pydantic-ai-slim 0.4.0__tar.gz → 0.4.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pydantic-ai-slim might be problematic. Click here for more details.

Files changed (84) hide show
  1. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/PKG-INFO +4 -4
  2. pydantic_ai_slim-0.4.1/pydantic_ai/_a2a.py +305 -0
  3. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/agent.py +2 -2
  4. pydantic_ai_slim-0.4.0/pydantic_ai/_a2a.py +0 -191
  5. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/.gitignore +0 -0
  6. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/LICENSE +0 -0
  7. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/README.md +0 -0
  8. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/__init__.py +0 -0
  9. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/__main__.py +0 -0
  10. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_agent_graph.py +0 -0
  11. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_cli.py +0 -0
  12. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_function_schema.py +0 -0
  13. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_griffe.py +0 -0
  14. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_mcp.py +0 -0
  15. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_output.py +0 -0
  16. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_parts_manager.py +0 -0
  17. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_run_context.py +0 -0
  18. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_system_prompt.py +0 -0
  19. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_thinking_part.py +0 -0
  20. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/_utils.py +0 -0
  21. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/common_tools/__init__.py +0 -0
  22. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/common_tools/duckduckgo.py +0 -0
  23. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/common_tools/tavily.py +0 -0
  24. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/direct.py +0 -0
  25. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/exceptions.py +0 -0
  26. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/ext/__init__.py +0 -0
  27. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/ext/aci.py +0 -0
  28. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/ext/langchain.py +0 -0
  29. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/format_as_xml.py +0 -0
  30. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/format_prompt.py +0 -0
  31. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/mcp.py +0 -0
  32. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/messages.py +0 -0
  33. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/__init__.py +0 -0
  34. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/anthropic.py +0 -0
  35. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/bedrock.py +0 -0
  36. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/cohere.py +0 -0
  37. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/fallback.py +0 -0
  38. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/function.py +0 -0
  39. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/gemini.py +0 -0
  40. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/google.py +0 -0
  41. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/groq.py +0 -0
  42. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/instrumented.py +0 -0
  43. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/mcp_sampling.py +0 -0
  44. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/mistral.py +0 -0
  45. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/openai.py +0 -0
  46. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/test.py +0 -0
  47. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/models/wrapper.py +0 -0
  48. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/output.py +0 -0
  49. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/__init__.py +0 -0
  50. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/_json_schema.py +0 -0
  51. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/amazon.py +0 -0
  52. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/anthropic.py +0 -0
  53. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/cohere.py +0 -0
  54. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/deepseek.py +0 -0
  55. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/google.py +0 -0
  56. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/grok.py +0 -0
  57. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/meta.py +0 -0
  58. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/mistral.py +0 -0
  59. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/openai.py +0 -0
  60. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/profiles/qwen.py +0 -0
  61. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/__init__.py +0 -0
  62. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/anthropic.py +0 -0
  63. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/azure.py +0 -0
  64. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/bedrock.py +0 -0
  65. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/cohere.py +0 -0
  66. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/deepseek.py +0 -0
  67. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/fireworks.py +0 -0
  68. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/github.py +0 -0
  69. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/google.py +0 -0
  70. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/google_gla.py +0 -0
  71. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/google_vertex.py +0 -0
  72. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/grok.py +0 -0
  73. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/groq.py +0 -0
  74. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/heroku.py +0 -0
  75. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/mistral.py +0 -0
  76. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/openai.py +0 -0
  77. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/openrouter.py +0 -0
  78. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/providers/together.py +0 -0
  79. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/py.typed +0 -0
  80. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/result.py +0 -0
  81. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/settings.py +0 -0
  82. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/tools.py +0 -0
  83. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pydantic_ai/usage.py +0 -0
  84. {pydantic_ai_slim-0.4.0 → pydantic_ai_slim-0.4.1}/pyproject.toml +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pydantic-ai-slim
3
- Version: 0.4.0
3
+ Version: 0.4.1
4
4
  Summary: Agent Framework / shim to use Pydantic with LLMs, slim package
5
5
  Author-email: Samuel Colvin <samuel@pydantic.dev>, Marcelo Trylesinski <marcelotryle@gmail.com>, David Montague <david@pydantic.dev>, Alex Hall <alex@pydantic.dev>
6
6
  License-Expression: MIT
@@ -30,11 +30,11 @@ Requires-Dist: exceptiongroup; python_version < '3.11'
30
30
  Requires-Dist: griffe>=1.3.2
31
31
  Requires-Dist: httpx>=0.27
32
32
  Requires-Dist: opentelemetry-api>=1.28.0
33
- Requires-Dist: pydantic-graph==0.4.0
33
+ Requires-Dist: pydantic-graph==0.4.1
34
34
  Requires-Dist: pydantic>=2.10
35
35
  Requires-Dist: typing-inspection>=0.4.0
36
36
  Provides-Extra: a2a
37
- Requires-Dist: fasta2a==0.4.0; extra == 'a2a'
37
+ Requires-Dist: fasta2a==0.4.1; extra == 'a2a'
38
38
  Provides-Extra: anthropic
39
39
  Requires-Dist: anthropic>=0.52.0; extra == 'anthropic'
40
40
  Provides-Extra: bedrock
@@ -48,7 +48,7 @@ Requires-Dist: cohere>=5.13.11; (platform_system != 'Emscripten') and extra == '
48
48
  Provides-Extra: duckduckgo
49
49
  Requires-Dist: duckduckgo-search>=7.0.0; extra == 'duckduckgo'
50
50
  Provides-Extra: evals
51
- Requires-Dist: pydantic-evals==0.4.0; extra == 'evals'
51
+ Requires-Dist: pydantic-evals==0.4.1; extra == 'evals'
52
52
  Provides-Extra: google
53
53
  Requires-Dist: google-genai>=1.24.0; extra == 'google'
54
54
  Provides-Extra: groq
@@ -0,0 +1,305 @@
1
+ from __future__ import annotations, annotations as _annotations
2
+
3
+ import uuid
4
+ from collections.abc import AsyncIterator, Sequence
5
+ from contextlib import asynccontextmanager
6
+ from dataclasses import dataclass
7
+ from functools import partial
8
+ from typing import Any, Generic, TypeVar
9
+
10
+ from pydantic import TypeAdapter
11
+ from typing_extensions import assert_never
12
+
13
+ from pydantic_ai.messages import (
14
+ AudioUrl,
15
+ BinaryContent,
16
+ DocumentUrl,
17
+ ImageUrl,
18
+ ModelMessage,
19
+ ModelRequest,
20
+ ModelRequestPart,
21
+ ModelResponse,
22
+ ModelResponsePart,
23
+ TextPart,
24
+ ThinkingPart,
25
+ ToolCallPart,
26
+ UserPromptPart,
27
+ VideoUrl,
28
+ )
29
+
30
+ from .agent import Agent, AgentDepsT, OutputDataT
31
+
32
+ # AgentWorker output type needs to be invariant for use in both parameter and return positions
33
+ WorkerOutputT = TypeVar('WorkerOutputT')
34
+
35
+ try:
36
+ from starlette.middleware import Middleware
37
+ from starlette.routing import Route
38
+ from starlette.types import ExceptionHandler, Lifespan
39
+
40
+ from fasta2a.applications import FastA2A
41
+ from fasta2a.broker import Broker, InMemoryBroker
42
+ from fasta2a.schema import (
43
+ AgentProvider,
44
+ Artifact,
45
+ DataPart,
46
+ Message,
47
+ Part,
48
+ Skill,
49
+ TaskIdParams,
50
+ TaskSendParams,
51
+ TextPart as A2ATextPart,
52
+ )
53
+ from fasta2a.storage import InMemoryStorage, Storage
54
+ from fasta2a.worker import Worker
55
+ except ImportError as _import_error:
56
+ raise ImportError(
57
+ 'Please install the `fasta2a` package to use `Agent.to_a2a()` method, '
58
+ 'you can use the `a2a` optional group — `pip install "pydantic-ai-slim[a2a]"`'
59
+ ) from _import_error
60
+
61
+
62
+ @asynccontextmanager
63
+ async def worker_lifespan(app: FastA2A, worker: Worker) -> AsyncIterator[None]:
64
+ """Custom lifespan that runs the worker during application startup.
65
+
66
+ This ensures the worker is started and ready to process tasks as soon as the application starts.
67
+ """
68
+ async with app.task_manager:
69
+ async with worker.run():
70
+ yield
71
+
72
+
73
+ def agent_to_a2a(
74
+ agent: Agent[AgentDepsT, OutputDataT],
75
+ *,
76
+ storage: Storage | None = None,
77
+ broker: Broker | None = None,
78
+ # Agent card
79
+ name: str | None = None,
80
+ url: str = 'http://localhost:8000',
81
+ version: str = '1.0.0',
82
+ description: str | None = None,
83
+ provider: AgentProvider | None = None,
84
+ skills: list[Skill] | None = None,
85
+ # Starlette
86
+ debug: bool = False,
87
+ routes: Sequence[Route] | None = None,
88
+ middleware: Sequence[Middleware] | None = None,
89
+ exception_handlers: dict[Any, ExceptionHandler] | None = None,
90
+ lifespan: Lifespan[FastA2A] | None = None,
91
+ ) -> FastA2A:
92
+ """Create a FastA2A server from an agent."""
93
+ storage = storage or InMemoryStorage()
94
+ broker = broker or InMemoryBroker()
95
+ worker = AgentWorker(agent=agent, broker=broker, storage=storage)
96
+
97
+ lifespan = lifespan or partial(worker_lifespan, worker=worker)
98
+
99
+ return FastA2A(
100
+ storage=storage,
101
+ broker=broker,
102
+ name=name or agent.name,
103
+ url=url,
104
+ version=version,
105
+ description=description,
106
+ provider=provider,
107
+ skills=skills,
108
+ debug=debug,
109
+ routes=routes,
110
+ middleware=middleware,
111
+ exception_handlers=exception_handlers,
112
+ lifespan=lifespan,
113
+ )
114
+
115
+
116
+ @dataclass
117
+ class AgentWorker(Worker[list[ModelMessage]], Generic[WorkerOutputT, AgentDepsT]):
118
+ """A worker that uses an agent to execute tasks."""
119
+
120
+ agent: Agent[AgentDepsT, WorkerOutputT]
121
+
122
+ async def run_task(self, params: TaskSendParams) -> None:
123
+ task = await self.storage.load_task(params['id'])
124
+ if task is None:
125
+ raise ValueError(f'Task {params["id"]} not found') # pragma: no cover
126
+
127
+ # TODO(Marcelo): Should we lock `run_task` on the `context_id`?
128
+ # Ensure this task hasn't been run before
129
+ if task['status']['state'] != 'submitted':
130
+ raise ValueError( # pragma: no cover
131
+ f'Task {params["id"]} has already been processed (state: {task["status"]["state"]})'
132
+ )
133
+
134
+ await self.storage.update_task(task['id'], state='working')
135
+
136
+ # Load context - contains pydantic-ai message history from previous tasks in this conversation
137
+ message_history = await self.storage.load_context(task['context_id']) or []
138
+ message_history.extend(self.build_message_history(task.get('history', [])))
139
+
140
+ try:
141
+ result = await self.agent.run(message_history=message_history) # type: ignore
142
+
143
+ await self.storage.update_context(task['context_id'], result.all_messages())
144
+
145
+ # Convert new messages to A2A format for task history
146
+ a2a_messages: list[Message] = []
147
+
148
+ for message in result.new_messages():
149
+ if isinstance(message, ModelRequest):
150
+ # Skip user prompts - they're already in task history
151
+ continue
152
+ else:
153
+ # Convert response parts to A2A format
154
+ a2a_parts = self._response_parts_to_a2a(message.parts)
155
+ if a2a_parts: # Add if there are visible parts (text/thinking)
156
+ a2a_messages.append(
157
+ Message(role='agent', parts=a2a_parts, kind='message', message_id=str(uuid.uuid4()))
158
+ )
159
+
160
+ artifacts = self.build_artifacts(result.output)
161
+ except Exception:
162
+ await self.storage.update_task(task['id'], state='failed')
163
+ raise
164
+ else:
165
+ await self.storage.update_task(
166
+ task['id'], state='completed', new_artifacts=artifacts, new_messages=a2a_messages
167
+ )
168
+
169
+ async def cancel_task(self, params: TaskIdParams) -> None:
170
+ pass
171
+
172
+ def build_artifacts(self, result: WorkerOutputT) -> list[Artifact]:
173
+ """Build artifacts from agent result.
174
+
175
+ All agent outputs become artifacts to mark them as durable task outputs.
176
+ For string results, we use TextPart. For structured data, we use DataPart.
177
+ Metadata is included to preserve type information.
178
+ """
179
+ artifact_id = str(uuid.uuid4())
180
+ part = self._convert_result_to_part(result)
181
+ return [Artifact(artifact_id=artifact_id, name='result', parts=[part])]
182
+
183
+ def _convert_result_to_part(self, result: WorkerOutputT) -> Part:
184
+ """Convert agent result to a Part (TextPart or DataPart).
185
+
186
+ For string results, returns a TextPart.
187
+ For structured data, returns a DataPart with properly serialized data.
188
+ """
189
+ if isinstance(result, str):
190
+ return A2ATextPart(kind='text', text=result)
191
+ else:
192
+ output_type = type(result)
193
+ type_adapter = TypeAdapter(output_type)
194
+ data = type_adapter.dump_python(result, mode='json')
195
+ json_schema = type_adapter.json_schema(mode='serialization')
196
+ return DataPart(kind='data', data={'result': data}, metadata={'json_schema': json_schema})
197
+
198
+ def build_message_history(self, history: list[Message]) -> list[ModelMessage]:
199
+ model_messages: list[ModelMessage] = []
200
+ for message in history:
201
+ if message['role'] == 'user':
202
+ model_messages.append(ModelRequest(parts=self._request_parts_from_a2a(message['parts'])))
203
+ else:
204
+ model_messages.append(ModelResponse(parts=self._response_parts_from_a2a(message['parts'])))
205
+ return model_messages
206
+
207
+ def _request_parts_from_a2a(self, parts: list[Part]) -> list[ModelRequestPart]:
208
+ """Convert A2A Part objects to pydantic-ai ModelRequestPart objects.
209
+
210
+ This handles the conversion from A2A protocol parts (text, file, data) to
211
+ pydantic-ai's internal request parts (UserPromptPart with various content types).
212
+
213
+ Args:
214
+ parts: List of A2A Part objects from incoming messages
215
+
216
+ Returns:
217
+ List of ModelRequestPart objects for the pydantic-ai agent
218
+ """
219
+ model_parts: list[ModelRequestPart] = []
220
+ for part in parts:
221
+ if part['kind'] == 'text':
222
+ model_parts.append(UserPromptPart(content=part['text']))
223
+ elif part['kind'] == 'file':
224
+ file_content = part['file']
225
+ if 'bytes' in file_content:
226
+ data = file_content['bytes'].encode('utf-8')
227
+ mime_type = file_content.get('mime_type', 'application/octet-stream')
228
+ content = BinaryContent(data=data, media_type=mime_type)
229
+ model_parts.append(UserPromptPart(content=[content]))
230
+ else:
231
+ url = file_content['uri']
232
+ for url_cls in (DocumentUrl, AudioUrl, ImageUrl, VideoUrl):
233
+ content = url_cls(url=url)
234
+ try:
235
+ content.media_type
236
+ except ValueError: # pragma: no cover
237
+ continue
238
+ else:
239
+ break
240
+ else:
241
+ raise ValueError(f'Unsupported file type: {url}') # pragma: no cover
242
+ model_parts.append(UserPromptPart(content=[content]))
243
+ elif part['kind'] == 'data':
244
+ raise NotImplementedError('Data parts are not supported yet.')
245
+ else:
246
+ assert_never(part)
247
+ return model_parts
248
+
249
+ def _response_parts_from_a2a(self, parts: list[Part]) -> list[ModelResponsePart]:
250
+ """Convert A2A Part objects to pydantic-ai ModelResponsePart objects.
251
+
252
+ This handles the conversion from A2A protocol parts (text, file, data) to
253
+ pydantic-ai's internal response parts. Currently only supports text parts
254
+ as agent responses in A2A are expected to be text-based.
255
+
256
+ Args:
257
+ parts: List of A2A Part objects from stored agent messages
258
+
259
+ Returns:
260
+ List of ModelResponsePart objects for message history
261
+ """
262
+ model_parts: list[ModelResponsePart] = []
263
+ for part in parts:
264
+ if part['kind'] == 'text':
265
+ model_parts.append(TextPart(content=part['text']))
266
+ elif part['kind'] == 'file': # pragma: no cover
267
+ raise NotImplementedError('File parts are not supported yet.')
268
+ elif part['kind'] == 'data': # pragma: no cover
269
+ raise NotImplementedError('Data parts are not supported yet.')
270
+ else: # pragma: no cover
271
+ assert_never(part)
272
+ return model_parts
273
+
274
+ def _response_parts_to_a2a(self, parts: list[ModelResponsePart]) -> list[Part]:
275
+ """Convert pydantic-ai ModelResponsePart objects to A2A Part objects.
276
+
277
+ This handles the conversion from pydantic-ai's internal response parts to
278
+ A2A protocol parts. Different part types are handled as follows:
279
+ - TextPart: Converted directly to A2A TextPart
280
+ - ThinkingPart: Converted to TextPart with metadata indicating it's thinking
281
+ - ToolCallPart: Skipped (internal to agent execution)
282
+
283
+ Args:
284
+ parts: List of ModelResponsePart objects from agent response
285
+
286
+ Returns:
287
+ List of A2A Part objects suitable for sending via A2A protocol
288
+ """
289
+ a2a_parts: list[Part] = []
290
+ for part in parts:
291
+ if isinstance(part, TextPart):
292
+ a2a_parts.append(A2ATextPart(kind='text', text=part.content))
293
+ elif isinstance(part, ThinkingPart):
294
+ # Convert thinking to text with metadata
295
+ a2a_parts.append(
296
+ A2ATextPart(
297
+ kind='text',
298
+ text=part.content,
299
+ metadata={'type': 'thinking', 'thinking_id': part.id, 'signature': part.signature},
300
+ )
301
+ )
302
+ elif isinstance(part, ToolCallPart):
303
+ # Skip tool calls - they're internal to agent execution
304
+ pass
305
+ return a2a_parts
@@ -63,7 +63,7 @@ if TYPE_CHECKING:
63
63
 
64
64
  from fasta2a.applications import FastA2A
65
65
  from fasta2a.broker import Broker
66
- from fasta2a.schema import Provider, Skill
66
+ from fasta2a.schema import AgentProvider, Skill
67
67
  from fasta2a.storage import Storage
68
68
  from pydantic_ai.mcp import MCPServer
69
69
 
@@ -1764,7 +1764,7 @@ class Agent(Generic[AgentDepsT, OutputDataT]):
1764
1764
  url: str = 'http://localhost:8000',
1765
1765
  version: str = '1.0.0',
1766
1766
  description: str | None = None,
1767
- provider: Provider | None = None,
1767
+ provider: AgentProvider | None = None,
1768
1768
  skills: list[Skill] | None = None,
1769
1769
  # Starlette
1770
1770
  debug: bool = False,
@@ -1,191 +0,0 @@
1
- from __future__ import annotations, annotations as _annotations
2
-
3
- from collections.abc import AsyncIterator, Sequence
4
- from contextlib import asynccontextmanager
5
- from dataclasses import dataclass
6
- from functools import partial
7
- from typing import Any, Generic
8
-
9
- from typing_extensions import assert_never
10
-
11
- from pydantic_ai.messages import (
12
- AudioUrl,
13
- BinaryContent,
14
- DocumentUrl,
15
- ImageUrl,
16
- ModelMessage,
17
- ModelRequest,
18
- ModelRequestPart,
19
- ModelResponse,
20
- ModelResponsePart,
21
- TextPart,
22
- UserPromptPart,
23
- VideoUrl,
24
- )
25
-
26
- from .agent import Agent, AgentDepsT, OutputDataT
27
-
28
- try:
29
- from starlette.middleware import Middleware
30
- from starlette.routing import Route
31
- from starlette.types import ExceptionHandler, Lifespan
32
-
33
- from fasta2a.applications import FastA2A
34
- from fasta2a.broker import Broker, InMemoryBroker
35
- from fasta2a.schema import (
36
- Artifact,
37
- Message,
38
- Part,
39
- Provider,
40
- Skill,
41
- TaskIdParams,
42
- TaskSendParams,
43
- TextPart as A2ATextPart,
44
- )
45
- from fasta2a.storage import InMemoryStorage, Storage
46
- from fasta2a.worker import Worker
47
- except ImportError as _import_error:
48
- raise ImportError(
49
- 'Please install the `fasta2a` package to use `Agent.to_a2a()` method, '
50
- 'you can use the `a2a` optional group — `pip install "pydantic-ai-slim[a2a]"`'
51
- ) from _import_error
52
-
53
-
54
- @asynccontextmanager
55
- async def worker_lifespan(app: FastA2A, worker: Worker) -> AsyncIterator[None]:
56
- """Custom lifespan that runs the worker during application startup.
57
-
58
- This ensures the worker is started and ready to process tasks as soon as the application starts.
59
- """
60
- async with app.task_manager:
61
- async with worker.run():
62
- yield
63
-
64
-
65
- def agent_to_a2a(
66
- agent: Agent[AgentDepsT, OutputDataT],
67
- *,
68
- storage: Storage | None = None,
69
- broker: Broker | None = None,
70
- # Agent card
71
- name: str | None = None,
72
- url: str = 'http://localhost:8000',
73
- version: str = '1.0.0',
74
- description: str | None = None,
75
- provider: Provider | None = None,
76
- skills: list[Skill] | None = None,
77
- # Starlette
78
- debug: bool = False,
79
- routes: Sequence[Route] | None = None,
80
- middleware: Sequence[Middleware] | None = None,
81
- exception_handlers: dict[Any, ExceptionHandler] | None = None,
82
- lifespan: Lifespan[FastA2A] | None = None,
83
- ) -> FastA2A:
84
- """Create a FastA2A server from an agent."""
85
- storage = storage or InMemoryStorage()
86
- broker = broker or InMemoryBroker()
87
- worker = AgentWorker(agent=agent, broker=broker, storage=storage)
88
-
89
- lifespan = lifespan or partial(worker_lifespan, worker=worker)
90
-
91
- return FastA2A(
92
- storage=storage,
93
- broker=broker,
94
- name=name or agent.name,
95
- url=url,
96
- version=version,
97
- description=description,
98
- provider=provider,
99
- skills=skills,
100
- debug=debug,
101
- routes=routes,
102
- middleware=middleware,
103
- exception_handlers=exception_handlers,
104
- lifespan=lifespan,
105
- )
106
-
107
-
108
- @dataclass
109
- class AgentWorker(Worker, Generic[AgentDepsT, OutputDataT]):
110
- """A worker that uses an agent to execute tasks."""
111
-
112
- agent: Agent[AgentDepsT, OutputDataT]
113
-
114
- async def run_task(self, params: TaskSendParams) -> None:
115
- task = await self.storage.load_task(params['id'], history_length=params.get('history_length'))
116
- assert task is not None, f'Task {params["id"]} not found'
117
- assert 'session_id' in task, 'Task must have a session_id'
118
-
119
- await self.storage.update_task(task['id'], state='working')
120
-
121
- # TODO(Marcelo): We need to have a way to communicate when the task is set to `input-required`. Maybe
122
- # a custom `output_type` with a `more_info_required` field, or something like that.
123
-
124
- task_history = task.get('history', [])
125
- message_history = self.build_message_history(task_history=task_history)
126
-
127
- # TODO(Marcelo): We need to make this more customizable e.g. pass deps.
128
- result = await self.agent.run(message_history=message_history) # type: ignore
129
-
130
- artifacts = self.build_artifacts(result.output)
131
- await self.storage.update_task(task['id'], state='completed', artifacts=artifacts)
132
-
133
- async def cancel_task(self, params: TaskIdParams) -> None:
134
- pass
135
-
136
- def build_artifacts(self, result: Any) -> list[Artifact]:
137
- # TODO(Marcelo): We need to send the json schema of the result on the metadata of the message.
138
- return [Artifact(name='result', index=0, parts=[A2ATextPart(type='text', text=str(result))])]
139
-
140
- def build_message_history(self, task_history: list[Message]) -> list[ModelMessage]:
141
- model_messages: list[ModelMessage] = []
142
- for message in task_history:
143
- if message['role'] == 'user':
144
- model_messages.append(ModelRequest(parts=self._map_request_parts(message['parts'])))
145
- else:
146
- model_messages.append(ModelResponse(parts=self._map_response_parts(message['parts'])))
147
- return model_messages
148
-
149
- def _map_request_parts(self, parts: list[Part]) -> list[ModelRequestPart]:
150
- model_parts: list[ModelRequestPart] = []
151
- for part in parts:
152
- if part['type'] == 'text':
153
- model_parts.append(UserPromptPart(content=part['text']))
154
- elif part['type'] == 'file':
155
- file = part['file']
156
- if 'data' in file:
157
- data = file['data'].encode('utf-8')
158
- content = BinaryContent(data=data, media_type=file['mime_type'])
159
- model_parts.append(UserPromptPart(content=[content]))
160
- else:
161
- url = file['url']
162
- for url_cls in (DocumentUrl, AudioUrl, ImageUrl, VideoUrl):
163
- content = url_cls(url=url)
164
- try:
165
- content.media_type
166
- except ValueError: # pragma: no cover
167
- continue
168
- else:
169
- break
170
- else:
171
- raise ValueError(f'Unknown file type: {file["mime_type"]}') # pragma: no cover
172
- model_parts.append(UserPromptPart(content=[content]))
173
- elif part['type'] == 'data':
174
- # TODO(Marcelo): Maybe we should use this for `ToolReturnPart`, and `RetryPromptPart`.
175
- raise NotImplementedError('Data parts are not supported yet.')
176
- else:
177
- assert_never(part)
178
- return model_parts
179
-
180
- def _map_response_parts(self, parts: list[Part]) -> list[ModelResponsePart]:
181
- model_parts: list[ModelResponsePart] = []
182
- for part in parts:
183
- if part['type'] == 'text':
184
- model_parts.append(TextPart(content=part['text']))
185
- elif part['type'] == 'file': # pragma: no cover
186
- raise NotImplementedError('File parts are not supported yet.')
187
- elif part['type'] == 'data': # pragma: no cover
188
- raise NotImplementedError('Data parts are not supported yet.')
189
- else: # pragma: no cover
190
- assert_never(part)
191
- return model_parts