pycoustic 0.1.6__tar.gz → 0.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pycoustic-0.1.6 → pycoustic-0.1.7}/PKG-INFO +14 -6
- {pycoustic-0.1.6 → pycoustic-0.1.7}/README.md +10 -4
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pycoustic/weather.py +2 -2
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pyproject.toml +4 -2
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pycoustic/__init__.py +0 -0
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pycoustic/log.py +0 -0
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pycoustic/survey.py +0 -0
- {pycoustic-0.1.6 → pycoustic-0.1.7}/pycoustic/tkgui.py +0 -0
@@ -1,17 +1,19 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pycoustic
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.7
|
4
4
|
Summary:
|
5
5
|
Author: thumpercastle
|
6
6
|
Author-email: tony.ryb@gmail.com
|
7
|
-
Requires-Python: >=3.
|
7
|
+
Requires-Python: >=3.11.9,<4.0
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
9
9
|
Classifier: Programming Language :: Python :: 3.12
|
10
10
|
Classifier: Programming Language :: Python :: 3.13
|
11
11
|
Requires-Dist: numpy (==2.2.6)
|
12
12
|
Requires-Dist: openpyxl (==3.1.5)
|
13
13
|
Requires-Dist: pandas (==2.2.3)
|
14
|
+
Requires-Dist: plotly (==6.1.2)
|
14
15
|
Requires-Dist: requests (>=2.32.4,<3.0.0)
|
16
|
+
Requires-Dist: streamlit (>=1.46.1,<2.0.0)
|
15
17
|
Description-Content-Type: text/markdown
|
16
18
|
|
17
19
|
# pycoustic - Toolkit for Analysing Noise Survey Data
|
@@ -70,6 +72,7 @@ pip install pycoustic
|
|
70
72
|
```
|
71
73
|
4. **Analyse the Survey Data**
|
72
74
|
The following are methods of the Survey() object representing the typical use cases for acoustic consultants in the UK.
|
75
|
+
|
73
76
|
### Survey.resi_summary()
|
74
77
|
This method provides a summary of the measurement data for residential projects, with a focus on typical assessment procedures in the UK.
|
75
78
|
It presents A-weighted Leqs for each day and night period (and evenings, if enabled), as well as the nth-highest LAmax during each night-time period.
|
@@ -79,21 +82,26 @@ pip install pycoustic
|
|
79
82
|
**lmax_n** *Int* *(default 10)* The nth-highest value to present.\
|
80
83
|
**lmax_t** *Str* *(default "2min")* The time period T over which Lmaxes are presented. This must be equal to or longer than the period of the raw data.
|
81
84
|
|
82
|
-
## Survey.
|
85
|
+
## Survey.modal()
|
83
86
|
Compute the modal L90 for daytime, evening (if enabled) and night-time periods. By default, this is set to T=60min for (23:00 to 07:00) periods, and T=15min for night-time (23:00 to 07:00) periods, as per BS 4142:2014.
|
84
87
|
|
88
|
+
## Survey.counts()
|
89
|
+
Returns the L90 counts for daytime, evening and night-time periods. You can also choose to include other columns.
|
90
|
+
|
85
91
|
## Survey.lmax_spectra()
|
86
92
|
Compute the Lmax Event spectra for the nth-highest Lmax during each night-time period.\
|
87
93
|
**Note** the date presented alongside the Lmax event is actually the starting date of the night-time period. i.e. an Lmax event with a stamp of 20/12/2024 at 01:22 would actually have occurred on 21/12/2024 at 01:22. These stamps can also sometimes be out by a minute (known bug).
|
88
94
|
|
89
|
-
## Survey.
|
95
|
+
## Survey.leq_spectra()
|
90
96
|
Compute the Leq spectra for daytime, evening (if enabled) and night-time periods. This will present the overall Leqs across the survey, not the Leq for each day.
|
91
|
-
|
97
|
+
|
92
98
|
## Survey.weather()
|
93
99
|
Returns a pandas dataframe of the weather history over the course of your survey.
|
94
100
|
Requires an **api_key** argument. This method makes a call to the OpenWeatherMap OneCall API (see https://openweathermap.org/api). You need to sign up and pass your API key as a string to the weather() method.
|
95
101
|
|
96
|
-
|
102
|
+
## Survey.weather_summary()
|
103
|
+
Returns a pandas dataframe summary of the weather history, comprising maximum, minimum and mean values.
|
104
|
+
You must have called Survey.weather() at least once before to get the summary.
|
97
105
|
|
98
106
|
### Other methods
|
99
107
|
### Known issues
|
@@ -54,6 +54,7 @@ pip install pycoustic
|
|
54
54
|
```
|
55
55
|
4. **Analyse the Survey Data**
|
56
56
|
The following are methods of the Survey() object representing the typical use cases for acoustic consultants in the UK.
|
57
|
+
|
57
58
|
### Survey.resi_summary()
|
58
59
|
This method provides a summary of the measurement data for residential projects, with a focus on typical assessment procedures in the UK.
|
59
60
|
It presents A-weighted Leqs for each day and night period (and evenings, if enabled), as well as the nth-highest LAmax during each night-time period.
|
@@ -63,21 +64,26 @@ pip install pycoustic
|
|
63
64
|
**lmax_n** *Int* *(default 10)* The nth-highest value to present.\
|
64
65
|
**lmax_t** *Str* *(default "2min")* The time period T over which Lmaxes are presented. This must be equal to or longer than the period of the raw data.
|
65
66
|
|
66
|
-
## Survey.
|
67
|
+
## Survey.modal()
|
67
68
|
Compute the modal L90 for daytime, evening (if enabled) and night-time periods. By default, this is set to T=60min for (23:00 to 07:00) periods, and T=15min for night-time (23:00 to 07:00) periods, as per BS 4142:2014.
|
68
69
|
|
70
|
+
## Survey.counts()
|
71
|
+
Returns the L90 counts for daytime, evening and night-time periods. You can also choose to include other columns.
|
72
|
+
|
69
73
|
## Survey.lmax_spectra()
|
70
74
|
Compute the Lmax Event spectra for the nth-highest Lmax during each night-time period.\
|
71
75
|
**Note** the date presented alongside the Lmax event is actually the starting date of the night-time period. i.e. an Lmax event with a stamp of 20/12/2024 at 01:22 would actually have occurred on 21/12/2024 at 01:22. These stamps can also sometimes be out by a minute (known bug).
|
72
76
|
|
73
|
-
## Survey.
|
77
|
+
## Survey.leq_spectra()
|
74
78
|
Compute the Leq spectra for daytime, evening (if enabled) and night-time periods. This will present the overall Leqs across the survey, not the Leq for each day.
|
75
|
-
|
79
|
+
|
76
80
|
## Survey.weather()
|
77
81
|
Returns a pandas dataframe of the weather history over the course of your survey.
|
78
82
|
Requires an **api_key** argument. This method makes a call to the OpenWeatherMap OneCall API (see https://openweathermap.org/api). You need to sign up and pass your API key as a string to the weather() method.
|
79
83
|
|
80
|
-
|
84
|
+
## Survey.weather_summary()
|
85
|
+
Returns a pandas dataframe summary of the weather history, comprising maximum, minimum and mean values.
|
86
|
+
You must have called Survey.weather() at least once before to get the summary.
|
81
87
|
|
82
88
|
### Other methods
|
83
89
|
### Known issues
|
@@ -1,16 +1,18 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "pycoustic"
|
3
|
-
version = "0.1.
|
3
|
+
version = "0.1.7"
|
4
4
|
description = ""
|
5
5
|
authors = ["thumpercastle <tony.ryb@gmail.com>"]
|
6
6
|
readme = "README.md"
|
7
7
|
|
8
8
|
[tool.poetry.dependencies]
|
9
|
-
python = ">=3.
|
9
|
+
python = ">=3.11.9, <4.0"
|
10
10
|
pandas = "2.2.3"
|
11
11
|
numpy = "2.2.6"
|
12
12
|
openpyxl = "3.1.5"
|
13
13
|
requests = "^2.32.4"
|
14
|
+
plotly = "6.1.2"
|
15
|
+
streamlit = "^1.46.1"
|
14
16
|
|
15
17
|
|
16
18
|
[build-system]
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|