pycompound 0.1.2__tar.gz → 0.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. {pycompound-0.1.2/src/pycompound.egg-info → pycompound-0.1.3}/PKG-INFO +1 -1
  2. {pycompound-0.1.2 → pycompound-0.1.3}/pyproject.toml +1 -1
  3. {pycompound-0.1.2 → pycompound-0.1.3}/src/app.py +9 -2
  4. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/plot_spectra.py +15 -10
  5. {pycompound-0.1.2 → pycompound-0.1.3/src/pycompound.egg-info}/PKG-INFO +1 -1
  6. {pycompound-0.1.2 → pycompound-0.1.3}/LICENSE +0 -0
  7. {pycompound-0.1.2 → pycompound-0.1.3}/README.md +0 -0
  8. {pycompound-0.1.2 → pycompound-0.1.3}/setup.cfg +0 -0
  9. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/build_library.py +0 -0
  10. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/plot_spectra_CLI.py +0 -0
  11. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/processing.py +0 -0
  12. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/similarity_measures.py +0 -0
  13. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/spec_lib_matching.py +0 -0
  14. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/spec_lib_matching_CLI.py +0 -0
  15. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound/tuning_CLI.py +0 -0
  16. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound.egg-info/SOURCES.txt +0 -0
  17. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound.egg-info/dependency_links.txt +0 -0
  18. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound.egg-info/requires.txt +0 -0
  19. {pycompound-0.1.2 → pycompound-0.1.3}/src/pycompound.egg-info/top_level.txt +0 -0
  20. {pycompound-0.1.2 → pycompound-0.1.3}/tests/test_build_library.py +0 -0
  21. {pycompound-0.1.2 → pycompound-0.1.3}/tests/test_plot_spectra.py +0 -0
  22. {pycompound-0.1.2 → pycompound-0.1.3}/tests/test_similarity_measures.py +0 -0
  23. {pycompound-0.1.2 → pycompound-0.1.3}/tests/test_spec_lib_matching.py +0 -0
  24. {pycompound-0.1.2 → pycompound-0.1.3}/tests/test_tuning.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pycompound
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: Python package to perform compound identification in mass spectrometry via spectral library matching.
5
5
  Author-email: Hunter Dlugas <fy7392@wayne.edu>
6
6
  License-Expression: MIT
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "pycompound"
7
- version = "0.1.2"
7
+ version = "0.1.3"
8
8
  authors = [
9
9
  { name="Hunter Dlugas", email="fy7392@wayne.edu" },
10
10
  ]
@@ -884,11 +884,18 @@ def server(input, output, session):
884
884
  weights = [float(weight.strip()) for weight in input.weights().split(",") if weight.strip()]
885
885
  weights = {'Cosine':weights[0], 'Shannon':weights[1], 'Renyi':weights[2], 'Tsallis':weights[3]}
886
886
 
887
+ high_quality_reference_library_tmp2 = False
888
+ if input.high_quality_reference_library() != 'False':
889
+ high_quality_reference_library_tmp2 = True
890
+
891
+ print(input.high_quality_reference_library())
892
+ print(high_quality_reference_library_tmp2)
893
+
887
894
  if input.chromatography_platform() == "HRMS":
888
- fig = generate_plots_on_HRMS_data(query_data=input.query_data()[0]['datapath'], reference_data=input.reference_data()[0]['datapath'], spectrum_ID1=spectrum_ID1, spectrum_ID2=spectrum_ID2, similarity_measure=input.similarity_measure(), weights=weights, spectrum_preprocessing_order=input.spectrum_preprocessing_order(), high_quality_reference_library=input.high_quality_reference_library(), mz_min=input.mz_min(), mz_max=input.mz_max(), int_min=input.int_min(), int_max=input.int_max(), window_size_centroiding=input.window_size_centroiding(), window_size_matching=input.window_size_matching(), noise_threshold=input.noise_threshold(), wf_mz=input.wf_mz(), wf_intensity=input.wf_int(), LET_threshold=input.LET_threshold(), entropy_dimension=input.entropy_dimension(), y_axis_transformation=input.y_axis_transformation(), return_plot=True)
895
+ fig = generate_plots_on_HRMS_data(query_data=input.query_data()[0]['datapath'], reference_data=input.reference_data()[0]['datapath'], spectrum_ID1=spectrum_ID1, spectrum_ID2=spectrum_ID2, similarity_measure=input.similarity_measure(), weights=weights, spectrum_preprocessing_order=input.spectrum_preprocessing_order(), high_quality_reference_library=high_quality_reference_library_tmp2, mz_min=input.mz_min(), mz_max=input.mz_max(), int_min=input.int_min(), int_max=input.int_max(), window_size_centroiding=input.window_size_centroiding(), window_size_matching=input.window_size_matching(), noise_threshold=input.noise_threshold(), wf_mz=input.wf_mz(), wf_intensity=input.wf_int(), LET_threshold=input.LET_threshold(), entropy_dimension=input.entropy_dimension(), y_axis_transformation=input.y_axis_transformation(), return_plot=True)
889
896
  plt.show()
890
897
  elif input.chromatography_platform() == "NRMS":
891
- fig = generate_plots_on_NRMS_data(query_data=input.query_data()[0]['datapath'], reference_data=input.reference_data()[0]['datapath'], spectrum_ID1=spectrum_ID1, spectrum_ID2=spectrum_ID2, similarity_measure=input.similarity_measure(), spectrum_preprocessing_order=input.spectrum_preprocessing_order(), high_quality_reference_library=input.high_quality_reference_library(), mz_min=input.mz_min(), mz_max=input.mz_max(), int_min=input.int_min(), int_max=input.int_max(), noise_threshold=input.noise_threshold(), wf_mz=input.wf_mz(), wf_intensity=input.wf_int(), LET_threshold=input.LET_threshold(), entropy_dimension=input.entropy_dimension(), y_axis_transformation=input.y_axis_transformation(), return_plot=True)
898
+ fig = generate_plots_on_NRMS_data(query_data=input.query_data()[0]['datapath'], reference_data=input.reference_data()[0]['datapath'], spectrum_ID1=spectrum_ID1, spectrum_ID2=spectrum_ID2, similarity_measure=input.similarity_measure(), spectrum_preprocessing_order=input.spectrum_preprocessing_order(), high_quality_reference_library=high_quality_reference_library_tmp2, mz_min=input.mz_min(), mz_max=input.mz_max(), int_min=input.int_min(), int_max=input.int_max(), noise_threshold=input.noise_threshold(), wf_mz=input.wf_mz(), wf_intensity=input.wf_int(), LET_threshold=input.LET_threshold(), entropy_dimension=input.entropy_dimension(), y_axis_transformation=input.y_axis_transformation(), return_plot=True)
892
899
  plt.show()
893
900
  with io.BytesIO() as buf:
894
901
  fig.savefig(buf, format="png", dpi=150, bbox_inches="tight")
@@ -92,8 +92,8 @@ def generate_plots_on_HRMS_data(query_data=None, reference_data=None, spectrum_I
92
92
  print(f'Error: spectrum_preprocessing_order must contain only \'C\', \'F\', \'M\', \'N\', \'L\', \'W\'.')
93
93
  sys.exit()
94
94
 
95
- if similarity_measure not in ['cosine','shannon','renyi','tsallis','mixture','jaccard','dice','3w_jaccard','sokal_sneath','binary_cosine','mountford','mcconnaughey','driver_kroeber','simpson','braun_banquet','fager_mcgowan','kulczynski','interection','hamming','hellinger']:
96
- print('\nError: similarity_measure must be either cosine, shannon, renyi, tsallis, mixture, jaccard, dice, 3w_jaccard, sokal_sneath, binary_cosine, mountford, mcconnaughey, driver_kroeber, simpson, braun_banquet, fager_mcgowan, kulczynski, interection, hamming, or hellinger.')
95
+ if similarity_measure not in ['cosine','shannon','renyi','tsallis','mixture','jaccard','dice','3w_jaccard','sokal_sneath','binary_cosine','mountford','mcconnaughey','driver_kroeber','simpson','braun_banquet','fager_mcgowan','kulczynski','intersection','hamming','hellinger']:
96
+ print('\nError: similarity_measure must be either cosine, shannon, renyi, tsallis, mixture, jaccard, dice, 3w_jaccard, sokal_sneath, binary_cosine, mountford, mcconnaughey, driver_kroeber, simpson, braun_banquet, fager_mcgowan, kulczynski, intersection, hamming, or hellinger.')
97
97
  sys.exit()
98
98
 
99
99
  if isinstance(int_min,int) is True:
@@ -243,10 +243,12 @@ def generate_plots_on_HRMS_data(query_data=None, reference_data=None, spectrum_I
243
243
  r_spec[:,1] = LE_transform(r_spec[:,1], LET_threshold, normalization_method=normalization_method)
244
244
  if transformation == 'N' and q_spec.shape[0] > 1 and r_spec.shape[1] > 1:
245
245
  q_spec = remove_noise(q_spec, nr = noise_threshold)
246
- r_spec = remove_noise(r_spec, nr = noise_threshold)
246
+ if high_quality_reference_library == False or high_quality_reference_library == 'False':
247
+ r_spec = remove_noise(r_spec, nr = noise_threshold)
247
248
  if transformation == 'F' and q_spec.shape[0] > 1 and r_spec.shape[1] > 1:
248
249
  q_spec = filter_spec_lcms(q_spec, mz_min = mz_min, mz_max = mz_max, int_min = int_min, int_max = int_max, is_matched = is_matched)
249
- r_spec = filter_spec_lcms(r_spec, mz_min = mz_min, mz_max = mz_max, int_min = int_min, int_max = int_max, is_matched = is_matched)
250
+ if high_quality_reference_library == False or high_quality_reference_library == 'False':
251
+ r_spec = filter_spec_lcms(r_spec, mz_min = mz_min, mz_max = mz_max, int_min = int_min, int_max = int_max, is_matched = is_matched)
250
252
 
251
253
  q_ints = q_spec[:,1]
252
254
  r_ints = r_spec[:,1]
@@ -291,12 +293,15 @@ def generate_plots_on_HRMS_data(query_data=None, reference_data=None, spectrum_I
291
293
  plt.yticks([])
292
294
 
293
295
 
296
+ print('\n\n\n')
297
+ print(high_quality_reference_library)
298
+ print('\n\n\n')
294
299
  plt.subplots_adjust(top=0.8, hspace=0.92, bottom=0.3)
295
300
  plt.figlegend(loc = 'upper center')
296
301
  fig.text(0.05, 0.18, f'Similarity Measure: {similarity_measure.capitalize()}', fontsize=7)
297
302
  fig.text(0.05, 0.15, f'Similarity Score: {round(similarity_score,4)}', fontsize=7)
298
303
  fig.text(0.05, 0.12, f"Spectrum Preprocessing Order: {''.join(spectrum_preprocessing_order)}", fontsize=7)
299
- fig.text(0.05, 0.09, f'High Quality Reference Library: {high_quality_reference_library}', fontsize=7)
304
+ fig.text(0.05, 0.09, f'High Quality Reference Library: {str(high_quality_reference_library)}', fontsize=7)
300
305
  fig.text(0.05, 0.06, f'Window Size (Centroiding): {window_size_centroiding}', fontsize=7)
301
306
  fig.text(0.05, 0.03, f'Window Size (Matching): {window_size_matching}', fontsize=7)
302
307
  fig.text(0.45, 0.18, f'Raw-Scale M/Z Range: [{mz_min_tmp},{mz_max_tmp}]', fontsize=7)
@@ -387,8 +392,8 @@ def generate_plots_on_NRMS_data(query_data=None, reference_data=None, spectrum_I
387
392
  print(f'Error: spectrum_preprocessing_order must contain only \'F\', \'N\', \'W\', \'L\'.')
388
393
  sys.exit()
389
394
 
390
- if similarity_measure not in ['cosine','shannon','renyi','tsallis','mixture','jaccard','dice','3w_jaccard','sokal_sneath','binary_cosine','mountford','mcconnaughey','driver_kroeber','simpson','braun_banquet','fager_mcgowan','kulczynski','interection','hamming','hellinger']:
391
- print('\nError: similarity_measure must be either cosine, shannon, renyi, tsallis, mixture, jaccard, dice, 3w_jaccard, sokal_sneath, binary_cosine, mountford, mcconnaughey, driver_kroeber, simpson, braun_banquet, fager_mcgowan, kulczynski, interection, hamming, or hellinger.')
395
+ if similarity_measure not in ['cosine','shannon','renyi','tsallis','mixture','jaccard','dice','3w_jaccard','sokal_sneath','binary_cosine','mountford','mcconnaughey','driver_kroeber','simpson','braun_banquet','fager_mcgowan','kulczynski','intersection','hamming','hellinger']:
396
+ print('\nError: similarity_measure must be either cosine, shannon, renyi, tsallis, mixture, jaccard, dice, 3w_jaccard, sokal_sneath, binary_cosine, mountford, mcconnaughey, driver_kroeber, simpson, braun_banquet, fager_mcgowan, kulczynski, intersection, hamming, or hellinger.')
392
397
  sys.exit()
393
398
 
394
399
  if isinstance(int_min,int) is True:
@@ -528,11 +533,11 @@ def generate_plots_on_NRMS_data(query_data=None, reference_data=None, spectrum_I
528
533
  r_spec[:,1] = LE_transform(r_spec[:,1], LET_threshold, normalization_method)
529
534
  if transformation == 'N':
530
535
  q_spec = remove_noise(q_spec, nr = noise_threshold)
531
- if high_quality_reference_library == False:
536
+ if high_quality_reference_library == False or high_quality_reference_library == 'False':
532
537
  r_spec = remove_noise(r_spec, nr = noise_threshold)
533
538
  if transformation == 'F':
534
539
  q_spec = filter_spec_gcms(q_spec, mz_min = mz_min, mz_max = mz_max, int_min = int_min, int_max = int_max)
535
- if high_quality_reference_library == False:
540
+ if high_quality_reference_library == False or high_quality_reference_library == 'False':
536
541
  r_spec = filter_spec_gcms(r_spec, mz_min = mz_min, mz_max = mz_max, int_min = int_min, int_max = int_max)
537
542
 
538
543
  if q_spec.shape[0] > 1:
@@ -580,7 +585,7 @@ def generate_plots_on_NRMS_data(query_data=None, reference_data=None, spectrum_I
580
585
  fig.text(0.05, 0.15, f'Similarity Measure: {similarity_measure.capitalize()}', fontsize=7)
581
586
  fig.text(0.05, 0.12, f'Similarity Score: {round(similarity_score,4)}', fontsize=7)
582
587
  fig.text(0.05, 0.09, f"Spectrum Preprocessing Order: {''.join(spectrum_preprocessing_order)}", fontsize=7)
583
- fig.text(0.05, 0.06, f'High Quality Reference Library: {high_quality_reference_library}', fontsize=7)
588
+ fig.text(0.05, 0.06, f'High Quality Reference Library: {str(high_quality_reference_library)}', fontsize=7)
584
589
  fig.text(0.05, 0.03, f'Raw-Scale M/Z Range: [{min_mz},{max_mz}]', fontsize=7)
585
590
  fig.text(0.45, 0.15, f'Raw-Scale Intensity Range: [{int_min_tmp},{int_max_tmp}]', fontsize=7)
586
591
  fig.text(0.45, 0.12, f'Noise Threshold: {noise_threshold}', fontsize=7)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pycompound
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: Python package to perform compound identification in mass spectrometry via spectral library matching.
5
5
  Author-email: Hunter Dlugas <fy7392@wayne.edu>
6
6
  License-Expression: MIT
File without changes
File without changes
File without changes