ0MDA3NTAwNkQwMDZEMDA3OTAwMjAwMDUwMDA0NDAwNDYwMDIwMDA2NjAwNjkwMDZDMDA2NT4KL0Rlc3RbMSAwIFIvWFlaIDU2LjcgNzczLjMgMF0vUGFyZW50IDEyIDAgUj4+CmVuZG9iagoKNCAwIG9iago8PC9UeXBlL1BhZ2VzCi9SZXNvdXJjZXMgMTEgMCBSCi9NZWRpYUJveFsgMCAwIDU5NSA4NDIgXQovS2lkc1sgMSAwIFIgXQovQ291bnQgMT4+CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9DYXRhbG9nL1BhZ2VzIDQgMCBSCi9PdXRsaW5lcyAxMiAwIFIKPj4KZW5kb2JqCgoxNSAwIG9iago8PC9BdXRob3I8RkVGRjAwNDUwMDc2MDA2MTAwNkUwMDY3MDA2NTAwNkMwMDZGMDA3MzAwMjAwMDU2MDA2QzAwNjEwMDYzMDA2ODAwNkYwMDY3MDA2OTAwNjEwMDZFMDA2RTAwNjkwMDczPgovQ3JlYXRvcjxGRUZGMDA1NzAwNzIwMDY5MDA3NDAwNjUwMDcyPgovUHJvZHVjZXI8RkVGRjAwNEYwMDcwMDA2NTAwNkUwMDRGMDA2NjAwNjYwMDY5MDA2MzAwNjUwMDJFMDA2RjAwNzIwMDY3MDAyMDAwMzIwMDJFMDAzMT4KL0NyZWF0aW9uRGF0ZShEOjIwMDcwMjIzMTc1NjM3KzAyJzAwJyk+PgplbmRvYmoKCnhyZWYKMCAxNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMTE5OTcgMDAwMDAgbiAKMDAwMDAwMDAxOSAwMDAwMCBuIAowMDAwMDAwMjI0IDAwMDAwIG4gCjAwMDAwMTIzMzAgMDAwMDAgbiAKMDAwMDAwMDI0NCAwMDAwMCBuIAowMDAwMDExMTU0IDAwMDAwIG4gCjAwMDAwMTExNzYgMDAwMDAgbiAKMDAwMDAxMTM2OCAwMDAwMCBuIAowMDAwMDExNzA5IDAwMDAwIG4gCjAwMDAwMTE5MTAgMDAwMDAgbiAKMDAwMDAxMTk0MyAwMDAwMCBuIAowMDAwMDEyMTQwIDAwMDAwIG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQyOSAwMDAwMCBuIAowMDAwMDEyNDk0IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxNi9Sb290IDE0IDAgUgovSW5mbyAxNSAwIFIKL0lEIFsgPEY3RDc3QjNEMjJCOUY5MjgyOUQ0OUZGNUQ3OEI4RjI4Pgo8RjdENzdCM0QyMkI5RjkyODI5RDQ5RkY1RDc4QjhGMjg+IF0KPj4Kc3RhcnR4cmVmCjEyNzg3CiUlRU9GCg==
24
+ filename: filename.pdf
25
+ type: file
26
+ role: user
27
+ model: gpt-4o
28
+ n: 1
29
+ stream: false
30
+ uri: https://api.openai.com/v1/chat/completions
31
+ response:
32
+ headers:
33
+ access-control-expose-headers:
34
+ - X-Request-ID
35
+ alt-svc:
36
+ - h3=":443"; ma=86400
37
+ connection:
38
+ - keep-alive
39
+ content-length:
40
+ - '859'
41
+ content-type:
42
+ - application/json
43
+ openai-organization:
44
+ - gearheart-io
45
+ openai-processing-ms:
46
+ - '425'
47
+ openai-version:
48
+ - '2020-10-01'
49
+ strict-transport-security:
50
+ - max-age=31536000; includeSubDomains; preload
51
+ transfer-encoding:
52
+ - chunked
53
+ parsed_body:
54
+ choices:
55
+ - finish_reason: stop
56
+ index: 0
57
+ logprobs: null
58
+ message:
59
+ annotations: []
60
+ content: The main content of the document is "Dummy PDF file."
61
+ refusal: null
62
+ role: assistant
63
+ created: 1745094796
64
+ id: chatcmpl-BO9ACIkIeOW3OmoArEqYmWmeogKvC
65
+ model: gpt-4o-2024-08-06
66
+ object: chat.completion
67
+ service_tier: default
68
+ system_fingerprint: fp_6b6e24b474
69
+ usage:
70
+ completion_tokens: 13
71
+ completion_tokens_details:
72
+ accepted_prediction_tokens: 0
73
+ audio_tokens: 0
74
+ reasoning_tokens: 0
75
+ rejected_prediction_tokens: 0
76
+ prompt_tokens: 235
77
+ prompt_tokens_details:
78
+ audio_tokens: 0
79
+ cached_tokens: 0
80
+ total_tokens: 248
81
+ status:
82
+ code: 200
83
+ message: OK
84
+ version: 1
@@ -252,7 +252,7 @@ interactions:
252
252
  accept-ranges:
253
253
  - bytes
254
254
  age:
255
- - '153835'
255
+ - '124514'
256
256
  alt-svc:
257
257
  - h3=":443"; ma=86400
258
258
  cache-control:
@@ -268,7 +268,7 @@ interactions:
268
268
  etag:
269
269
  - '"33d0-438b181451e00"'
270
270
  expires:
271
- - Tue, 11 Mar 2025 19:48:29 GMT
271
+ - Fri, 18 Apr 2025 15:42:07 GMT
272
272
  last-modified:
273
273
  - Mon, 27 Aug 2007 17:15:36 GMT
274
274
  strict-transport-security:
@@ -287,7 +287,7 @@ interactions:
287
287
  connection:
288
288
  - keep-alive
289
289
  content-length:
290
- - '18033'
290
+ - '17989'
291
291
  content-type:
292
292
  - application/json
293
293
  host:
@@ -299,8 +299,7 @@ interactions:
299
299
  - text: What is the main content on this document?
300
300
  type: text
301
301
  - file:
302
- data: data:application/pdf;base64,JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nD2OywoCMQxF9/mKu3YRk7bptDAIDuh+oOAP+AAXgrOZ37etjmSTe3ISIljpDYGwwrKxRwrKGcsNlx1e31mt5UFTIYucMFiqcrlif1ZobP0do6g48eIPKE+ydk6aM0roJG/RegwcNhDr5tChd+z+miTJnWqoT/3oUabOToVmmvEBy5IoCgplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjEzNAplbmRvYmoKCjUgMCBvYmoKPDwvTGVuZ3RoIDYgMCBSL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGgxIDIzMTY0Pj4Kc3RyZWFtCnic7Xx5fFvVlf+59z0tdrzIu7xFz1G8Kl7i2HEWE8vxQlI3iRM71A6ksSwrsYptKZYUE9omYStgloZhaSlMMbTsbSPLAZwEGgNlusxQ0mHa0k4Z8muhlJb8ynQoZVpi/b736nkjgWlnfn/8Pp9fpNx3zz33bPecc899T4oVHA55KIEOkUJO96DLvyQxM5WI/omIpbr3BbU/3J61FPBpItOa3f49g1948t/vI4rLIzL8dM/A/t3vn77ZSpT0LlH8e/0eV98jn3k0mSj7bchY2Q/EpdNXm4hyIIOW9g8Gr+gyrq3EeAPGVQM+t+uw5VrQ51yBcc6g6wr/DywvGAHegbE25Br0bFR/ezPGR4kq6/y+QPCnVBYl2ijka/5hjz95S8kmok8kEFl8wDG8xQtjZhRjrqgGo8kcF7+I/r98GY5TnmwPU55aRIhb9PWZNu2Nvi7mRM9/C2flx5r+itA36KeshGk0wf5MWfQ+y2bLaSOp9CdkyxE6S3dSOnXSXSyVllImbaeNTAWNg25m90T3Rd+ii+jv6IHoU+zq6GOY/yL9A70PC/5NZVRHm0G/nTz0lvIGdUe/Qma6nhbRWtrGMslFP8H7j7DhdrqDvs0+F30fWtPpasirp0ZqjD4b/YDK6Gb1sOGVuCfoNjrBjFF31EuLaQmNckf0J9HXqIi66Wv0DdjkYFPqBiqgy+k6+jLLVv4B0J30dZpmCXyn0mQ4CU0b6RIaohEapcfoByyVtRteMbwT/Wz0TTJSGpXAJi+9xWrZJv6gmhBdF/05XUrH6HtYr3hPqZeqDxsunW6I/n30Ocqgp1g8e5o9a6g23Hr2quj90W8hI4toOTyyGXp66Rp6lr5P/05/4AejB2kDdUDzCyyfaawIHv8Jz+YH+AHlZarAanfC2hDdR2FE5DidoGfgm3+l0/QGS2e57BOsl93G/sATeB9/SblHOar8i8rUR+FvOxXCR0F6kJ7Efn6RXmIGyK9i7ewzzMe+xP6eneZh/jb/k2pWr1H/op41FE2fnv5LdHP0j2SlHPokXUkH4duv0QQdpR/Sj+kP9B/0HrOwVayf3c/C7DR7m8fxJXwL9/O7+IP8m8pm5TblWbVWXa9err6o/tzwBcNNJpdp+oOHpm+f/ub0j6JPRX+E3EmC/CJqhUevQlY8SCfpZUj/Gb1KvxT5A/lr2Q72aWgJsBvYHeyb7AX2I/ZbrJLkewlfy5uh1ceH4aer+e38Dmh/Ce9T/Of8Vf47/kfFoCxRVip7lfuVsDKpnFJ+rVrUIrVCXa5uUXeoUUSm2nCxocPwiOFxw3OGd4z1xj6j3/gb09Wma83/dLbs7L9N03T/dHh6ArlrRiZdCU98lR5A3h9FDH4Aj/4QFp+mdxGFHFbAimH3atbK2tgm9il2GfOwq9n17O/Yl9k97AH2LawAa+Am2O7gjbyDu7iHX8uv57fwo3gf59/nP+Gv8DOwPEuxKw5lubJR2aFcqgxhDUHlgHItPHub8pjykvKy8qbyG+UMopalLlZD6pXq3erD6lH1R4ZPGgbxfsBw0jBl+JHhA8MHRm7MMeYZK42fMT5i/KXJaFppajfdaPoX03+Y/SyPlcFybX614NnYg4v5YzxdPcjOAJHPVErGyh2IQwd2xX9QgzKNuCSJediWwbPVNMFpdKph8AfZCaplL9BBI1dQidXTFGG/4KfV5/lF9GPWw7LVh5Uhww94AT2OanSYP81PsPV0lNfzS/i9CrE32CP0BvL9CrqDXc4C9Dg7w9awz7M6dpD+hWcqHexaqo8+wFUWxzaydwgW0FVqH33646sgW02/oLemv6omqp9DfZqkuxDRb9Br7FH6MzNE30Z1U1CNXKgyNyPfryNR9XZinx3EfsxGBRkwvkRHxYliqjOuU6+kd+g/6S3DcWTUelTSN6e96lfVX0XrouXYYdhl9Aj2XT9djB3zBrLkGYzF6DLs9HjUkmrs6nbaQX30eVS926Lh6L3Ra6L7oz76R/D+mS1jf2Zj2BGT4Kin7+H9RfoZuwn78OL/3ikw3UdT9FtmZYWsGvvhjGGf4bDhMcNRw7cNLxqXw9vX0j3I6F8im+OxAjf9iH5Lf2JmxCabllEN7F0F27togHcrz1ATyyE/9mwJ6vh6fSUBSLka3rsX+/kZ7I13UCcuo2/TK4yzLKzIDf1myGmDn3eB+iFE8Bo2AUwfqnYZ/Q7rTmKreBD6nJB0F6rWFGz6Bf0a3o5Ku5ahLjSzSyDrT/Qp6oOGldTOxhGBJ2k1Kmuz8k/w91JmofVsCfs6+HqwQ5Mon1YbfsU4LZveHF3FvcozOGOiwI/h9Mqli9heWJGMdZylDLaFaqe3wYaXiZyNnc6GdRfVr12zelVdbc2K6uVVlRXlyxxlpSXFRYVL7UsKNNvi/LzcnGxrVmZGelpqiiU5KTFhUXyc2WQ0qApntKzF3tqjhYt6wmqRfcOGcjG2u4BwzUP0hDWgWhfShLUeSaYtpHSCcveHKJ0xSucsJbNo9VRfvkxrsWvhF5vt2iTbsbUL8C3N9m4tfEbCmyR8WMKJgAsKwKC1WPubtTDr0VrCrfv6R1t6miFufFF8k73JE1++jMbjFwFcBCicZfePs6x1TAI8q2XNOCdzIowK59ibW8LZ9mZhQVgpbHH1hdu3drU05xYUdJcvC7Mmt703TPb14WSHJKEmqSZsbAqbpBrNK1ZDN2njy6ZGb560UG+PI6HP3ue6rCusuLqFjhQH9DaHs6583To3hPDUpq7r58/mKqMtVq8mhqOj12vhqa1d82cLxLW7GzLAywtbe0ZbofpmOLGtQ4M2fl13V5hdB5WaWIlYVWx9HnuLwPR8RgvH2dfb+0c/04PQ5IyGadv+gkhOjvNY9DTltGijnV32gnBDrr3b1Zw3nk6j2/ZPZDu17IUz5cvGLSkxx44nJetAQuJ8wDM7JyFJLqC2bbOeZcIi+0YkRFhza7Cky441rRIXzyoada8CGV7dDFzhPkTEG45r6hm1rBF4wR82FFrs2ugfCRlgP/P2QoxLxxgLLX8kAYo8mU01zM/AYYcjXFYmUsTUhJjCxnVyXFu+bN8kX2n3WzR0cB+1w7eu7jWVcH9BgQjwTZNO6sUgfGhrV2ysUW9uhJyVju4w7xEzUzMzGdvFzKGZmVn2Hjsy+ah8EMgIm4tm/yVbMtNa+teEWebHTHti820d9ratO7q0ltEe3bdtnQtGsflVs3M6FE5r6lJyuQ7xXEXOIikvmyUWg66EsFqIf0aZ1H1hBUkpEUxrDVt6NsSu3fEFBR/JM2kyz2OajL4juGQ3x6ZbGV7jWDheu2C8wLqEUQX2qkW8rXPH6Gj8grlWFKDR0Va71jraM+qajB7qtWsW++gx/jB/eNTf0jMT0Mno8Ztyw603d2MR/WwNkpXT+nE7u2HruJPd0LGj65gFT283dHZFOONNPeu7x5dirusYbkWcEstnsWKkiRG1MSR6hJvlVO4xJ9EhOatKhBy7JxlJnHkGx8g9yWM4i8ThVY7bFBF8A9449U20/ihn00bTJG9wppFBnVYo3qROM8o2Gw3TXHmaFVEcbnatZHVY3qs/W7/Z8m79prP11ADY8gEuy6sKUgpSCnFhuIH4QFOmPnAa6C+kqVPQhScYMrjwnGUhGx10rigxlMRfnOVRPQmGsqzVWRsyuzP7Mw2rs1bmXp97t+GuRQZbSiEjnpZamGwxZxcfMTHTZHRqIm5RDUy82Zl2qIBpBVUFvCAlVSPNUmXhlkl+04S2vMPqgGk7hW2bLDv3vufYu+mMNLJB2kg797KdaQXVWZmZqRnpuBfE217AUlZU163jtTVFRcVF9jt4/lM9V032lNft3nRN79fPvsxKXv1c3YZd9fUDHeueMBzPK3pu+s0fPnHNmLutzKY+90FtUuolLzz22JO7U5PEs/ct0d+oHbivy6R7nVmfStmTcpdBiTNmG+t5fUobb0t5k5uSJ3nQmaIuyqT4jPT0+DhjWnpRRgZNslJnUqZTW1pzJJNFM1lmjhWLdmYuWVpz2Dpm5X7rO1b+eyuzxi8qijOLqWTQjpnZO2Zmzs5qqJdr3zvsEKvfjNUPO95D23Sm3iIjVW+BFxrOCC+wnQW1RqN9SVFRLaKWnpm5onrlSgEqm9c84738sU+ybNu2hg3DZSz7vu29n37sLj42bT3tWbsl9Dqb+svPxToP4H73y+o6KmZrj1EpjNmZEt9gMBoTMoyZCTVKjbnGWmNv5i3mFmuzPUFTKks74npKD5XeV/p148OmhxKeMD6REC49VXq6NIlKK0vbMXGy9LVSY6kzJ6+mAeNDctJgKlBNOfmZcFkk3lQgPLdYNVlSUopz8/KKiuMZGZMtRakpzh21PSnMl8JSJnmrMzkntyg/DzhfHuvJY3nAHS1EdBl8HCEqFsmUHNcgeudK2F0M0mJnI1o92tLimmLnmotqKotfKn6tWEkuthUfKlaoWCuuKo4Wq8XZJb+K+Vq4OPZCtp2Bl9/budeBRHtv707RwefS6+LdcKbhDEtJXU1oy6vYsGPvToTBkVaQsXJFdWbWSnnNzEAIapCDS4xGCRbNgAeYctPU7ruqWh+4LPRASf70m/nFW9f2V0y/ubhhZWN/+fSbatFtj3Zu396567LmL5/t5ru+WlG/4aa7pjlvvWfHstZr7z77AWKWNL1V3YbcTGM1R1NLDCxtMnraaU1IrjFnJibXmMTFKC6GTOC4cI4tZ00NgqomLkoyWjilGdU0rioKg9vTeizMMsmOOFMXJSdWJpWQllGV0ZOhvJPBMoR/lxTViN6Zmre4JiMrK0ddrTit2TUHFaZMsmJnHJcjVD8xSsXTiTNvZY1GVagW2enfGYs52LHpbDau+Gc9u7nF0/xrh2Pv8CbLu69Tw5mdlQ3StSx1dYr0a+pqAKYki9joDibjsrMtbOloC69BxY+oFjoefYdY9J1xBc/veHXjRDlGhuhvnEmJKQ1plrRsXFKtDQacIRMYiD6CcUxWd1pBWloBMyUp9iXFxWLL1CUxx/T7zD59Y1Nh06cOtm/dnL2+tvfT2WrR2ST+hw/4sZ29Fy1J+UVioFvUwDvxLPg+amAy7rdHnIVGw7H0Y1blYgPbY/iJgaemFCYmJVGupRAuSSZz5jlVL9OWX5Xfk+/PP5RvyLckayzmLFH48hYWvtm6J6pe6urKudq3IqVAQ/HLSDeKymfP5nLj14i6dyf7V5a07cBjvV/a/JnvP/vAkX1Nn95QO2Y4nlnw6pHrJ70pGWd/qj433VPR29jenxiPbPoS1nMt1hNHw84Gs0E1GgpNmrnKfNL8mlmtNB82c7OZFFWsJ47MpgbjFjyKb1Nw8vAcbVHVIr5IjZu/iPj5i0D9eg8ABnPL2LkXvWKw1GM1WEhGgWxfUs6cXcv7zt5rOP7+9IPvn71NVCcrHP5rw8uowpPO6pUqK1M1i5bSrR6yGszqSSvPyEzh6amZKUlpyWRJSmNk4elx5uRFbNeiKAwTZSbeyFKSY4VYVh2c13jYFomPkr2iwbzF3G5WzCWWypRdKTxlkqnOxKS0Ip6+i8YypzJ5JkL3ZFxCTWZ21hXHuJfk0hx76zeJ0/KDnfXv7sx+naxYm1gVWgMuq6uT8UJ5EMUhbUVtjSgLWSZRBDIyVmTYURLs1ntX3x26IlDUtO6i2n/+5+k371WL2r9wbcfS71hWb2179YOnlI0i126Hsd9AbMTZPnKM4rAPG1DnnHHtcfxQXDhuKu5U3O/jDLa4nriDcWNAGBSjCQe/kkzMSafwxKjQTtwiGA1GkxrPTUVMFXs5rmBpjZpt1o8ah34LIAOEJcjQyOhgAcOONJjL0G5n2dNvsmz1SaZOf/CXT6hFOEDYPAs7xBaccpYK+wztBn7IEDZMGU4Zfm8w2Aw9hoOGMSAMMAY3JVwpYjRjCWWr51ii614R02s4/udWeKMRZ3Ixzqp0ymNfO0aW6PvO1kWr7477SuJdlkcMD8efiDuROJljNqezDfxiY2v8lsWPJD5pfDLnu/HfS/hJ/CsJ75v+lJiYl5yX4czNr8lwJqXUJGeczHgpQ5GFLnlxg+yTstDzW5wJyUmp7Uk9STzJmspEFmTn1rAVqcLsiXytRvZLSmO9ozzWW/Nk70xOSq4ZE/flFpi9KzUVmTehLkq1igxcushEBawyo2BLEkvKqVy8a7Fv8X2L1cXJBWYnirY5O9/bGPPGpjNy+2w68y6KwBkUOWe61VmS3mB1Lk7GJdeCS15KgyxqDWdlEUyFEaBIFcaASPagE31khhTnnSyEkoEwgeNMzGeJLjwRF79ODhsLGhwk6F93oCjvlOqTnPBSklCaJNQnOeEskkJRnBwOHKP1uAtD8HbupZ0OhiPHrhUX1VpoRTUpBfL+JE0chiZjFv8zs65868j0767zsvSXz7BU41mncrVr/Y5i5YpLLquvZ2xb5Vfuf+K2V5kZ1fm70898/qYNbODKg01NAfkxmPiI79d7nvlx/8ldyfV/NGeb5adDD/yqfu5Tf5reavwyqgdDbWMzH58RmdZNb6amuQ/UPvQBU4IRKMN36Q71V3SLKZ8OqAFK4qtx53sJ3Qncl/hjZMX4dtEw1wielfQ4s7H/5JN8UtGUIeV/qw1qyPBZXXoClSANxIsjISppO+65Nlt82AgCu0u9ksTduzRYXhXJFy9HiuTCnaEOK9TFLDqsUjrr12EDWdnndNgI+A4dNtF32Dd02ExF3K/DcTTK79LhePU5RdPhRdRr+qUOJ9Buc7MOJxqPmh/T4SS6LPnTs347mHxch+E2y2od5qRa1umwQsss63VYpXjLkA4bKMFyhQ4bAV+rwybqtRzWYTOlWf6gw3HUkmLQ4XjuSvmEDi+i5WmPz35btiLtFzqcqOxIT9bhJKrI8sISpgqvJ2V9SYdVysl6UMIG4OOzTuqwSplZ35ewEXhj1ms6rFJq1hsSNom4ZP1JhxGLrKiEzcAnWNN0WCWr1SbhOBFfa50OI77ZtToMOdkNOoz4Zl+sw5CZfZ8OI77ZEzqM+Gb/ow4jvtm/0mHEN+dhHUZ8c17UYcQ391M6jPhq2TqM+Gqf1WHEV/tfOoz4Ft8p4Xjhq+J/12H4qji2xkXAp5Zk67BKi0scEk4QaynZqMOwv2SrhJNE5pd4dFilvJKQhC1Szm06LOR8TcJpwuclz+owfF7yXQmnC3tKfqbDsKfkTQlnAJ9eynRYJa00Q8KZgr60VodBX9ok4WxJv1OHBf1eCeeKHCi9TYeRA6X3SDhf2FM6rsOwp/QpCdsk/fd1WNC/LOGlIgdK39Jh5EDpHyVcJvxTlqjD8E9ZzM5yUQnKSnVYnYHN0v+zMOwvk/ljlusq26rDAr9LwAkx+v06LPDXS1jGpex+HRZ6H6VO2k9+8tBucpEbvUaPonVSv4Q3kY+G0II6lYaK6aNhwOLqAt4rKTRgBsBfAahZ4l3/Q0mVs5Zp1IGZAQrN0gSA24g+pm85rca7isp1qFpiG8ExgH4bePbAhqDk2gZ5AbRh2odrH6iGMe8C5Xqpo+8cO9fMo9FmqdbQJVJKYNbqFdBahbeGKr8JWDdmfZj3wbNBKj2vlI+SMUdbPs+uznn4b0nPCr/1QcYg+mG6HDih7b/vcw1YD7zlhU1BaZvwkYaxoAnqUrcjHhq1S36NiqS+Tbhuge7d0vcu0As+D6QKb49ITiGt4jw2xeLsg15hkx+0+z+SyiPzS9CNSKv2zOr16tlbLqPso17d6s1ypl960QVrls3aPixnvDJTO3ANSatjEYll1SrkUpO0JCi9POO3Ydiigcql52Iso7zS930yw0TODUld8+Pu1mW5pG2Cc1BKFHb3Q/+glBjzviatdkl9bj0asRlhdUCPh0uuMca3fzb+Xj3b/XoEPdI3AZmNsdXNRMil2x+S2jSpYb5VM5EXvhHjESm7f142CFqflBXTPYOPeTuoe8StZ2rgHLogZHqkV7zoY7LdOiYkPS0yai6nfXLnDkuPDkh+YamI56DONaPBLfn36Vq9+kpj+1FImPPCblAKaTHsnF+9und9+kq8kj4kR3NRDcgsHZDWnT8nZmprYHYtYm5QypuTIerF5bq1Lt3/bln1NH2XzvisT+reI7ExfrHDvHoM++W+8+s54sNV7Oh9urdjEuaqvUvGKpYdmvShW1+/V0ZtQNL45d6LZeOQ5IytZH52e2czS+z8K/TIDEprRG7u0/dWrO4MzNoxKEdz2Rv80IkU+ND63LqOXikhJD3dtyA3PbQX+BnPitx2z65wt8xtTebAFdK3AZl3wdl6Eou6sD2234N61YjtpoCeZXPVMzY7KCPioislf8xqIdctZ+cyLaa9T3rLL3fJ/tlVzOgekjVTzLukJ4Z1HWIPxbwYlPwzFs9I98scGpR1c8a2Cnn2BTG3BmdqJeSKd4Wkml9hK2R1GgRFv9xLA4AGAQ3JCHnkKEC7ZA7EIl4xS/l/V8OIzJgYrWeels2o9J0491vRmpB5At4CrDgBWnH9pMS3ANOBq8jNi3EStOC9SWI7KRFPU6J1ymwKnCfXtFl8bJ/EPOrXfT6Xo3/dKTYXmZmKPBPnXjm7H/ShWZ3u2doWy+e582h+tYxVjrk6Gtu/Xr1mBvQ9vUdK8czWRLFbu3VtYnfv02tp7+xpFNMZ/BjPzNTOkdnq5NF3nGc2p4dl/Qjq+3m3no/n89fMLhQe88yTMreLz9XXp5+AIgN7ZWWMWd2rR2ZIl3y+CBXLVS30VKwin5sV52qeqW2iirnkvagLWgd0bwf0GvJRuoX3twMzV2f3nxMLj36XMf+eK1a9XdIiv/SsV7/T+Wtirum5ODSvts3oFZWkT3raO+8UGZ53r7xslnp4Xt7Ond0f7ylh3aCUP5NXvgXyRmT8L5fRnH8fOlMf5yh9oI3doYakx4X8/tn1xOyan92DekWN+T+2q/x6fsxV3oU59HErmsuPjXLt50Zu5t5LnDke/Q4ttprY/Z5bRnXoQzEY/pC/5yQH5N1qSN71x86hffLeaITm313919GfkTes3/959Wee893FnRvHmLfm7ljdUua5+3gmYq4P+Xr332TtnJfP1bDwvF9okUe/iw3i7JmRIJ5PGin2JFCCe/gaqsPzl4brcozK8XxVI5+yxKcj26lNp6zC7HLM1OhwHZ7G6iTXSqrFs4BoQvrfdtb990/GmbnKD3lv9jzs3O/37Ha5PdqjWme/R9vkG/IFgdKafMN+37Ar6PUNaf4Bd4XW7Aq6/guiSiFM6/ANhAQmoG0cAt/y1aurynGprtAaBwa0bd49/cGAts0T8Azv8/Q1DntdA+t9A30zMtdIjCZQay7xDAeE6BUVVVVaySave9gX8O0Ols6RzKeQ2HIpq1PCj2idw64+z6Br+HLNt/tjLdeGPXu8gaBn2NOneYe0IEi3d2jtrqBWpHVu0rbs3l2huYb6NM9AwDPSD7KKWUlYs2/PsMvfv38+yqM1D7tGvEN7BK8X7i3Xtvl6IXqz193vG3AFlgnpw16316V1uEJDfVgIXLWqusk3FPQMCtuG92sBF7wIR3l3a32egHfP0DIttnY3qFxeTA76hj1af2jQNQTzNXe/a9jlxjIw8LoDWIdrSMPcfrF+L9zuxwI9bk8g4IM6sSAX5Ifc/ZpXFyUWHxryaCPeYL90w6DP1ye4BQyzgzDEDacGZnDBEc9Q0OsBtRtAaHh/hSY97dvnGXYh3sFhjys4iCnB4A4h5gGhTMTRMyxN2B0aGAAobYX6QR+UeIf6QoGgXGoguH/AM98TIlsDQotneNA7JCmGfZdDrAv2u0NQFAtgn9e1xyfmR/rhc63fM+CHR3zaHu8+jySQae/SBuAObdAD3w153SB3+f0euHHI7YGSmLu9wlma5wosZtAzsF/D2gLInQEhY9A7IN0b1DdSQNfnBkevRwsFkFLSm569IWFsyC38r+32YcmQiEUFgyJPsPRhD+IeRGogTAG4TKYnhoOuPa4rvUMQ7Qm6l8WcBvY+b8A/4NovVAjuIc9IwO/ywzSQ9MHEoDcgBAty/7Bv0CelVfQHg/41lZUjIyMVg3rCVrh9g5X9wcGBysGg+NuSysHALpdYeIVA/pUMI54BYD2SZfOWzo2tG5saOzdu2axtadU+ubGpZXNHi9Z48baWlk0tmzsT4xPjO/vh1hmvCReLmMBQrCAoPXqeLSYXIxJZrLl3v7bfFxKcbpFt8LPcR7G0RHLIHEV8sf2GQO7aM+zxiEys0LrB1u9CGvh6xTYCZ3CBMSI7R0Q6eRA4j/D0sMcdRJx3w49zdokQ+vZ4JIkM8SwfQoPs7Q0FIRpm+rCj5i2oODBjFBJ51hWzzCLbtH2ugZCrFxnmCiBD5nNXaNuHZM7un1kF1qRXLqS3Swv4PW4vis65K9fgxSGZbYLX1dfnFTmBrByWVXmZQA9L38rd/SGjBryDXrEgKJF0I77hywOxJJX5KJG+ERTUUO+AN9Av9EBWzN2DSFTYj1D592ux5NU9tFCR9MfG3XOLE9Vrb8gTkGpQ99ye4SF9BcO63ZI40O8LDfRhD+3zekZi5eqc5Qs6RNKDCtA3V+Jm1wizZGF1B+diLBbm0q3efX6x0uRZBn3f64KgxxVcIwi2dzTiEChZVVNXqtUtX1VeVVNVFRe3vQ3IquXLa2pwrVtRp9WtrF1duzox/iN23cduRjGq1M2T+xCPqx79Jknc6sz/mGXhTJBCLBG3Bm8toJnD7qaFH3NrOqZV/9Bj/oyOU25QnlG+o5zEdXz+/AL8ha8NLnxtcOFrgwtfG1z42uDC1wYXvja48LXBha8NLnxtcOFrgwtfG1z42uDC1wYXvjb4f/hrg9nPD7z0UZ8sxGY+iT6WrT6JCS2gPXf2Ylk1AguoZnCt9BbGl9N7oH8LuIWfOiycm+GZub/ynVfi3OwlEppPE8NskKN98vOOhfMLZ9r10zckn/18clfOpz7f/HxP+T7Shz7Vpq5T16pN6kp1lepUL1Lb1NXzqc8733neT3TmsK3nrCeGaRMjthw08+fmsG36venlH7J4Hp6l0C8VO7Jk3vws7q/Nm7/SN3+1vI/LK/3/y1O0mH5K53l9mzqVr1AyY2SLTilfnrCkVzsnlbsnktOqnY0W5U5qR+MUVjbRFBonn3IbHUTjIG+LlC+vPiaAifikagvobyIN7RCaQmO4Mjl2ogn6mybSMoX4ayLJKZLvs5GqmhgwYbFWtzemK1cQUzzKENnJphxAvxi9G30++l6lD5VC2OmcSLZUH4K+BpA3KBkoQzalUcmkavTNSg7lSrJQJCmmJxQpKatujFeaFKskSVYSUY9silkxRapt2glF/NmwU7lhIm6RsO+GiCWj+hnlOsVE6aA6BKosW/IzSjxVoomVdE7EJVYfbkxQOrHMTrjFpoj/rH+fvDqVoQgEQV+LkkeZmLtcyacM9K3K4kiGbeqEcrsk+zshBfrWRcwrRDeRmFQ91RiniL8HCCu3wuO3Sm2HJ4pWVVNjkVJCVYr4EwlNOQjooPjP4soooFGEaRShGUVoRmHFKBkR+RsxcyNoKpUrya+M0GG0+wCrEJkRgQePSWBpSfUxJVuxwhOWE/AdAzZnIi5JWGaNpKZJMutEQlJ1wzNKgLagcRgfnMiyVvtOKGVyKcsmrLmCwR+JS4DrsmKxAGOmiMEzSp6yWHoiX3og3GjDmFGyYiPGf8BPCe/wl/mPRXzFT/rI/h/1/kW9/2Gsj07xUxPQ4pzk/yz60415/A0I28VfpfsAcX6CP4+jxsZ/zieFFfxn/Bg1oH8F4z70x9CvQH88UvA92ySfnEAH2++JJGaKxfLnI45KHbAV6kBWrg6kZlY3FvLn+LOUBxE/Rb8U/bN8ipagP4nein6KB+l76J/gtbQW/VG9/w5/WuQ0f4o/iTPTxiciScKEcMQkuiMRo+i+FaHYqL3S9jT/Fn+cckD6zUhRDrCPTBQttSWfgDzGH+TBSL4ttTGe38+62LsgGqNXRE+p/IFInRByOPK0ZjvGD/PDTmuds9BZ7nxIqSqsKq96SNEKtXKtTntIa7TwW8kA52HD8ptwxfnMkT1oTrTD/MaIWhduPIs1iXVxOoTrmIR6cPVLiHC1zM6+I6EGfh1tQeOQcQDtINohtKtIxfVKtM+ifQ7t8xITRAuhjaB8+MHhB4cfHH7J4QeHHxx+cPglh19qD6EJjh5w9ICjBxw9kqMHHD3g6AFHj+QQ9vaAo0dytIOjHRzt4GiXHO3gaAdHOzjaJUc7ONrB0S45nOBwgsMJDqfkcILDCQ4nOJySwwkOJzickqMKHFXgqAJHleSoAkcVOKrAUSU5qsBRBY4qyaGBQwOHBg5Ncmjg0MChgUOTHBo4NHBoksMCDgs4LOCwSA4LOCzgsIDDIjksMj4hNMFxGhynwXEaHKclx2lwnAbHaXCclhynwXEaHKf5yLhyqvEFsJwCyymwnJIsp8ByCiynwHJKspwCyymwnNKXHpTO4EibA2gH0Q6hCd4p8E6Bdwq8U5J3SqZXCE3whsERBkcYHGHJEQZHGBxhcIQlRxgcYXCEJccYOMbAMQaOMckxBo4xcIyBY0xyjMnEDaEJjr89Kf/m0PCrWJcZhys/xEplf5Delv0BekX2n6dx2X+OHpL9Z+lq2V9JdbIfoSLZQ57sg2Qzs4itLrkxEyVgC9ouNB/afWhH0E6imST0EtpraFFe61yiJpu2mO4zHTGdNBmOmE6beLJxi/E+4xHjSaPhiPG0kWuNuTxR1lGUFvqivB7E9fdoOERwbZBQA6+B3hrU2Vq8a3iNM+WM9vsy9lIZO1nGjpSxL5axxjh+MVNlpcOdPofhrMuZULTO9gpaXVHxOlSmW598O8sWKVppm2RPx7pSpwP922jjaA+hXY1Wh1aNVo5WiGaTuDLQdzmX6CKfRitGK0DThArKzMTdTWqK2XmMJ7KHJl5IpDihp7gEfCcixVXoJiPFW9A9FSnutTXGsSepWNwGsScQucfRH4nYXsf0N2PdNyK2E+geidhq0O2MFFeguzRS/KKtMZFtJ5sqWDv1vgPrFv22iO0SkG2N2ErROSLFRYK6DIoKMVvKuuh19IU619KYJnvEthbdkohttaA2U7EIPDNSuTTPgCZ6ZQIG/f4Y61KZc5HtjO1229tg/x0ci/T4mTaponupcJJd4oy3PV3+VRA32iKN8YIe58O43odF/4TtocIbbfdAFit80na3rcJ2a/mkGehbYPeNUkXEdrU2yR93ptkO2apswfLXbQHbJ2wu2zbbzkLgI7bLbE8LM6mbdfHHn7S1Q+BGrKIwYru4cFKa2Grbb3Paim2rtaeFf2lVTG5d+dPCA1Qd074M/i0rnBQ5vr1ukqU4y0zvmA6bLjWtN6012U1LTItN+aZ0c6rZYk4yJ5jjzWaz0ayauZnM6eLnHRzizyvTjeKv18moiqsqYQsXVx77S1POzJw+QeE0pY23daxnbeEpN7X1auH3OuyTLH7rjrDBvp6FU9uorXN9eJWjbdIU3Rauc7SFTe2Xdo0zdms3sGF+wySjzq5JFhWo63LFD1GNM7rultxjxFj2dbd0d5M1c1+DtSF1Xcrq1ubzXHr0q2PuZZ0P5ofvauvoCj+W3x2uFkA0v7stfJX4mapjPJkntjQf40mi6+46pvp5css2gVf9zd0ge12SIZuTQEbFogOZeT1pggz1ZL0gQ4xidEVgB12B6EAXn0hFkq4oPlHSqUzQjb+itTSPa5qkKSR6RdK8UkjzaJAx4G0eLyqSVHaNdQkq1mXXpGGlUpDNBpJymyTBk5tNCrIxqSxcOUdSqJPUzpLUSl0Km6OxxWjSS2Zo0ktA4/gfvjzrHWxieejA8+KXv3rsLR60nvBN+/qt4UO9mjZ+IKT/JFhRT6+7X/QuTzhk9zSHD9ibtfHlz59n+nkxvdzePE7Pt3R2jT/v9DRHljuXt9hdzd0TDfVdjQt03Tirq6v+PMLqhbAuoauh8TzTjWK6QehqFLoaha4GZ4PU1eIVed/eNW6m9eJ3QWQ/wRfFI4d7cgu612da/OtEQh9bW2A9kHtcJfYILXJ0hxPs68OJaGKqvLG8UUxhn4mpJPHzbvqU9cDagtzj7BF9ygJ0in09zbiWBFFbuHZrW7igY0eXSJWw03X+mAXES05bqcXbjH8YB2XDez4lBc77Cp7vFQqFAuIScuApuS1c1tEWXrkVlphMUNXT3A1cxQxOUSRuPC6uZTI6hUkHjGBBoU5ADiZ+I8AZj6cuEx8zjpm4eFQITuTkV/uewQl+EA3PcXwkUimfl/nIxJJC8fwSnKisjfV4PhV9JKegWvwUQR1YRV8Y650p5QAOFx4uP1w3VjhWPlZnFD+08BCQtofEURqpfEihoCMw4wiAwW6K/XQB9N0fycuXiscE4HB0OwLyN17ow6526L8jA6fPOjagSw1I8cGZgMTwAYoRxyYdoRmmkM4iJ0OSRSr8P1jbNhMKZW5kc3RyZWFtCmVuZG9iagoKNiAwIG9iagoxMDgyNQplbmRvYmoKCjcgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9CQUFBQUErQXJpYWwtQm9sZE1UCi9GbGFncyA0Ci9Gb250QkJveFstNjI3IC0zNzYgMjAwMCAxMDExXS9JdGFsaWNBbmdsZSAwCi9Bc2NlbnQgOTA1Ci9EZXNjZW50IDIxMQovQ2FwSGVpZ2h0IDEwMTAKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNSAwIFI+PgplbmRvYmoKCjggMCBvYmoKPDwvTGVuZ3RoIDI3Mi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJxdkc9uhCAQxu88BcftYQNadbuJMdm62cRD/6S2D6AwWpKKBPHg2xcG2yY9QH7DzDf5ZmB1c220cuzVzqIFRwelpYVlXq0A2sOoNElSKpVwe4S3mDpDmNe22+JgavQwlyVhbz63OLvRw0XOPdwR9mIlWKVHevioWx+3qzFfMIF2lJOqohIG3+epM8/dBAxVx0b6tHLb0Uv+Ct43AzTFOIlWxCxhMZ0A2+kRSMl5RcvbrSKg5b9cskv6QXx21pcmvpTzLKs8p8inPPA9cnENnMX3c+AcOeWBC+Qc+RT7FIEfohb5HBm1l8h14MfIOZrc3QS7YZ8/a6BitdavAJeOs4eplYbffzGzCSo83zuVhO0KZW5kc3RyZWFtCmVuZG9iagoKOSAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9CQUFBQUErQXJpYWwtQm9sZE1UCi9GaXJzdENoYXIgMAovTGFzdENoYXIgMTEKL1dpZHRoc1s3NTAgNzIyIDYxMCA4ODkgNTU2IDI3NyA2NjYgNjEwIDMzMyAyNzcgMjc3IDU1NiBdCi9Gb250RGVzY3JpcHRvciA3IDAgUgovVG9Vbmljb2RlIDggMCBSCj4+CmVuZG9iagoKMTAgMCBvYmoKPDwKL0YxIDkgMCBSCj4+CmVuZG9iagoKMTEgMCBvYmoKPDwvRm9udCAxMCAwIFIKL1Byb2NTZXRbL1BERi9UZXh0XT4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDQgMCBSL1Jlc291cmNlcyAxMSAwIFIvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4KZW5kb2JqCgoxMiAwIG9iago8PC9Db3VudCAxL0ZpcnN0IDEzIDAgUi9MYXN0IDEzIDAgUgo+PgplbmRvYmoKCjEzIDAgb2JqCjw8L1RpdGxlPEZFRkYwMDQ0MDA3NTAwNkQwMDZEMDA3OTAwMjAwMDUwMDA0NDAwNDYwMDIwMDA2NjAwNjkwMDZDMDA2NT4KL0Rlc3RbMSAwIFIvWFlaIDU2LjcgNzczLjMgMF0vUGFyZW50IDEyIDAgUj4+CmVuZG9iagoKNCAwIG9iago8PC9UeXBlL1BhZ2VzCi9SZXNvdXJjZXMgMTEgMCBSCi9NZWRpYUJveFsgMCAwIDU5NSA4NDIgXQovS2lkc1sgMSAwIFIgXQovQ291bnQgMT4+CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9DYXRhbG9nL1BhZ2VzIDQgMCBSCi9PdXRsaW5lcyAxMiAwIFIKPj4KZW5kb2JqCgoxNSAwIG9iago8PC9BdXRob3I8RkVGRjAwNDUwMDc2MDA2MTAwNkUwMDY3MDA2NTAwNkMwMDZGMDA3MzAwMjAwMDU2MDA2QzAwNjEwMDYzMDA2ODAwNkYwMDY3MDA2OTAwNjEwMDZFMDA2RTAwNjkwMDczPgovQ3JlYXRvcjxGRUZGMDA1NzAwNzIwMDY5MDA3NDAwNjUwMDcyPgovUHJvZHVjZXI8RkVGRjAwNEYwMDcwMDA2NTAwNkUwMDRGMDA2NjAwNjYwMDY5MDA2MzAwNjUwMDJFMDA2RjAwNzIwMDY3MDAyMDAwMzIwMDJFMDAzMT4KL0NyZWF0aW9uRGF0ZShEOjIwMDcwMjIzMTc1NjM3KzAyJzAwJyk+PgplbmRvYmoKCnhyZWYKMCAxNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMTE5OTcgMDAwMDAgbiAKMDAwMDAwMDAxOSAwMDAwMCBuIAowMDAwMDAwMjI0IDAwMDAwIG4gCjAwMDAwMTIzMzAgMDAwMDAgbiAKMDAwMDAwMDI0NCAwMDAwMCBuIAowMDAwMDExMTU0IDAwMDAwIG4gCjAwMDAwMTExNzYgMDAwMDAgbiAKMDAwMDAxMTM2OCAwMDAwMCBuIAowMDAwMDExNzA5IDAwMDAwIG4gCjAwMDAwMTE5MTAgMDAwMDAgbiAKMDAwMDAxMTk0MyAwMDAwMCBuIAowMDAwMDEyMTQwIDAwMDAwIG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQyOSAwMDAwMCBuIAowMDAwMDEyNDk0IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxNi9Sb290IDE0IDAgUgovSW5mbyAxNSAwIFIKL0lEIFsgPEY3RDc3QjNEMjJCOUY5MjgyOUQ0OUZGNUQ3OEI4RjI4Pgo8RjdENzdCM0QyMkI5RjkyODI5RDQ5RkY1RDc4QjhGMjg+IF0KPj4Kc3RhcnR4cmVmCjEyNzg3CiUlRU9GCg==
303
- file_id: c68de503-607c-48ec-98de-ac0ec9ea362b
302
+ file_data: data:application/pdf;base64,JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nD2OywoCMQxF9/mKu3YRk7bptDAIDuh+oOAP+AAXgrOZ37etjmSTe3ISIljpDYGwwrKxRwrKGcsNlx1e31mt5UFTIYucMFiqcrlif1ZobP0do6g48eIPKE+ydk6aM0roJG/RegwcNhDr5tChd+z+miTJnWqoT/3oUabOToVmmvEBy5IoCgplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjEzNAplbmRvYmoKCjUgMCBvYmoKPDwvTGVuZ3RoIDYgMCBSL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGgxIDIzMTY0Pj4Kc3RyZWFtCnic7Xx5fFvVlf+59z0tdrzIu7xFz1G8Kl7i2HEWE8vxQlI3iRM71A6ksSwrsYptKZYUE9omYStgloZhaSlMMbTsbSPLAZwEGgNlusxQ0mHa0k4Z8muhlJb8ynQoZVpi/b736nkjgWlnfn/8Pp9fpNx3zz33bPecc899T4oVHA55KIEOkUJO96DLvyQxM5WI/omIpbr3BbU/3J61FPBpItOa3f49g1948t/vI4rLIzL8dM/A/t3vn77ZSpT0LlH8e/0eV98jn3k0mSj7bchY2Q/EpdNXm4hyIIOW9g8Gr+gyrq3EeAPGVQM+t+uw5VrQ51yBcc6g6wr/DywvGAHegbE25Br0bFR/ezPGR4kq6/y+QPCnVBYl2ijka/5hjz95S8kmok8kEFl8wDG8xQtjZhRjrqgGo8kcF7+I/r98GY5TnmwPU55aRIhb9PWZNu2Nvi7mRM9/C2flx5r+itA36KeshGk0wf5MWfQ+y2bLaSOp9CdkyxE6S3dSOnXSXSyVllImbaeNTAWNg25m90T3Rd+ii+jv6IHoU+zq6GOY/yL9A70PC/5NZVRHm0G/nTz0lvIGdUe/Qma6nhbRWtrGMslFP8H7j7DhdrqDvs0+F30fWtPpasirp0ZqjD4b/YDK6Gb1sOGVuCfoNjrBjFF31EuLaQmNckf0J9HXqIi66Wv0DdjkYFPqBiqgy+k6+jLLVv4B0J30dZpmCXyn0mQ4CU0b6RIaohEapcfoByyVtRteMbwT/Wz0TTJSGpXAJi+9xWrZJv6gmhBdF/05XUrH6HtYr3hPqZeqDxsunW6I/n30Ocqgp1g8e5o9a6g23Hr2quj90W8hI4toOTyyGXp66Rp6lr5P/05/4AejB2kDdUDzCyyfaawIHv8Jz+YH+AHlZarAanfC2hDdR2FE5DidoGfgm3+l0/QGS2e57BOsl93G/sATeB9/SblHOar8i8rUR+FvOxXCR0F6kJ7Efn6RXmIGyK9i7ewzzMe+xP6eneZh/jb/k2pWr1H/op41FE2fnv5LdHP0j2SlHPokXUkH4duv0QQdpR/Sj+kP9B/0HrOwVayf3c/C7DR7m8fxJXwL9/O7+IP8m8pm5TblWbVWXa9err6o/tzwBcNNJpdp+oOHpm+f/ub0j6JPRX+E3EmC/CJqhUevQlY8SCfpZUj/Gb1KvxT5A/lr2Q72aWgJsBvYHeyb7AX2I/ZbrJLkewlfy5uh1ceH4aer+e38Dmh/Ce9T/Of8Vf47/kfFoCxRVip7lfuVsDKpnFJ+rVrUIrVCXa5uUXeoUUSm2nCxocPwiOFxw3OGd4z1xj6j3/gb09Wma83/dLbs7L9N03T/dHh6ArlrRiZdCU98lR5A3h9FDH4Aj/4QFp+mdxGFHFbAimH3atbK2tgm9il2GfOwq9n17O/Yl9k97AH2LawAa+Am2O7gjbyDu7iHX8uv57fwo3gf59/nP+Gv8DOwPEuxKw5lubJR2aFcqgxhDUHlgHItPHub8pjykvKy8qbyG+UMopalLlZD6pXq3erD6lH1R4ZPGgbxfsBw0jBl+JHhA8MHRm7MMeYZK42fMT5i/KXJaFppajfdaPoX03+Y/SyPlcFybX614NnYg4v5YzxdPcjOAJHPVErGyh2IQwd2xX9QgzKNuCSJediWwbPVNMFpdKph8AfZCaplL9BBI1dQidXTFGG/4KfV5/lF9GPWw7LVh5Uhww94AT2OanSYP81PsPV0lNfzS/i9CrE32CP0BvL9CrqDXc4C9Dg7w9awz7M6dpD+hWcqHexaqo8+wFUWxzaydwgW0FVqH33646sgW02/oLemv6omqp9DfZqkuxDRb9Br7FH6MzNE30Z1U1CNXKgyNyPfryNR9XZinx3EfsxGBRkwvkRHxYliqjOuU6+kd+g/6S3DcWTUelTSN6e96lfVX0XrouXYYdhl9Aj2XT9djB3zBrLkGYzF6DLs9HjUkmrs6nbaQX30eVS926Lh6L3Ra6L7oz76R/D+mS1jf2Zj2BGT4Kin7+H9RfoZuwn78OL/3ikw3UdT9FtmZYWsGvvhjGGf4bDhMcNRw7cNLxqXw9vX0j3I6F8im+OxAjf9iH5Lf2JmxCabllEN7F0F27togHcrz1ATyyE/9mwJ6vh6fSUBSLka3rsX+/kZ7I13UCcuo2/TK4yzLKzIDf1myGmDn3eB+iFE8Bo2AUwfqnYZ/Q7rTmKreBD6nJB0F6rWFGz6Bf0a3o5Ku5ahLjSzSyDrT/Qp6oOGldTOxhGBJ2k1Kmuz8k/w91JmofVsCfs6+HqwQ5Mon1YbfsU4LZveHF3FvcozOGOiwI/h9Mqli9heWJGMdZylDLaFaqe3wYaXiZyNnc6GdRfVr12zelVdbc2K6uVVlRXlyxxlpSXFRYVL7UsKNNvi/LzcnGxrVmZGelpqiiU5KTFhUXyc2WQ0qApntKzF3tqjhYt6wmqRfcOGcjG2u4BwzUP0hDWgWhfShLUeSaYtpHSCcveHKJ0xSucsJbNo9VRfvkxrsWvhF5vt2iTbsbUL8C3N9m4tfEbCmyR8WMKJgAsKwKC1WPubtTDr0VrCrfv6R1t6miFufFF8k73JE1++jMbjFwFcBCicZfePs6x1TAI8q2XNOCdzIowK59ibW8LZ9mZhQVgpbHH1hdu3drU05xYUdJcvC7Mmt703TPb14WSHJKEmqSZsbAqbpBrNK1ZDN2njy6ZGb560UG+PI6HP3ue6rCusuLqFjhQH9DaHs6583To3hPDUpq7r58/mKqMtVq8mhqOj12vhqa1d82cLxLW7GzLAywtbe0ZbofpmOLGtQ4M2fl13V5hdB5WaWIlYVWx9HnuLwPR8RgvH2dfb+0c/04PQ5IyGadv+gkhOjvNY9DTltGijnV32gnBDrr3b1Zw3nk6j2/ZPZDu17IUz5cvGLSkxx44nJetAQuJ8wDM7JyFJLqC2bbOeZcIi+0YkRFhza7Cky441rRIXzyoada8CGV7dDFzhPkTEG45r6hm1rBF4wR82FFrs2ugfCRlgP/P2QoxLxxgLLX8kAYo8mU01zM/AYYcjXFYmUsTUhJjCxnVyXFu+bN8kX2n3WzR0cB+1w7eu7jWVcH9BgQjwTZNO6sUgfGhrV2ysUW9uhJyVju4w7xEzUzMzGdvFzKGZmVn2Hjsy+ah8EMgIm4tm/yVbMtNa+teEWebHTHti820d9ratO7q0ltEe3bdtnQtGsflVs3M6FE5r6lJyuQ7xXEXOIikvmyUWg66EsFqIf0aZ1H1hBUkpEUxrDVt6NsSu3fEFBR/JM2kyz2OajL4juGQ3x6ZbGV7jWDheu2C8wLqEUQX2qkW8rXPH6Gj8grlWFKDR0Va71jraM+qajB7qtWsW++gx/jB/eNTf0jMT0Mno8Ztyw603d2MR/WwNkpXT+nE7u2HruJPd0LGj65gFT283dHZFOONNPeu7x5dirusYbkWcEstnsWKkiRG1MSR6hJvlVO4xJ9EhOatKhBy7JxlJnHkGx8g9yWM4i8ThVY7bFBF8A9449U20/ihn00bTJG9wppFBnVYo3qROM8o2Gw3TXHmaFVEcbnatZHVY3qs/W7/Z8m79prP11ADY8gEuy6sKUgpSCnFhuIH4QFOmPnAa6C+kqVPQhScYMrjwnGUhGx10rigxlMRfnOVRPQmGsqzVWRsyuzP7Mw2rs1bmXp97t+GuRQZbSiEjnpZamGwxZxcfMTHTZHRqIm5RDUy82Zl2qIBpBVUFvCAlVSPNUmXhlkl+04S2vMPqgGk7hW2bLDv3vufYu+mMNLJB2kg797KdaQXVWZmZqRnpuBfE217AUlZU163jtTVFRcVF9jt4/lM9V032lNft3nRN79fPvsxKXv1c3YZd9fUDHeueMBzPK3pu+s0fPnHNmLutzKY+90FtUuolLzz22JO7U5PEs/ct0d+oHbivy6R7nVmfStmTcpdBiTNmG+t5fUobb0t5k5uSJ3nQmaIuyqT4jPT0+DhjWnpRRgZNslJnUqZTW1pzJJNFM1lmjhWLdmYuWVpz2Dpm5X7rO1b+eyuzxi8qijOLqWTQjpnZO2Zmzs5qqJdr3zvsEKvfjNUPO95D23Sm3iIjVW+BFxrOCC+wnQW1RqN9SVFRLaKWnpm5onrlSgEqm9c84738sU+ybNu2hg3DZSz7vu29n37sLj42bT3tWbsl9Dqb+svPxToP4H73y+o6KmZrj1EpjNmZEt9gMBoTMoyZCTVKjbnGWmNv5i3mFmuzPUFTKks74npKD5XeV/p148OmhxKeMD6REC49VXq6NIlKK0vbMXGy9LVSY6kzJ6+mAeNDctJgKlBNOfmZcFkk3lQgPLdYNVlSUopz8/KKiuMZGZMtRakpzh21PSnMl8JSJnmrMzkntyg/DzhfHuvJY3nAHS1EdBl8HCEqFsmUHNcgeudK2F0M0mJnI1o92tLimmLnmotqKotfKn6tWEkuthUfKlaoWCuuKo4Wq8XZJb+K+Vq4OPZCtp2Bl9/budeBRHtv707RwefS6+LdcKbhDEtJXU1oy6vYsGPvToTBkVaQsXJFdWbWSnnNzEAIapCDS4xGCRbNgAeYctPU7ruqWh+4LPRASf70m/nFW9f2V0y/ubhhZWN/+fSbatFtj3Zu396567LmL5/t5ru+WlG/4aa7pjlvvWfHstZr7z77AWKWNL1V3YbcTGM1R1NLDCxtMnraaU1IrjFnJibXmMTFKC6GTOC4cI4tZ00NgqomLkoyWjilGdU0rioKg9vTeizMMsmOOFMXJSdWJpWQllGV0ZOhvJPBMoR/lxTViN6Zmre4JiMrK0ddrTit2TUHFaZMsmJnHJcjVD8xSsXTiTNvZY1GVagW2enfGYs52LHpbDau+Gc9u7nF0/xrh2Pv8CbLu69Tw5mdlQ3StSx1dYr0a+pqAKYki9joDibjsrMtbOloC69BxY+oFjoefYdY9J1xBc/veHXjRDlGhuhvnEmJKQ1plrRsXFKtDQacIRMYiD6CcUxWd1pBWloBMyUp9iXFxWLL1CUxx/T7zD59Y1Nh06cOtm/dnL2+tvfT2WrR2ST+hw/4sZ29Fy1J+UVioFvUwDvxLPg+amAy7rdHnIVGw7H0Y1blYgPbY/iJgaemFCYmJVGupRAuSSZz5jlVL9OWX5Xfk+/PP5RvyLckayzmLFH48hYWvtm6J6pe6urKudq3IqVAQ/HLSDeKymfP5nLj14i6dyf7V5a07cBjvV/a/JnvP/vAkX1Nn95QO2Y4nlnw6pHrJ70pGWd/qj433VPR29jenxiPbPoS1nMt1hNHw84Gs0E1GgpNmrnKfNL8mlmtNB82c7OZFFWsJ47MpgbjFjyKb1Nw8vAcbVHVIr5IjZu/iPj5i0D9eg8ABnPL2LkXvWKw1GM1WEhGgWxfUs6cXcv7zt5rOP7+9IPvn71NVCcrHP5rw8uowpPO6pUqK1M1i5bSrR6yGszqSSvPyEzh6amZKUlpyWRJSmNk4elx5uRFbNeiKAwTZSbeyFKSY4VYVh2c13jYFomPkr2iwbzF3G5WzCWWypRdKTxlkqnOxKS0Ip6+i8YypzJ5JkL3ZFxCTWZ21hXHuJfk0hx76zeJ0/KDnfXv7sx+naxYm1gVWgMuq6uT8UJ5EMUhbUVtjSgLWSZRBDIyVmTYURLs1ntX3x26IlDUtO6i2n/+5+k371WL2r9wbcfS71hWb2179YOnlI0i126Hsd9AbMTZPnKM4rAPG1DnnHHtcfxQXDhuKu5U3O/jDLa4nriDcWNAGBSjCQe/kkzMSafwxKjQTtwiGA1GkxrPTUVMFXs5rmBpjZpt1o8ah34LIAOEJcjQyOhgAcOONJjL0G5n2dNvsmz1SaZOf/CXT6hFOEDYPAs7xBaccpYK+wztBn7IEDZMGU4Zfm8w2Aw9hoOGMSAMMAY3JVwpYjRjCWWr51ii614R02s4/udWeKMRZ3Ixzqp0ymNfO0aW6PvO1kWr7477SuJdlkcMD8efiDuROJljNqezDfxiY2v8lsWPJD5pfDLnu/HfS/hJ/CsJ75v+lJiYl5yX4czNr8lwJqXUJGeczHgpQ5GFLnlxg+yTstDzW5wJyUmp7Uk9STzJmspEFmTn1rAVqcLsiXytRvZLSmO9ozzWW/Nk70xOSq4ZE/flFpi9KzUVmTehLkq1igxcushEBawyo2BLEkvKqVy8a7Fv8X2L1cXJBWYnirY5O9/bGPPGpjNy+2w68y6KwBkUOWe61VmS3mB1Lk7GJdeCS15KgyxqDWdlEUyFEaBIFcaASPagE31khhTnnSyEkoEwgeNMzGeJLjwRF79ODhsLGhwk6F93oCjvlOqTnPBSklCaJNQnOeEskkJRnBwOHKP1uAtD8HbupZ0OhiPHrhUX1VpoRTUpBfL+JE0chiZjFv8zs65868j0767zsvSXz7BU41mncrVr/Y5i5YpLLquvZ2xb5Vfuf+K2V5kZ1fm70898/qYNbODKg01NAfkxmPiI79d7nvlx/8ldyfV/NGeb5adDD/yqfu5Tf5reavwyqgdDbWMzH58RmdZNb6amuQ/UPvQBU4IRKMN36Q71V3SLKZ8OqAFK4qtx53sJ3Qncl/hjZMX4dtEw1wielfQ4s7H/5JN8UtGUIeV/qw1qyPBZXXoClSANxIsjISppO+65Nlt82AgCu0u9ksTduzRYXhXJFy9HiuTCnaEOK9TFLDqsUjrr12EDWdnndNgI+A4dNtF32Dd02ExF3K/DcTTK79LhePU5RdPhRdRr+qUOJ9Buc7MOJxqPmh/T4SS6LPnTs347mHxch+E2y2od5qRa1umwQsss63VYpXjLkA4bKMFyhQ4bAV+rwybqtRzWYTOlWf6gw3HUkmLQ4XjuSvmEDi+i5WmPz35btiLtFzqcqOxIT9bhJKrI8sISpgqvJ2V9SYdVysl6UMIG4OOzTuqwSplZ35ewEXhj1ms6rFJq1hsSNom4ZP1JhxGLrKiEzcAnWNN0WCWr1SbhOBFfa50OI77ZtToMOdkNOoz4Zl+sw5CZfZ8OI77ZEzqM+Gb/ow4jvtm/0mHEN+dhHUZ8c17UYcQ391M6jPhq2TqM+Gqf1WHEV/tfOoz4Ft8p4Xjhq+J/12H4qji2xkXAp5Zk67BKi0scEk4QaynZqMOwv2SrhJNE5pd4dFilvJKQhC1Szm06LOR8TcJpwuclz+owfF7yXQmnC3tKfqbDsKfkTQlnAJ9eynRYJa00Q8KZgr60VodBX9ok4WxJv1OHBf1eCeeKHCi9TYeRA6X3SDhf2FM6rsOwp/QpCdsk/fd1WNC/LOGlIgdK39Jh5EDpHyVcJvxTlqjD8E9ZzM5yUQnKSnVYnYHN0v+zMOwvk/ljlusq26rDAr9LwAkx+v06LPDXS1jGpex+HRZ6H6VO2k9+8tBucpEbvUaPonVSv4Q3kY+G0II6lYaK6aNhwOLqAt4rKTRgBsBfAahZ4l3/Q0mVs5Zp1IGZAQrN0gSA24g+pm85rca7isp1qFpiG8ExgH4bePbAhqDk2gZ5AbRh2odrH6iGMe8C5Xqpo+8cO9fMo9FmqdbQJVJKYNbqFdBahbeGKr8JWDdmfZj3wbNBKj2vlI+SMUdbPs+uznn4b0nPCr/1QcYg+mG6HDih7b/vcw1YD7zlhU1BaZvwkYaxoAnqUrcjHhq1S36NiqS+Tbhuge7d0vcu0As+D6QKb49ITiGt4jw2xeLsg15hkx+0+z+SyiPzS9CNSKv2zOr16tlbLqPso17d6s1ypl960QVrls3aPixnvDJTO3ANSatjEYll1SrkUpO0JCi9POO3Ydiigcql52Iso7zS930yw0TODUld8+Pu1mW5pG2Cc1BKFHb3Q/+glBjzviatdkl9bj0asRlhdUCPh0uuMca3fzb+Xj3b/XoEPdI3AZmNsdXNRMil2x+S2jSpYb5VM5EXvhHjESm7f142CFqflBXTPYOPeTuoe8StZ2rgHLogZHqkV7zoY7LdOiYkPS0yai6nfXLnDkuPDkh+YamI56DONaPBLfn36Vq9+kpj+1FImPPCblAKaTHsnF+9und9+kq8kj4kR3NRDcgsHZDWnT8nZmprYHYtYm5QypuTIerF5bq1Lt3/bln1NH2XzvisT+reI7ExfrHDvHoM++W+8+s54sNV7Oh9urdjEuaqvUvGKpYdmvShW1+/V0ZtQNL45d6LZeOQ5IytZH52e2czS+z8K/TIDEprRG7u0/dWrO4MzNoxKEdz2Rv80IkU+ND63LqOXikhJD3dtyA3PbQX+BnPitx2z65wt8xtTebAFdK3AZl3wdl6Eou6sD2234N61YjtpoCeZXPVMzY7KCPioislf8xqIdctZ+cyLaa9T3rLL3fJ/tlVzOgekjVTzLukJ4Z1HWIPxbwYlPwzFs9I98scGpR1c8a2Cnn2BTG3BmdqJeSKd4Wkml9hK2R1GgRFv9xLA4AGAQ3JCHnkKEC7ZA7EIl4xS/l/V8OIzJgYrWeels2o9J0491vRmpB5At4CrDgBWnH9pMS3ANOBq8jNi3EStOC9SWI7KRFPU6J1ymwKnCfXtFl8bJ/EPOrXfT6Xo3/dKTYXmZmKPBPnXjm7H/ShWZ3u2doWy+e582h+tYxVjrk6Gtu/Xr1mBvQ9vUdK8czWRLFbu3VtYnfv02tp7+xpFNMZ/BjPzNTOkdnq5NF3nGc2p4dl/Qjq+3m3no/n89fMLhQe88yTMreLz9XXp5+AIgN7ZWWMWd2rR2ZIl3y+CBXLVS30VKwin5sV52qeqW2iirnkvagLWgd0bwf0GvJRuoX3twMzV2f3nxMLj36XMf+eK1a9XdIiv/SsV7/T+Wtirum5ODSvts3oFZWkT3raO+8UGZ53r7xslnp4Xt7Ond0f7ylh3aCUP5NXvgXyRmT8L5fRnH8fOlMf5yh9oI3doYakx4X8/tn1xOyan92DekWN+T+2q/x6fsxV3oU59HErmsuPjXLt50Zu5t5LnDke/Q4ttprY/Z5bRnXoQzEY/pC/5yQH5N1qSN71x86hffLeaITm313919GfkTes3/959Wee893FnRvHmLfm7ljdUua5+3gmYq4P+Xr332TtnJfP1bDwvF9okUe/iw3i7JmRIJ5PGin2JFCCe/gaqsPzl4brcozK8XxVI5+yxKcj26lNp6zC7HLM1OhwHZ7G6iTXSqrFs4BoQvrfdtb990/GmbnKD3lv9jzs3O/37Ha5PdqjWme/R9vkG/IFgdKafMN+37Ar6PUNaf4Bd4XW7Aq6/guiSiFM6/ANhAQmoG0cAt/y1aurynGprtAaBwa0bd49/cGAts0T8Azv8/Q1DntdA+t9A30zMtdIjCZQay7xDAeE6BUVVVVaySave9gX8O0Ols6RzKeQ2HIpq1PCj2idw64+z6Br+HLNt/tjLdeGPXu8gaBn2NOneYe0IEi3d2jtrqBWpHVu0rbs3l2huYb6NM9AwDPSD7KKWUlYs2/PsMvfv38+yqM1D7tGvEN7BK8X7i3Xtvl6IXqz193vG3AFlgnpw16316V1uEJDfVgIXLWqusk3FPQMCtuG92sBF7wIR3l3a32egHfP0DIttnY3qFxeTA76hj1af2jQNQTzNXe/a9jlxjIw8LoDWIdrSMPcfrF+L9zuxwI9bk8g4IM6sSAX5Ifc/ZpXFyUWHxryaCPeYL90w6DP1ye4BQyzgzDEDacGZnDBEc9Q0OsBtRtAaHh/hSY97dvnGXYh3sFhjys4iCnB4A4h5gGhTMTRMyxN2B0aGAAobYX6QR+UeIf6QoGgXGoguH/AM98TIlsDQotneNA7JCmGfZdDrAv2u0NQFAtgn9e1xyfmR/rhc63fM+CHR3zaHu8+jySQae/SBuAObdAD3w153SB3+f0euHHI7YGSmLu9wlma5wosZtAzsF/D2gLInQEhY9A7IN0b1DdSQNfnBkevRwsFkFLSm569IWFsyC38r+32YcmQiEUFgyJPsPRhD+IeRGogTAG4TKYnhoOuPa4rvUMQ7Qm6l8WcBvY+b8A/4NovVAjuIc9IwO/ywzSQ9MHEoDcgBAty/7Bv0CelVfQHg/41lZUjIyMVg3rCVrh9g5X9wcGBysGg+NuSysHALpdYeIVA/pUMI54BYD2SZfOWzo2tG5saOzdu2axtadU+ubGpZXNHi9Z48baWlk0tmzsT4xPjO/vh1hmvCReLmMBQrCAoPXqeLSYXIxJZrLl3v7bfFxKcbpFt8LPcR7G0RHLIHEV8sf2GQO7aM+zxiEys0LrB1u9CGvh6xTYCZ3CBMSI7R0Q6eRA4j/D0sMcdRJx3w49zdokQ+vZ4JIkM8SwfQoPs7Q0FIRpm+rCj5i2oODBjFBJ51hWzzCLbtH2ugZCrFxnmCiBD5nNXaNuHZM7un1kF1qRXLqS3Swv4PW4vis65K9fgxSGZbYLX1dfnFTmBrByWVXmZQA9L38rd/SGjBryDXrEgKJF0I77hywOxJJX5KJG+ERTUUO+AN9Av9EBWzN2DSFTYj1D592ux5NU9tFCR9MfG3XOLE9Vrb8gTkGpQ99ye4SF9BcO63ZI40O8LDfRhD+3zekZi5eqc5Qs6RNKDCtA3V+Jm1wizZGF1B+diLBbm0q3efX6x0uRZBn3f64KgxxVcIwi2dzTiEChZVVNXqtUtX1VeVVNVFRe3vQ3IquXLa2pwrVtRp9WtrF1duzox/iN23cduRjGq1M2T+xCPqx79Jknc6sz/mGXhTJBCLBG3Bm8toJnD7qaFH3NrOqZV/9Bj/oyOU25QnlG+o5zEdXz+/AL8ha8NLnxtcOFrgwtfG1z42uDC1wYXvja48LXBha8NLnxtcOFrgwtfG1z42uDC1wYXvjb4f/hrg9nPD7z0UZ8sxGY+iT6WrT6JCS2gPXf2Ylk1AguoZnCt9BbGl9N7oH8LuIWfOiycm+GZub/ynVfi3OwlEppPE8NskKN98vOOhfMLZ9r10zckn/18clfOpz7f/HxP+T7Shz7Vpq5T16pN6kp1lepUL1Lb1NXzqc8733neT3TmsK3nrCeGaRMjthw08+fmsG36venlH7J4Hp6l0C8VO7Jk3vws7q/Nm7/SN3+1vI/LK/3/y1O0mH5K53l9mzqVr1AyY2SLTilfnrCkVzsnlbsnktOqnY0W5U5qR+MUVjbRFBonn3IbHUTjIG+LlC+vPiaAifikagvobyIN7RCaQmO4Mjl2ogn6mybSMoX4ayLJKZLvs5GqmhgwYbFWtzemK1cQUzzKENnJphxAvxi9G30++l6lD5VC2OmcSLZUH4K+BpA3KBkoQzalUcmkavTNSg7lSrJQJCmmJxQpKatujFeaFKskSVYSUY9silkxRapt2glF/NmwU7lhIm6RsO+GiCWj+hnlOsVE6aA6BKosW/IzSjxVoomVdE7EJVYfbkxQOrHMTrjFpoj/rH+fvDqVoQgEQV+LkkeZmLtcyacM9K3K4kiGbeqEcrsk+zshBfrWRcwrRDeRmFQ91RiniL8HCCu3wuO3Sm2HJ4pWVVNjkVJCVYr4EwlNOQjooPjP4soooFGEaRShGUVoRmHFKBkR+RsxcyNoKpUrya+M0GG0+wCrEJkRgQePSWBpSfUxJVuxwhOWE/AdAzZnIi5JWGaNpKZJMutEQlJ1wzNKgLagcRgfnMiyVvtOKGVyKcsmrLmCwR+JS4DrsmKxAGOmiMEzSp6yWHoiX3og3GjDmFGyYiPGf8BPCe/wl/mPRXzFT/rI/h/1/kW9/2Gsj07xUxPQ4pzk/yz60415/A0I28VfpfsAcX6CP4+jxsZ/zieFFfxn/Bg1oH8F4z70x9CvQH88UvA92ySfnEAH2++JJGaKxfLnI45KHbAV6kBWrg6kZlY3FvLn+LOUBxE/Rb8U/bN8ipagP4nein6KB+l76J/gtbQW/VG9/w5/WuQ0f4o/iTPTxiciScKEcMQkuiMRo+i+FaHYqL3S9jT/Fn+cckD6zUhRDrCPTBQttSWfgDzGH+TBSL4ttTGe38+62LsgGqNXRE+p/IFInRByOPK0ZjvGD/PDTmuds9BZ7nxIqSqsKq96SNEKtXKtTntIa7TwW8kA52HD8ptwxfnMkT1oTrTD/MaIWhduPIs1iXVxOoTrmIR6cPVLiHC1zM6+I6EGfh1tQeOQcQDtINohtKtIxfVKtM+ifQ7t8xITRAuhjaB8+MHhB4cfHH7J4QeHHxx+cPglh19qD6EJjh5w9ICjBxw9kqMHHD3g6AFHj+QQ9vaAo0dytIOjHRzt4GiXHO3gaAdHOzjaJUc7ONrB0S45nOBwgsMJDqfkcILDCQ4nOJySwwkOJzickqMKHFXgqAJHleSoAkcVOKrAUSU5qsBRBY4qyaGBQwOHBg5Ncmjg0MChgUOTHBo4NHBoksMCDgs4LOCwSA4LOCzgsIDDIjksMj4hNMFxGhynwXEaHKclx2lwnAbHaXCclhynwXEaHKf5yLhyqvEFsJwCyymwnJIsp8ByCiynwHJKspwCyymwnNKXHpTO4EibA2gH0Q6hCd4p8E6Bdwq8U5J3SqZXCE3whsERBkcYHGHJEQZHGBxhcIQlRxgcYXCEJccYOMbAMQaOMckxBo4xcIyBY0xyjMnEDaEJjr89Kf/m0PCrWJcZhys/xEplf5Delv0BekX2n6dx2X+OHpL9Z+lq2V9JdbIfoSLZQ57sg2Qzs4itLrkxEyVgC9ouNB/afWhH0E6imST0EtpraFFe61yiJpu2mO4zHTGdNBmOmE6beLJxi/E+4xHjSaPhiPG0kWuNuTxR1lGUFvqivB7E9fdoOERwbZBQA6+B3hrU2Vq8a3iNM+WM9vsy9lIZO1nGjpSxL5axxjh+MVNlpcOdPofhrMuZULTO9gpaXVHxOlSmW598O8sWKVppm2RPx7pSpwP922jjaA+hXY1Wh1aNVo5WiGaTuDLQdzmX6CKfRitGK0DThArKzMTdTWqK2XmMJ7KHJl5IpDihp7gEfCcixVXoJiPFW9A9FSnutTXGsSepWNwGsScQucfRH4nYXsf0N2PdNyK2E+geidhq0O2MFFeguzRS/KKtMZFtJ5sqWDv1vgPrFv22iO0SkG2N2ErROSLFRYK6DIoKMVvKuuh19IU619KYJnvEthbdkohttaA2U7EIPDNSuTTPgCZ6ZQIG/f4Y61KZc5HtjO1229tg/x0ci/T4mTaponupcJJd4oy3PV3+VRA32iKN8YIe58O43odF/4TtocIbbfdAFit80na3rcJ2a/mkGehbYPeNUkXEdrU2yR93ptkO2apswfLXbQHbJ2wu2zbbzkLgI7bLbE8LM6mbdfHHn7S1Q+BGrKIwYru4cFKa2Grbb3Paim2rtaeFf2lVTG5d+dPCA1Qd074M/i0rnBQ5vr1ukqU4y0zvmA6bLjWtN6012U1LTItN+aZ0c6rZYk4yJ5jjzWaz0ayauZnM6eLnHRzizyvTjeKv18moiqsqYQsXVx77S1POzJw+QeE0pY23daxnbeEpN7X1auH3OuyTLH7rjrDBvp6FU9uorXN9eJWjbdIU3Rauc7SFTe2Xdo0zdms3sGF+wySjzq5JFhWo63LFD1GNM7rultxjxFj2dbd0d5M1c1+DtSF1Xcrq1ubzXHr0q2PuZZ0P5ofvauvoCj+W3x2uFkA0v7stfJX4mapjPJkntjQf40mi6+46pvp5css2gVf9zd0ge12SIZuTQEbFogOZeT1pggz1ZL0gQ4xidEVgB12B6EAXn0hFkq4oPlHSqUzQjb+itTSPa5qkKSR6RdK8UkjzaJAx4G0eLyqSVHaNdQkq1mXXpGGlUpDNBpJymyTBk5tNCrIxqSxcOUdSqJPUzpLUSl0Km6OxxWjSS2Zo0ktA4/gfvjzrHWxieejA8+KXv3rsLR60nvBN+/qt4UO9mjZ+IKT/JFhRT6+7X/QuTzhk9zSHD9ibtfHlz59n+nkxvdzePE7Pt3R2jT/v9DRHljuXt9hdzd0TDfVdjQt03Tirq6v+PMLqhbAuoauh8TzTjWK6QehqFLoaha4GZ4PU1eIVed/eNW6m9eJ3QWQ/wRfFI4d7cgu612da/OtEQh9bW2A9kHtcJfYILXJ0hxPs68OJaGKqvLG8UUxhn4mpJPHzbvqU9cDagtzj7BF9ygJ0in09zbiWBFFbuHZrW7igY0eXSJWw03X+mAXES05bqcXbjH8YB2XDez4lBc77Cp7vFQqFAuIScuApuS1c1tEWXrkVlphMUNXT3A1cxQxOUSRuPC6uZTI6hUkHjGBBoU5ADiZ+I8AZj6cuEx8zjpm4eFQITuTkV/uewQl+EA3PcXwkUimfl/nIxJJC8fwSnKisjfV4PhV9JKegWvwUQR1YRV8Y650p5QAOFx4uP1w3VjhWPlZnFD+08BCQtofEURqpfEihoCMw4wiAwW6K/XQB9N0fycuXiscE4HB0OwLyN17ow6526L8jA6fPOjagSw1I8cGZgMTwAYoRxyYdoRmmkM4iJ0OSRSr8P1jbNhMKZW5kc3RyZWFtCmVuZG9iagoKNiAwIG9iagoxMDgyNQplbmRvYmoKCjcgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9CQUFBQUErQXJpYWwtQm9sZE1UCi9GbGFncyA0Ci9Gb250QkJveFstNjI3IC0zNzYgMjAwMCAxMDExXS9JdGFsaWNBbmdsZSAwCi9Bc2NlbnQgOTA1Ci9EZXNjZW50IDIxMQovQ2FwSGVpZ2h0IDEwMTAKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNSAwIFI+PgplbmRvYmoKCjggMCBvYmoKPDwvTGVuZ3RoIDI3Mi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJxdkc9uhCAQxu88BcftYQNadbuJMdm62cRD/6S2D6AwWpKKBPHg2xcG2yY9QH7DzDf5ZmB1c220cuzVzqIFRwelpYVlXq0A2sOoNElSKpVwe4S3mDpDmNe22+JgavQwlyVhbz63OLvRw0XOPdwR9mIlWKVHevioWx+3qzFfMIF2lJOqohIG3+epM8/dBAxVx0b6tHLb0Uv+Ct43AzTFOIlWxCxhMZ0A2+kRSMl5RcvbrSKg5b9cskv6QXx21pcmvpTzLKs8p8inPPA9cnENnMX3c+AcOeWBC+Qc+RT7FIEfohb5HBm1l8h14MfIOZrc3QS7YZ8/a6BitdavAJeOs4eplYbffzGzCSo83zuVhO0KZW5kc3RyZWFtCmVuZG9iagoKOSAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9CQUFBQUErQXJpYWwtQm9sZE1UCi9GaXJzdENoYXIgMAovTGFzdENoYXIgMTEKL1dpZHRoc1s3NTAgNzIyIDYxMCA4ODkgNTU2IDI3NyA2NjYgNjEwIDMzMyAyNzcgMjc3IDU1NiBdCi9Gb250RGVzY3JpcHRvciA3IDAgUgovVG9Vbmljb2RlIDggMCBSCj4+CmVuZG9iagoKMTAgMCBvYmoKPDwKL0YxIDkgMCBSCj4+CmVuZG9iagoKMTEgMCBvYmoKPDwvRm9udCAxMCAwIFIKL1Byb2NTZXRbL1BERi9UZXh0XT4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDQgMCBSL1Jlc291cmNlcyAxMSAwIFIvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4KZW5kb2JqCgoxMiAwIG9iago8PC9Db3VudCAxL0ZpcnN0IDEzIDAgUi9MYXN0IDEzIDAgUgo+PgplbmRvYmoKCjEzIDAgb2JqCjw8L1RpdGxlPEZFRkYwMDQ0MDA3NTAwNkQwMDZEMDA3OTAwMjAwMDUwMDA0NDAwNDYwMDIwMDA2NjAwNjkwMDZDMDA2NT4KL0Rlc3RbMSAwIFIvWFlaIDU2LjcgNzczLjMgMF0vUGFyZW50IDEyIDAgUj4+CmVuZG9iagoKNCAwIG9iago8PC9UeXBlL1BhZ2VzCi9SZXNvdXJjZXMgMTEgMCBSCi9NZWRpYUJveFsgMCAwIDU5NSA4NDIgXQovS2lkc1sgMSAwIFIgXQovQ291bnQgMT4+CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9DYXRhbG9nL1BhZ2VzIDQgMCBSCi9PdXRsaW5lcyAxMiAwIFIKPj4KZW5kb2JqCgoxNSAwIG9iago8PC9BdXRob3I8RkVGRjAwNDUwMDc2MDA2MTAwNkUwMDY3MDA2NTAwNkMwMDZGMDA3MzAwMjAwMDU2MDA2QzAwNjEwMDYzMDA2ODAwNkYwMDY3MDA2OTAwNjEwMDZFMDA2RTAwNjkwMDczPgovQ3JlYXRvcjxGRUZGMDA1NzAwNzIwMDY5MDA3NDAwNjUwMDcyPgovUHJvZHVjZXI8RkVGRjAwNEYwMDcwMDA2NTAwNkUwMDRGMDA2NjAwNjYwMDY5MDA2MzAwNjUwMDJFMDA2RjAwNzIwMDY3MDAyMDAwMzIwMDJFMDAzMT4KL0NyZWF0aW9uRGF0ZShEOjIwMDcwMjIzMTc1NjM3KzAyJzAwJyk+PgplbmRvYmoKCnhyZWYKMCAxNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMTE5OTcgMDAwMDAgbiAKMDAwMDAwMDAxOSAwMDAwMCBuIAowMDAwMDAwMjI0IDAwMDAwIG4gCjAwMDAwMTIzMzAgMDAwMDAgbiAKMDAwMDAwMDI0NCAwMDAwMCBuIAowMDAwMDExMTU0IDAwMDAwIG4gCjAwMDAwMTExNzYgMDAwMDAgbiAKMDAwMDAxMTM2OCAwMDAwMCBuIAowMDAwMDExNzA5IDAwMDAwIG4gCjAwMDAwMTE5MTAgMDAwMDAgbiAKMDAwMDAxMTk0MyAwMDAwMCBuIAowMDAwMDEyMTQwIDAwMDAwIG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQyOSAwMDAwMCBuIAowMDAwMDEyNDk0IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxNi9Sb290IDE0IDAgUgovSW5mbyAxNSAwIFIKL0lEIFsgPEY3RDc3QjNEMjJCOUY5MjgyOUQ0OUZGNUQ3OEI4RjI4Pgo8RjdENzdCM0QyMkI5RjkyODI5RDQ5RkY1RDc4QjhGMjg+IF0KPj4Kc3RhcnR4cmVmCjEyNzg3CiUlRU9GCg==
304
303
  filename: https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf
305
304
  type: file
306
305
  role: user
@@ -317,24 +316,48 @@ interactions:
317
316
  connection:
318
317
  - keep-alive
319
318
  content-length:
320
- - '211'
319
+ - '873'
321
320
  content-type:
322
321
  - application/json
323
322
  openai-organization:
324
- - pydantic-28gund
323
+ - gearheart-io
325
324
  openai-processing-ms:
326
- - '101'
325
+ - '531'
327
326
  openai-version:
328
327
  - '2020-10-01'
329
328
  strict-transport-security:
330
329
  - max-age=31536000; includeSubDomains; preload
330
+ transfer-encoding:
331
+ - chunked
331
332
  parsed_body:
332
- error:
333
- code: unknown_parameter
334
- message: 'Unknown parameter: ''messages[1].content[1].file.data''.'
335
- param: messages[1].content[1].file.data
336
- type: invalid_request_error
333
+ choices:
334
+ - finish_reason: stop
335
+ index: 0
336
+ logprobs: null
337
+ message:
338
+ annotations: []
339
+ content: The document contains the text "Dummy PDF file" on its single page.
340
+ refusal: null
341
+ role: assistant
342
+ created: 1745093899
343
+ id: chatcmpl-BO8vj699pdVsDxRwYD63JJVUxqzfg
344
+ model: gpt-4o-2024-08-06
345
+ object: chat.completion
346
+ service_tier: default
347
+ system_fingerprint: fp_f5bdcc3276
348
+ usage:
349
+ completion_tokens: 16
350
+ completion_tokens_details:
351
+ accepted_prediction_tokens: 0
352
+ audio_tokens: 0
353
+ reasoning_tokens: 0
354
+ rejected_prediction_tokens: 0
355
+ prompt_tokens: 235
356
+ prompt_tokens_details:
357
+ audio_tokens: 0
358
+ cached_tokens: 0
359
+ total_tokens: 251
337
360
  status:
338
- code: 400
339
- message: Bad Request
361
+ code: 200
362
+ message: OK
340
363
  version: 1
@@ -17,6 +17,7 @@ from typing_extensions import TypedDict
17
17
  from pydantic_ai import Agent, ModelHTTPError, ModelRetry, UnexpectedModelBehavior
18
18
  from pydantic_ai.messages import (
19
19
  BinaryContent,
20
+ DocumentUrl,
20
21
  ImageUrl,
21
22
  ModelRequest,
22
23
  ModelResponse,
@@ -644,6 +645,17 @@ async def test_image_url_input(allow_model_requests: None):
644
645
  )
645
646
 
646
647
 
648
+ @pytest.mark.vcr()
649
+ async def test_document_url_input(allow_model_requests: None, openai_api_key: str):
650
+ m = OpenAIModel('gpt-4o', provider=OpenAIProvider(api_key=openai_api_key))
651
+ agent = Agent(m)
652
+
653
+ document_url = DocumentUrl(url='https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf')
654
+
655
+ result = await agent.run(['What is the main content on this document?', document_url])
656
+ assert result.output == snapshot('The document contains the text "Dummy PDF file" on its single page.')
657
+
658
+
647
659
  @pytest.mark.vcr()
648
660
  async def test_image_as_binary_content_input(
649
661
  allow_model_requests: None, image_content: BinaryContent, openai_api_key: str
@@ -666,6 +678,17 @@ async def test_audio_as_binary_content_input(
666
678
  assert result.output == snapshot('The name mentioned in the audio is Marcelo.')
667
679
 
668
680
 
681
+ @pytest.mark.vcr()
682
+ async def test_document_as_binary_content_input(
683
+ allow_model_requests: None, document_content: BinaryContent, openai_api_key: str
684
+ ):
685
+ m = OpenAIModel('gpt-4o', provider=OpenAIProvider(api_key=openai_api_key))
686
+ agent = Agent(m)
687
+
688
+ result = await agent.run(['What is the main content on this document?', document_content])
689
+ assert result.output == snapshot('The main content of the document is "Dummy PDF file."')
690
+
691
+
669
692
  def test_model_status_error(allow_model_requests: None) -> None:
670
693
  mock_client = MockOpenAI.create_mock(
671
694
  APIStatusError(
@@ -8,10 +8,11 @@ import httpx
8
8
  import pytest
9
9
  from dirty_equals import IsJson
10
10
  from inline_snapshot import snapshot
11
- from pydantic import BaseModel, field_validator
11
+ from pydantic import BaseModel, TypeAdapter, field_validator
12
12
  from pydantic_core import to_json
13
13
 
14
14
  from pydantic_ai import Agent, ModelRetry, RunContext, UnexpectedModelBehavior, UserError, capture_run_messages
15
+ from pydantic_ai.agent import AgentRunResult
15
16
  from pydantic_ai.messages import (
16
17
  BinaryContent,
17
18
  ModelMessage,
@@ -1869,3 +1870,16 @@ def test_empty_final_response():
1869
1870
  ModelResponse(parts=[], model_name='function:llm:', timestamp=IsNow(tz=timezone.utc)),
1870
1871
  ]
1871
1872
  )
1873
+
1874
+
1875
+ def test_agent_run_result_serialization() -> None:
1876
+ agent = Agent('test', output_type=Foo)
1877
+ result = agent.run_sync('Hello')
1878
+
1879
+ # Check that dump_json doesn't raise an error
1880
+ adapter = TypeAdapter(AgentRunResult[Foo])
1881
+ serialized_data = adapter.dump_json(result)
1882
+
1883
+ # Check that we can load the data back
1884
+ deserialized_result = adapter.validate_json(serialized_data)
1885
+ assert deserialized_result == result
@@ -31,7 +31,7 @@ async def test_stdio_server():
31
31
  server = MCPServerStdio('python', ['-m', 'tests.mcp_server'])
32
32
  async with server:
33
33
  tools = await server.list_tools()
34
- assert len(tools) == 1
34
+ assert len(tools) == 2
35
35
  assert tools[0].name == 'celsius_to_fahrenheit'
36
36
  assert tools[0].description.startswith('Convert Celsius to Fahrenheit.')
37
37
 
@@ -45,12 +45,13 @@ async def test_stdio_server_with_cwd():
45
45
  server = MCPServerStdio('python', ['mcp_server.py'], cwd=test_dir)
46
46
  async with server:
47
47
  tools = await server.list_tools()
48
- assert len(tools) == 1
48
+ assert len(tools) == 2
49
49
 
50
50
 
51
51
  def test_sse_server():
52
52
  sse_server = MCPServerHTTP(url='http://localhost:8000/sse')
53
53
  assert sse_server.url == 'http://localhost:8000/sse'
54
+ assert sse_server._get_log_level() is None # pyright: ignore[reportPrivateUsage]
54
55
 
55
56
 
56
57
  def test_sse_server_with_header_and_timeout():
@@ -59,11 +60,13 @@ def test_sse_server_with_header_and_timeout():
59
60
  headers={'my-custom-header': 'my-header-value'},
60
61
  timeout=10,
61
62
  sse_read_timeout=100,
63
+ log_level='info',
62
64
  )
63
65
  assert sse_server.url == 'http://localhost:8000/sse'
64
66
  assert sse_server.headers is not None and sse_server.headers['my-custom-header'] == 'my-header-value'
65
67
  assert sse_server.timeout == 10
66
68
  assert sse_server.sse_read_timeout == 100
69
+ assert sse_server._get_log_level() == 'info' # pyright: ignore[reportPrivateUsage]
67
70
 
68
71
 
69
72
  async def test_agent_with_stdio_server(allow_model_requests: None, openai_api_key: str):
@@ -114,3 +117,23 @@ async def test_agent_with_server_not_running(openai_api_key: str):
114
117
  agent = Agent(model, mcp_servers=[server])
115
118
  with pytest.raises(UserError, match='MCP server is not running'):
116
119
  await agent.run('What is 0 degrees Celsius in Fahrenheit?')
120
+
121
+
122
+ async def test_log_level_unset():
123
+ server = MCPServerStdio('python', ['-m', 'tests.mcp_server'])
124
+ assert server._get_log_level() is None # pyright: ignore[reportPrivateUsage]
125
+ async with server:
126
+ tools = await server.list_tools()
127
+ assert len(tools) == 2
128
+ assert tools[1].name == 'get_log_level'
129
+
130
+ result = await server.call_tool('get_log_level', {})
131
+ assert result.content == snapshot([TextContent(type='text', text='unset')])
132
+
133
+
134
+ async def test_log_level_set():
135
+ server = MCPServerStdio('python', ['-m', 'tests.mcp_server'], log_level='info')
136
+ assert server._get_log_level() == 'info' # pyright: ignore[reportPrivateUsage]
137
+ async with server:
138
+ result = await server.call_tool('get_log_level', {})
139
+ assert result.content == snapshot([TextContent(type='text', text='info')])
@@ -1,19 +0,0 @@
1
- from mcp.server.fastmcp import FastMCP
2
-
3
- mcp = FastMCP('PydanticAI MCP Server')
4
-
5
-
6
- @mcp.tool()
7
- async def celsius_to_fahrenheit(celsius: float) -> float:
8
- """Convert Celsius to Fahrenheit.
9
-
10
- Args:
11
- celsius: Temperature in Celsius
12
-
13
- Returns:
14
- Temperature in Fahrenheit
15
- """
16
- return (celsius * 9 / 5) + 32
17
-
18
-
19
- mcp.run()
File without changes
File without changes
File without changes
File without changes
File without changes