pydantic-ai-examples 0.3.5__tar.gz → 0.3.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pydantic-ai-examples might be problematic. Click here for more details.

Files changed (41) hide show
  1. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/PKG-INFO +3 -3
  2. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/stream_whales.py +2 -15
  3. pydantic_ai_examples-0.3.7/pydantic_ai_examples/weather_agent.py +105 -0
  4. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/weather_agent_gradio.py +1 -5
  5. pydantic_ai_examples-0.3.5/pydantic_ai_examples/weather_agent.py +0 -158
  6. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/.gitignore +0 -0
  7. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/LICENSE +0 -0
  8. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/README.md +0 -0
  9. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/__main__.py +0 -0
  10. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/bank_support.py +0 -0
  11. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/chat_app.html +0 -0
  12. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/chat_app.py +0 -0
  13. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/chat_app.ts +0 -0
  14. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/__init__.py +0 -0
  15. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/agent.py +0 -0
  16. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/custom_evaluators.py +0 -0
  17. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/datasets/time_range_v1.yaml +0 -0
  18. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/datasets/time_range_v1_schema.json +0 -0
  19. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/datasets/time_range_v2.yaml +0 -0
  20. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/datasets/time_range_v2_schema.json +0 -0
  21. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/example_01_generate_dataset.py +0 -0
  22. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/example_02_add_custom_evaluators.py +0 -0
  23. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/example_03_unit_testing.py +0 -0
  24. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/example_04_compare_models.py +0 -0
  25. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/evals/models.py +0 -0
  26. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/flight_booking.py +0 -0
  27. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/pydantic_model.py +0 -0
  28. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/question_graph.py +0 -0
  29. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/rag.py +0 -0
  30. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/roulette_wheel.py +0 -0
  31. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/__init__.py +0 -0
  32. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/agent.py +0 -0
  33. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/app.py +0 -0
  34. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/functions.py +0 -0
  35. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/modal.py +0 -0
  36. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/models.py +0 -0
  37. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/slack.py +0 -0
  38. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/slack_lead_qualifier/store.py +0 -0
  39. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/sql_gen.py +0 -0
  40. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pydantic_ai_examples/stream_markdown.py +0 -0
  41. {pydantic_ai_examples-0.3.5 → pydantic_ai_examples-0.3.7}/pyproject.toml +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pydantic-ai-examples
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: Examples of how to use PydanticAI and what it can do.
5
5
  Author-email: Samuel Colvin <samuel@pydantic.dev>
6
6
  License-Expression: MIT
@@ -32,8 +32,8 @@ Requires-Dist: gradio>=5.9.0; python_version > '3.9'
32
32
  Requires-Dist: logfire[asyncpg,fastapi,httpx,sqlite3]>=2.6
33
33
  Requires-Dist: mcp[cli]>=1.4.1; python_version >= '3.10'
34
34
  Requires-Dist: modal>=1.0.4
35
- Requires-Dist: pydantic-ai-slim[anthropic,groq,openai,vertexai]==0.3.5
36
- Requires-Dist: pydantic-evals==0.3.5
35
+ Requires-Dist: pydantic-ai-slim[anthropic,groq,openai,vertexai]==0.3.7
36
+ Requires-Dist: pydantic-evals==0.3.7
37
37
  Requires-Dist: python-multipart>=0.0.17
38
38
  Requires-Dist: rich>=13.9.2
39
39
  Requires-Dist: uvicorn>=0.32.0
@@ -11,7 +11,7 @@ Run with:
11
11
  from typing import Annotated
12
12
 
13
13
  import logfire
14
- from pydantic import Field, ValidationError
14
+ from pydantic import Field
15
15
  from rich.console import Console
16
16
  from rich.live import Live
17
17
  from rich.table import Table
@@ -51,20 +51,7 @@ async def main():
51
51
  ) as result:
52
52
  console.print('Response:', style='green')
53
53
 
54
- async for message, last in result.stream_structured(debounce_by=0.01):
55
- try:
56
- whales = await result.validate_structured_output(
57
- message, allow_partial=not last
58
- )
59
- except ValidationError as exc:
60
- if all(
61
- e['type'] == 'missing' and e['loc'] == ('response',)
62
- for e in exc.errors()
63
- ):
64
- continue
65
- else:
66
- raise
67
-
54
+ async for whales in result.stream(debounce_by=0.01):
68
55
  table = Table(
69
56
  title='Species of Whale',
70
57
  caption='Streaming Structured responses from GPT-4',
@@ -0,0 +1,105 @@
1
+ """Example of PydanticAI with multiple tools which the LLM needs to call in turn to answer a question.
2
+
3
+ In this case the idea is a "weather" agent — the user can ask for the weather in multiple cities,
4
+ the agent will use the `get_lat_lng` tool to get the latitude and longitude of the locations, then use
5
+ the `get_weather` tool to get the weather.
6
+
7
+ Run with:
8
+
9
+ uv run -m pydantic_ai_examples.weather_agent
10
+ """
11
+
12
+ from __future__ import annotations as _annotations
13
+
14
+ import asyncio
15
+ from dataclasses import dataclass
16
+ from typing import Any
17
+
18
+ import logfire
19
+ from httpx import AsyncClient
20
+ from pydantic import BaseModel
21
+
22
+ from pydantic_ai import Agent, RunContext
23
+
24
+ # 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
25
+ logfire.configure(send_to_logfire='if-token-present')
26
+ logfire.instrument_pydantic_ai()
27
+
28
+
29
+ @dataclass
30
+ class Deps:
31
+ client: AsyncClient
32
+
33
+
34
+ weather_agent = Agent(
35
+ 'openai:gpt-4.1-mini',
36
+ # 'Be concise, reply with one sentence.' is enough for some models (like openai) to use
37
+ # the below tools appropriately, but others like anthropic and gemini require a bit more direction.
38
+ instructions='Be concise, reply with one sentence.',
39
+ deps_type=Deps,
40
+ retries=2,
41
+ )
42
+
43
+
44
+ class LatLng(BaseModel):
45
+ lat: float
46
+ lng: float
47
+
48
+
49
+ @weather_agent.tool
50
+ async def get_lat_lng(ctx: RunContext[Deps], location_description: str) -> LatLng:
51
+ """Get the latitude and longitude of a location.
52
+
53
+ Args:
54
+ ctx: The context.
55
+ location_description: A description of a location.
56
+ """
57
+ # NOTE: the response here will be random, and is not related to the location description.
58
+ r = await ctx.deps.client.get(
59
+ 'https://demo-endpoints.pydantic.workers.dev/latlng',
60
+ params={'location': location_description},
61
+ )
62
+ r.raise_for_status()
63
+ return LatLng.model_validate_json(r.content)
64
+
65
+
66
+ @weather_agent.tool
67
+ async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str, Any]:
68
+ """Get the weather at a location.
69
+
70
+ Args:
71
+ ctx: The context.
72
+ lat: Latitude of the location.
73
+ lng: Longitude of the location.
74
+ """
75
+ # NOTE: the responses here will be random, and are not related to the lat and lng.
76
+ temp_response, descr_response = await asyncio.gather(
77
+ ctx.deps.client.get(
78
+ 'https://demo-endpoints.pydantic.workers.dev/number',
79
+ params={'min': 10, 'max': 30},
80
+ ),
81
+ ctx.deps.client.get(
82
+ 'https://demo-endpoints.pydantic.workers.dev/weather',
83
+ params={'lat': lat, 'lng': lng},
84
+ ),
85
+ )
86
+ temp_response.raise_for_status()
87
+ descr_response.raise_for_status()
88
+ return {
89
+ 'temperature': f'{temp_response.text} °C',
90
+ 'description': descr_response.text,
91
+ }
92
+
93
+
94
+ async def main():
95
+ async with AsyncClient() as client:
96
+ logfire.instrument_httpx(client, capture_all=True)
97
+ deps = Deps(client=client)
98
+ result = await weather_agent.run(
99
+ 'What is the weather like in London and in Wiltshire?', deps=deps
100
+ )
101
+ print('Response:', result.output)
102
+
103
+
104
+ if __name__ == '__main__':
105
+ asyncio.run(main())
@@ -1,7 +1,6 @@
1
1
  from __future__ import annotations as _annotations
2
2
 
3
3
  import json
4
- import os
5
4
 
6
5
  from httpx import AsyncClient
7
6
 
@@ -18,10 +17,7 @@ except ImportError as e:
18
17
  TOOL_TO_DISPLAY_NAME = {'get_lat_lng': 'Geocoding API', 'get_weather': 'Weather API'}
19
18
 
20
19
  client = AsyncClient()
21
- weather_api_key = os.getenv('WEATHER_API_KEY')
22
- # create a free API key at https://geocode.maps.co/
23
- geo_api_key = os.getenv('GEO_API_KEY')
24
- deps = Deps(client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key)
20
+ deps = Deps(client=client)
25
21
 
26
22
 
27
23
  async def stream_from_agent(prompt: str, chatbot: list[dict], past_messages: list):
@@ -1,158 +0,0 @@
1
- """Example of PydanticAI with multiple tools which the LLM needs to call in turn to answer a question.
2
-
3
- In this case the idea is a "weather" agent — the user can ask for the weather in multiple cities,
4
- the agent will use the `get_lat_lng` tool to get the latitude and longitude of the locations, then use
5
- the `get_weather` tool to get the weather.
6
-
7
- Run with:
8
-
9
- uv run -m pydantic_ai_examples.weather_agent
10
- """
11
-
12
- from __future__ import annotations as _annotations
13
-
14
- import asyncio
15
- import os
16
- import urllib.parse
17
- from dataclasses import dataclass
18
- from typing import Any
19
-
20
- import logfire
21
- from devtools import debug
22
- from httpx import AsyncClient
23
-
24
- from pydantic_ai import Agent, ModelRetry, RunContext
25
-
26
- # 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
27
- logfire.configure(send_to_logfire='if-token-present')
28
- logfire.instrument_pydantic_ai()
29
-
30
-
31
- @dataclass
32
- class Deps:
33
- client: AsyncClient
34
- weather_api_key: str | None
35
- geo_api_key: str | None
36
-
37
-
38
- weather_agent = Agent(
39
- 'openai:gpt-4o',
40
- # 'Be concise, reply with one sentence.' is enough for some models (like openai) to use
41
- # the below tools appropriately, but others like anthropic and gemini require a bit more direction.
42
- instructions=(
43
- 'Be concise, reply with one sentence.'
44
- 'Use the `get_lat_lng` tool to get the latitude and longitude of the locations, '
45
- 'then use the `get_weather` tool to get the weather.'
46
- ),
47
- deps_type=Deps,
48
- retries=2,
49
- )
50
-
51
-
52
- @weather_agent.tool
53
- async def get_lat_lng(
54
- ctx: RunContext[Deps], location_description: str
55
- ) -> dict[str, float]:
56
- """Get the latitude and longitude of a location.
57
-
58
- Args:
59
- ctx: The context.
60
- location_description: A description of a location.
61
- """
62
- if ctx.deps.geo_api_key is None:
63
- # if no API key is provided, return a dummy response (London)
64
- return {'lat': 51.1, 'lng': -0.1}
65
-
66
- params = {'access_token': ctx.deps.geo_api_key}
67
- loc = urllib.parse.quote(location_description)
68
- r = await ctx.deps.client.get(
69
- f'https://api.mapbox.com/geocoding/v5/mapbox.places/{loc}.json', params=params
70
- )
71
- r.raise_for_status()
72
- data = r.json()
73
-
74
- if features := data['features']:
75
- lat, lng = features[0]['center']
76
- return {'lat': lat, 'lng': lng}
77
- else:
78
- raise ModelRetry('Could not find the location')
79
-
80
-
81
- @weather_agent.tool
82
- async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str, Any]:
83
- """Get the weather at a location.
84
-
85
- Args:
86
- ctx: The context.
87
- lat: Latitude of the location.
88
- lng: Longitude of the location.
89
- """
90
- if ctx.deps.weather_api_key is None:
91
- # if no API key is provided, return a dummy response
92
- return {'temperature': '21 °C', 'description': 'Sunny'}
93
-
94
- params = {
95
- 'apikey': ctx.deps.weather_api_key,
96
- 'location': f'{lat},{lng}',
97
- 'units': 'metric',
98
- }
99
- with logfire.span('calling weather API', params=params) as span:
100
- r = await ctx.deps.client.get(
101
- 'https://api.tomorrow.io/v4/weather/realtime', params=params
102
- )
103
- r.raise_for_status()
104
- data = r.json()
105
- span.set_attribute('response', data)
106
-
107
- values = data['data']['values']
108
- # https://docs.tomorrow.io/reference/data-layers-weather-codes
109
- code_lookup = {
110
- 1000: 'Clear, Sunny',
111
- 1100: 'Mostly Clear',
112
- 1101: 'Partly Cloudy',
113
- 1102: 'Mostly Cloudy',
114
- 1001: 'Cloudy',
115
- 2000: 'Fog',
116
- 2100: 'Light Fog',
117
- 4000: 'Drizzle',
118
- 4001: 'Rain',
119
- 4200: 'Light Rain',
120
- 4201: 'Heavy Rain',
121
- 5000: 'Snow',
122
- 5001: 'Flurries',
123
- 5100: 'Light Snow',
124
- 5101: 'Heavy Snow',
125
- 6000: 'Freezing Drizzle',
126
- 6001: 'Freezing Rain',
127
- 6200: 'Light Freezing Rain',
128
- 6201: 'Heavy Freezing Rain',
129
- 7000: 'Ice Pellets',
130
- 7101: 'Heavy Ice Pellets',
131
- 7102: 'Light Ice Pellets',
132
- 8000: 'Thunderstorm',
133
- }
134
- return {
135
- 'temperature': f'{values["temperatureApparent"]:0.0f}°C',
136
- 'description': code_lookup.get(values['weatherCode'], 'Unknown'),
137
- }
138
-
139
-
140
- async def main():
141
- async with AsyncClient() as client:
142
- logfire.instrument_httpx(client, capture_all=True)
143
- # create a free API key at https://www.tomorrow.io/weather-api/
144
- weather_api_key = os.getenv('WEATHER_API_KEY')
145
- # create a free API key at https://www.mapbox.com/
146
- geo_api_key = os.getenv('GEO_API_KEY')
147
- deps = Deps(
148
- client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key
149
- )
150
- result = await weather_agent.run(
151
- 'What is the weather like in London and in Wiltshire?', deps=deps
152
- )
153
- debug(result)
154
- print('Response:', result.output)
155
-
156
-
157
- if __name__ == '__main__':
158
- asyncio.run(main())