pyTEMlib 0.2024.2.0__tar.gz → 0.2024.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyTEMlib might be problematic. Click here for more details.

Files changed (44) hide show
  1. pyTEMlib-0.2024.2.2/PKG-INFO +78 -0
  2. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/file_tools.py +5 -4
  3. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/image_tools.py +73 -13
  4. pyTEMlib-0.2024.2.2/pyTEMlib/version.py +6 -0
  5. pyTEMlib-0.2024.2.2/pyTEMlib.egg-info/PKG-INFO +78 -0
  6. pyTEMlib-0.2024.2.0/PKG-INFO +0 -75
  7. pyTEMlib-0.2024.2.0/pyTEMlib/version.py +0 -6
  8. pyTEMlib-0.2024.2.0/pyTEMlib.egg-info/PKG-INFO +0 -75
  9. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/LICENSE +0 -0
  10. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/MANIFEST.in +0 -0
  11. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/README.rst +0 -0
  12. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/__init__.py +0 -0
  13. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/animation.py +0 -0
  14. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/atom_tools.py +0 -0
  15. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/config_dir.py +0 -0
  16. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/crystal_tools.py +0 -0
  17. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/diffraction_plot.py +0 -0
  18. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/dynamic_scattering.py +0 -0
  19. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/eds_tools.py +0 -0
  20. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/eels_dialog.py +0 -0
  21. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/eels_dialog_utilities.py +0 -0
  22. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/eels_tools.py +0 -0
  23. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/file_tools_qt.py +0 -0
  24. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/graph_tools.py +0 -0
  25. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/graph_viz.py +0 -0
  26. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/image_dialog.py +0 -0
  27. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/image_dlg.py +0 -0
  28. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/info_widget.py +0 -0
  29. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/interactive_image.py +0 -0
  30. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/kinematic_scattering.py +0 -0
  31. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/microscope.py +0 -0
  32. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/peak_dialog.py +0 -0
  33. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/peak_dlg.py +0 -0
  34. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/probe_tools.py +0 -0
  35. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/sidpy_tools.py +0 -0
  36. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/simulation_tools.py +0 -0
  37. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib/xrpa_x_sections.py +0 -0
  38. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib.egg-info/SOURCES.txt +0 -0
  39. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib.egg-info/dependency_links.txt +0 -0
  40. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib.egg-info/entry_points.txt +0 -0
  41. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib.egg-info/requires.txt +0 -0
  42. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/pyTEMlib.egg-info/top_level.txt +0 -0
  43. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/setup.cfg +0 -0
  44. {pyTEMlib-0.2024.2.0 → pyTEMlib-0.2024.2.2}/setup.py +0 -0
@@ -0,0 +1,78 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyTEMlib
3
+ Version: 0.2024.2.2
4
+ Summary: pyTEM: TEM Data Quantification library through a model-based approach
5
+ Home-page: https://pycroscopy.github.io/pyTEMlib/about.html
6
+ Author: Gerd Duscher
7
+ Author-email: gduscher@utk.edu
8
+ License: MIT
9
+ Keywords: imaging,spectra,transmission,electron,microscopy,scientific,scanning,eels,visualization,processing,storage,hdf5,diffraction
10
+ Platform: Linux
11
+ Platform: Mac OSX
12
+ Platform: Windows 11/10
13
+ Classifier: Development Status :: 2 - Pre-Alpha
14
+ Classifier: Environment :: Console
15
+ Classifier: Intended Audience :: Science/Research
16
+ Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Natural Language :: English
18
+ Classifier: Operating System :: OS Independent
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3
21
+ Classifier: Programming Language :: Python :: 3.8
22
+ Classifier: Programming Language :: Python :: 3.9
23
+ Classifier: Programming Language :: Python :: 3.10
24
+ Classifier: Programming Language :: Python :: 3.11
25
+ Classifier: Programming Language :: Python :: Implementation :: CPython
26
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
27
+ License-File: LICENSE
28
+
29
+ pyTEMlib
30
+ ========
31
+
32
+ .. image:: https://github.com/pycroscopy/pyTEMlib/workflows/build/badge.svg?branch=master
33
+ :target: https://github.com/pycroscopy/pyTEMlib/actions?query=workflow%3Abuild
34
+ :alt: GitHub Actions
35
+
36
+ .. image:: https://img.shields.io/pypi/v/pyTEMlib.svg
37
+ :target: https://pypi.org/project/pyTEMlib/
38
+ :alt: PyPI
39
+
40
+ .. image:: https://img.shields.io/conda/vn/conda-forge/pyTEMlib.svg
41
+ :target: https://github.com/conda-forge/pyTEMlib-feedstock
42
+ :alt: conda-forge
43
+
44
+ .. image:: https://codecov.io/gh/pycroscopy/pyTEMlib/branch/master/graph/badge.svg?token=
45
+ :target: https://codecov.io/gh/pycroscopy/pyTEMlib
46
+ :alt: CodeCov
47
+
48
+ .. image:: https://img.shields.io/pypi/l/pyTEMlib.svg
49
+ :target: https://pypi.org/project/pyTEMlib/
50
+ :alt: License
51
+
52
+ .. image:: http://pepy.tech/badge/pyTEMlib
53
+ :target: http://pepy.tech/project/pyTEMlib
54
+ :alt: Downloads
55
+
56
+ .. image:: https://zenodo.org/badge/138171750.svg
57
+ :target: https://zenodo.org/badge/latestdoi/138171750
58
+ :alt: DOI
59
+
60
+ pyTEMlib is a package to read and process various kind of data acquired with a (scanning) transmission electron microscope (STEM).
61
+
62
+ The package is written in pure python and depends on various other libraries.
63
+
64
+ All data, user input, and results are stored as `NSID-formatted <https://pycroscopy.github.io/pyNSID/nsid.html>`_ HDF5 files.
65
+
66
+ The data are all presented as `sidpy.Dataset <https://pycroscopy.github.io/sidpy/notebooks/00_basic_usage/create_dataset.html>`_ objects
67
+
68
+ Install pyTEMlib via pip as:
69
+
70
+ ``python3 -m pip install pyTEMlib``
71
+
72
+ or via conda:
73
+
74
+ ``conda install pyTEMlib -c conda-forge``
75
+
76
+ These installation options are also available in the `example notebooks <https://github.com/pycroscopy/pyTEMlib/notebooks>`_
77
+
78
+
@@ -82,11 +82,12 @@ class FileWidget(ipywidgets.DOMWidget):
82
82
 
83
83
  """
84
84
 
85
- def __init__(self, dir_name=None, extension=['*']):
85
+ def __init__(self, dir_name=None, extension=['*'], sum_frames=False):
86
86
  self.save_path = False
87
87
  self.dir_dictionary = {}
88
88
  self.dir_list = ['.', '..']
89
89
  self.display_list = ['.', '..']
90
+ self.sum_frames = sum_frames
90
91
 
91
92
  self.dir_name = '.'
92
93
  if dir_name is None:
@@ -148,7 +149,7 @@ class FileWidget(ipywidgets.DOMWidget):
148
149
  self.datasets = {}
149
150
  #self.loaded_datasets.value = self.dataset_list[0]
150
151
  self.dataset_list = []
151
- self.datasets = open_file(self.file_name)
152
+ self.datasets = open_file(self.file_name, sum_frames=self.sum_frames)
152
153
  self.dataset_list = []
153
154
  for key in self.datasets.keys():
154
155
  self.dataset_list.append(f'{key}: {self.datasets[key].title}')
@@ -593,7 +594,7 @@ def h5_group_to_dict(group, group_dict={}):
593
594
  return group_dict
594
595
 
595
596
 
596
- def open_file(filename=None, h5_group=None, write_hdf_file=False): # save_file=False,
597
+ def open_file(filename=None, h5_group=None, write_hdf_file=False, sum_frames=False): # save_file=False,
597
598
  """Opens a file if the extension is .hf5, .ndata, .dm3 or .dm4
598
599
 
599
600
  If no filename is provided the QT open_file windows opens (if QT_available==True)
@@ -680,7 +681,7 @@ def open_file(filename=None, h5_group=None, write_hdf_file=False): # save_file
680
681
  print('This file type needs hyperspy to be installed to be able to be read')
681
682
  return
682
683
  elif extension == '.emd':
683
- reader = SciFiReaders.EMDReader(filename)
684
+ reader = SciFiReaders.EMDReader(filename, sum_frames=sum_frames)
684
685
 
685
686
  elif 'edax' in extension.lower():
686
687
  if 'h5' in extension:
@@ -731,15 +731,27 @@ class LineSelector(matplotlib.widgets.PolygonSelector):
731
731
  self.line_verts[moved_point] = self.new_point
732
732
  self.set_linewidth()
733
733
 
734
- def get_profile(dataset, line):
734
+ def get_profile(dataset, line, spline_order=-1):
735
+ """
736
+ This function extracts a line profile from a given dataset. The line profile is a representation of the data values
737
+ along a specified line in the dataset. This function works for both image and spectral image data types.
738
+
739
+ Args:
740
+ dataset (sidpy.Dataset): The input dataset from which to extract the line profile.
741
+ line (list): A list specifying the line along which the profile should be extracted.
742
+ spline_order (int, optional): The order of the spline interpolation to use. Default is -1, which means no interpolation.
743
+
744
+ Returns:
745
+ profile_dataset (sidpy.Dataset): A new sidpy.Dataset containing the line profile.
746
+
747
+
748
+ """
735
749
  xv, yv = get_line_selection_points(line)
736
-
737
-
738
750
  if dataset.data_type.name == 'IMAGE':
739
751
  dataset.get_image_dims()
740
752
  xv /= (dataset.x[1] - dataset.x[0])
741
753
  yv /= (dataset.y[1] - dataset.y[0])
742
- profile = scipy.ndimage.map_coordinates(np.array(dataset), [xv,yv])
754
+ profile = scipy.ndimage.map_coordinates(np.array(dataset), [xv, yv])
743
755
 
744
756
  profile_dataset = sidpy.Dataset.from_array(profile.sum(axis=0))
745
757
  profile_dataset.data_type='spectrum'
@@ -753,19 +765,21 @@ def get_profile(dataset, line):
753
765
 
754
766
  if dataset.data_type.name == 'SPECTRAL_IMAGE':
755
767
  spectral_axis = dataset.get_spectral_dims(return_axis=True)[0]
756
- profile = np.zeros([xv.shape[1], 2, len(spectral_axis)])
757
- data =np.array(dataset)
758
-
759
- for index_x in range(xv.shape[1]):
760
- for index_y in range(xv.shape[0]):
761
- x = xv[index_y, index_x]
762
- y = yv[index_y, index_x]
763
- profile[index_x, 0] +=data[int(x),int(y)]
768
+ if spline_order > -1:
769
+ xv, yv, zv = get_line_selection_points_interpolated(line, z_length=dataset.shape[2])
770
+ profile = scipy.ndimage.map_coordinates(np.array(dataset), [xv, yv, zv], order=spline_order)
771
+ profile = profile.sum(axis=0)
772
+ profile = np.stack([profile, profile], axis=1)
773
+ start = xv[0, 0, 0]
774
+ else:
775
+ profile = get_line_profile(np.array(dataset), xv, yv, len(spectral_axis))
776
+ start = xv[0, 0]
777
+ print(profile.shape)
764
778
  profile_dataset = sidpy.Dataset.from_array(profile)
765
779
  profile_dataset.data_type='spectral_image'
766
780
  profile_dataset.units = dataset.units
767
781
  profile_dataset.quantity = dataset.quantity
768
- profile_dataset.set_dimension(0, sidpy.Dimension(np.linspace(xv[0,0], xv[-1,-1], profile_dataset.shape[0]),
782
+ profile_dataset.set_dimension(0, sidpy.Dimension(np.arange(profile_dataset.shape[0])+start,
769
783
  name='x', units=dataset.x.units, quantity=dataset.x.quantity,
770
784
  dimension_type='spatial'))
771
785
  profile_dataset.set_dimension(1, sidpy.Dimension([0, 1],
@@ -776,6 +790,42 @@ def get_profile(dataset, line):
776
790
  return profile_dataset
777
791
 
778
792
 
793
+
794
+ def get_line_selection_points_interpolated(line, z_length=1):
795
+
796
+ start_point = line.line_verts[3]
797
+ right_point = line.line_verts[0]
798
+ low_point = line.line_verts[2]
799
+
800
+ if start_point[0] > right_point[0]:
801
+ start_point = line.line_verts[0]
802
+ right_point = line.line_verts[3]
803
+ low_point = line.line_verts[1]
804
+ m = (right_point[1] - start_point[1]) / (right_point[0] - start_point[0])
805
+ length_x = int(abs(start_point[0]-right_point[0]))
806
+ length_v = int(np.linalg.norm(start_point-right_point))
807
+
808
+ linewidth = int(abs(start_point[1]-low_point[1]))
809
+ x = np.linspace(0,length_x, length_v)
810
+ y = np.linspace(0,linewidth, line.line_width)
811
+ if z_length > 1:
812
+ z = np.linspace(0, z_length, z_length)
813
+ xv, yv, zv = np.meshgrid(x, y, np.arange(z_length))
814
+ x = np.atleast_2d(x).repeat(z_length, axis=0).T
815
+ y = np.atleast_2d(y).repeat(z_length, axis=0).T
816
+ else:
817
+ xv, yv = np.meshgrid(x, y)
818
+
819
+
820
+ yv = yv + x*m + start_point[1]
821
+ xv = (xv.swapaxes(0,1) -y*m ).swapaxes(0,1) + start_point[0]
822
+
823
+ if z_length > 1:
824
+ return xv, yv, zv
825
+ else:
826
+ return xv, yv
827
+
828
+
779
829
  def get_line_selection_points(line):
780
830
 
781
831
  start_point = line.line_verts[3]
@@ -801,6 +851,16 @@ def get_line_selection_points(line):
801
851
  return xx, yy
802
852
 
803
853
 
854
+ def get_line_profile(data, xv, yv, z_length):
855
+ profile = np.zeros([len(xv[0]), 2, z_length])
856
+ for index_x in range(xv.shape[1]):
857
+ for index_y in range(xv.shape[0]):
858
+ x = int(xv[index_y, index_x])
859
+ y = int(yv[index_y, index_x])
860
+ if x< data.shape[0] and x>0 and y < data.shape[1] and y>0:
861
+ profile[index_x, 0] +=data[x, y]
862
+ return profile
863
+
804
864
 
805
865
  def histogram_plot(image_tags):
806
866
  """interactive histogram"""
@@ -0,0 +1,6 @@
1
+ """
2
+ version
3
+ """
4
+ _version = '0.2024.02.2'
5
+ __version__ = _version
6
+ _time = '2024-02-26 19:58:26'
@@ -0,0 +1,78 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyTEMlib
3
+ Version: 0.2024.2.2
4
+ Summary: pyTEM: TEM Data Quantification library through a model-based approach
5
+ Home-page: https://pycroscopy.github.io/pyTEMlib/about.html
6
+ Author: Gerd Duscher
7
+ Author-email: gduscher@utk.edu
8
+ License: MIT
9
+ Keywords: imaging,spectra,transmission,electron,microscopy,scientific,scanning,eels,visualization,processing,storage,hdf5,diffraction
10
+ Platform: Linux
11
+ Platform: Mac OSX
12
+ Platform: Windows 11/10
13
+ Classifier: Development Status :: 2 - Pre-Alpha
14
+ Classifier: Environment :: Console
15
+ Classifier: Intended Audience :: Science/Research
16
+ Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Natural Language :: English
18
+ Classifier: Operating System :: OS Independent
19
+ Classifier: Programming Language :: Cython
20
+ Classifier: Programming Language :: Python :: 3
21
+ Classifier: Programming Language :: Python :: 3.8
22
+ Classifier: Programming Language :: Python :: 3.9
23
+ Classifier: Programming Language :: Python :: 3.10
24
+ Classifier: Programming Language :: Python :: 3.11
25
+ Classifier: Programming Language :: Python :: Implementation :: CPython
26
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
27
+ License-File: LICENSE
28
+
29
+ pyTEMlib
30
+ ========
31
+
32
+ .. image:: https://github.com/pycroscopy/pyTEMlib/workflows/build/badge.svg?branch=master
33
+ :target: https://github.com/pycroscopy/pyTEMlib/actions?query=workflow%3Abuild
34
+ :alt: GitHub Actions
35
+
36
+ .. image:: https://img.shields.io/pypi/v/pyTEMlib.svg
37
+ :target: https://pypi.org/project/pyTEMlib/
38
+ :alt: PyPI
39
+
40
+ .. image:: https://img.shields.io/conda/vn/conda-forge/pyTEMlib.svg
41
+ :target: https://github.com/conda-forge/pyTEMlib-feedstock
42
+ :alt: conda-forge
43
+
44
+ .. image:: https://codecov.io/gh/pycroscopy/pyTEMlib/branch/master/graph/badge.svg?token=
45
+ :target: https://codecov.io/gh/pycroscopy/pyTEMlib
46
+ :alt: CodeCov
47
+
48
+ .. image:: https://img.shields.io/pypi/l/pyTEMlib.svg
49
+ :target: https://pypi.org/project/pyTEMlib/
50
+ :alt: License
51
+
52
+ .. image:: http://pepy.tech/badge/pyTEMlib
53
+ :target: http://pepy.tech/project/pyTEMlib
54
+ :alt: Downloads
55
+
56
+ .. image:: https://zenodo.org/badge/138171750.svg
57
+ :target: https://zenodo.org/badge/latestdoi/138171750
58
+ :alt: DOI
59
+
60
+ pyTEMlib is a package to read and process various kind of data acquired with a (scanning) transmission electron microscope (STEM).
61
+
62
+ The package is written in pure python and depends on various other libraries.
63
+
64
+ All data, user input, and results are stored as `NSID-formatted <https://pycroscopy.github.io/pyNSID/nsid.html>`_ HDF5 files.
65
+
66
+ The data are all presented as `sidpy.Dataset <https://pycroscopy.github.io/sidpy/notebooks/00_basic_usage/create_dataset.html>`_ objects
67
+
68
+ Install pyTEMlib via pip as:
69
+
70
+ ``python3 -m pip install pyTEMlib``
71
+
72
+ or via conda:
73
+
74
+ ``conda install pyTEMlib -c conda-forge``
75
+
76
+ These installation options are also available in the `example notebooks <https://github.com/pycroscopy/pyTEMlib/notebooks>`_
77
+
78
+
@@ -1,75 +0,0 @@
1
- Metadata-Version: 1.1
2
- Name: pyTEMlib
3
- Version: 0.2024.2.0
4
- Summary: pyTEM: TEM Data Quantification library through a model-based approach
5
- Home-page: https://pycroscopy.github.io/pyTEMlib/about.html
6
- Author: Gerd Duscher
7
- Author-email: gduscher@utk.edu
8
- License: MIT
9
- Description: pyTEMlib
10
- ========
11
-
12
- .. image:: https://github.com/pycroscopy/pyTEMlib/workflows/build/badge.svg?branch=master
13
- :target: https://github.com/pycroscopy/pyTEMlib/actions?query=workflow%3Abuild
14
- :alt: GitHub Actions
15
-
16
- .. image:: https://img.shields.io/pypi/v/pyTEMlib.svg
17
- :target: https://pypi.org/project/pyTEMlib/
18
- :alt: PyPI
19
-
20
- .. image:: https://img.shields.io/conda/vn/conda-forge/pyTEMlib.svg
21
- :target: https://github.com/conda-forge/pyTEMlib-feedstock
22
- :alt: conda-forge
23
-
24
- .. image:: https://codecov.io/gh/pycroscopy/pyTEMlib/branch/master/graph/badge.svg?token=
25
- :target: https://codecov.io/gh/pycroscopy/pyTEMlib
26
- :alt: CodeCov
27
-
28
- .. image:: https://img.shields.io/pypi/l/pyTEMlib.svg
29
- :target: https://pypi.org/project/pyTEMlib/
30
- :alt: License
31
-
32
- .. image:: http://pepy.tech/badge/pyTEMlib
33
- :target: http://pepy.tech/project/pyTEMlib
34
- :alt: Downloads
35
-
36
- .. image:: https://zenodo.org/badge/138171750.svg
37
- :target: https://zenodo.org/badge/latestdoi/138171750
38
- :alt: DOI
39
-
40
- pyTEMlib is a package to read and process various kind of data acquired with a (scanning) transmission electron microscope (STEM).
41
-
42
- The package is written in pure python and depends on various other libraries.
43
-
44
- All data, user input, and results are stored as `NSID-formatted <https://pycroscopy.github.io/pyNSID/nsid.html>`_ HDF5 files.
45
-
46
- The data are all presented as `sidpy.Dataset <https://pycroscopy.github.io/sidpy/notebooks/00_basic_usage/create_dataset.html>`_ objects
47
-
48
- Install pyTEMlib via pip as:
49
-
50
- ``python3 -m pip install pyTEMlib``
51
-
52
- or via conda:
53
-
54
- ``conda install pyTEMlib -c conda-forge``
55
-
56
- These installation options are also available in the `example notebooks <https://github.com/pycroscopy/pyTEMlib/notebooks>`_
57
-
58
- Keywords: imaging,spectra,transmission,electron,microscopy,scientific,scanning,eels,visualization,processing,storage,hdf5,diffraction
59
- Platform: Linux
60
- Platform: Mac OSX
61
- Platform: Windows 11/10
62
- Classifier: Development Status :: 2 - Pre-Alpha
63
- Classifier: Environment :: Console
64
- Classifier: Intended Audience :: Science/Research
65
- Classifier: License :: OSI Approved :: MIT License
66
- Classifier: Natural Language :: English
67
- Classifier: Operating System :: OS Independent
68
- Classifier: Programming Language :: Cython
69
- Classifier: Programming Language :: Python :: 3
70
- Classifier: Programming Language :: Python :: 3.8
71
- Classifier: Programming Language :: Python :: 3.9
72
- Classifier: Programming Language :: Python :: 3.10
73
- Classifier: Programming Language :: Python :: 3.11
74
- Classifier: Programming Language :: Python :: Implementation :: CPython
75
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
@@ -1,6 +0,0 @@
1
- """
2
- version
3
- """
4
- _version = '0.2024.02.0'
5
- __version__ = _version
6
- _time = '2024-02-08 19:58:26'
@@ -1,75 +0,0 @@
1
- Metadata-Version: 1.1
2
- Name: pyTEMlib
3
- Version: 0.2024.2.0
4
- Summary: pyTEM: TEM Data Quantification library through a model-based approach
5
- Home-page: https://pycroscopy.github.io/pyTEMlib/about.html
6
- Author: Gerd Duscher
7
- Author-email: gduscher@utk.edu
8
- License: MIT
9
- Description: pyTEMlib
10
- ========
11
-
12
- .. image:: https://github.com/pycroscopy/pyTEMlib/workflows/build/badge.svg?branch=master
13
- :target: https://github.com/pycroscopy/pyTEMlib/actions?query=workflow%3Abuild
14
- :alt: GitHub Actions
15
-
16
- .. image:: https://img.shields.io/pypi/v/pyTEMlib.svg
17
- :target: https://pypi.org/project/pyTEMlib/
18
- :alt: PyPI
19
-
20
- .. image:: https://img.shields.io/conda/vn/conda-forge/pyTEMlib.svg
21
- :target: https://github.com/conda-forge/pyTEMlib-feedstock
22
- :alt: conda-forge
23
-
24
- .. image:: https://codecov.io/gh/pycroscopy/pyTEMlib/branch/master/graph/badge.svg?token=
25
- :target: https://codecov.io/gh/pycroscopy/pyTEMlib
26
- :alt: CodeCov
27
-
28
- .. image:: https://img.shields.io/pypi/l/pyTEMlib.svg
29
- :target: https://pypi.org/project/pyTEMlib/
30
- :alt: License
31
-
32
- .. image:: http://pepy.tech/badge/pyTEMlib
33
- :target: http://pepy.tech/project/pyTEMlib
34
- :alt: Downloads
35
-
36
- .. image:: https://zenodo.org/badge/138171750.svg
37
- :target: https://zenodo.org/badge/latestdoi/138171750
38
- :alt: DOI
39
-
40
- pyTEMlib is a package to read and process various kind of data acquired with a (scanning) transmission electron microscope (STEM).
41
-
42
- The package is written in pure python and depends on various other libraries.
43
-
44
- All data, user input, and results are stored as `NSID-formatted <https://pycroscopy.github.io/pyNSID/nsid.html>`_ HDF5 files.
45
-
46
- The data are all presented as `sidpy.Dataset <https://pycroscopy.github.io/sidpy/notebooks/00_basic_usage/create_dataset.html>`_ objects
47
-
48
- Install pyTEMlib via pip as:
49
-
50
- ``python3 -m pip install pyTEMlib``
51
-
52
- or via conda:
53
-
54
- ``conda install pyTEMlib -c conda-forge``
55
-
56
- These installation options are also available in the `example notebooks <https://github.com/pycroscopy/pyTEMlib/notebooks>`_
57
-
58
- Keywords: imaging,spectra,transmission,electron,microscopy,scientific,scanning,eels,visualization,processing,storage,hdf5,diffraction
59
- Platform: Linux
60
- Platform: Mac OSX
61
- Platform: Windows 11/10
62
- Classifier: Development Status :: 2 - Pre-Alpha
63
- Classifier: Environment :: Console
64
- Classifier: Intended Audience :: Science/Research
65
- Classifier: License :: OSI Approved :: MIT License
66
- Classifier: Natural Language :: English
67
- Classifier: Operating System :: OS Independent
68
- Classifier: Programming Language :: Cython
69
- Classifier: Programming Language :: Python :: 3
70
- Classifier: Programming Language :: Python :: 3.8
71
- Classifier: Programming Language :: Python :: 3.9
72
- Classifier: Programming Language :: Python :: 3.10
73
- Classifier: Programming Language :: Python :: 3.11
74
- Classifier: Programming Language :: Python :: Implementation :: CPython
75
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
File without changes
File without changes
File without changes
File without changes
File without changes