pyRDDLGym-jax 2.0__tar.gz → 2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/PKG-INFO +43 -30
  2. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/README.md +42 -29
  3. pyrddlgym_jax-2.2/pyRDDLGym_jax/__init__.py +1 -0
  4. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/compiler.py +85 -190
  5. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/logic.py +313 -56
  6. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/planner.py +274 -200
  7. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/visualization.py +7 -8
  8. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/run_tune.py +10 -6
  9. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/PKG-INFO +43 -30
  10. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/setup.py +1 -1
  11. pyrddlgym_jax-2.0/pyRDDLGym_jax/__init__.py +0 -1
  12. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/LICENSE +0 -0
  13. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/__init__.py +0 -0
  14. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/assets/__init__.py +0 -0
  15. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/assets/favicon.ico +0 -0
  16. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/simulator.py +0 -0
  17. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/core/tuning.py +0 -0
  18. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/entry_point.py +0 -0
  19. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/__init__.py +0 -0
  20. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_drp.cfg +0 -0
  21. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_replan.cfg +0 -0
  22. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_slp.cfg +0 -0
  23. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg +0 -0
  24. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_slp.cfg +0 -0
  25. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/MountainCar_Continuous_gym_slp.cfg +0 -0
  26. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/MountainCar_ippc2023_slp.cfg +0 -0
  27. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_drp.cfg +0 -0
  28. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_replan.cfg +0 -0
  29. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_slp.cfg +0 -0
  30. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Quadcopter_drp.cfg +0 -0
  31. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Quadcopter_slp.cfg +0 -0
  32. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_drp.cfg +0 -0
  33. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_replan.cfg +0 -0
  34. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_slp.cfg +0 -0
  35. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/UAV_Continuous_slp.cfg +0 -0
  36. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_drp.cfg +0 -0
  37. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_replan.cfg +0 -0
  38. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_slp.cfg +0 -0
  39. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/__init__.py +0 -0
  40. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/default_drp.cfg +0 -0
  41. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/default_replan.cfg +0 -0
  42. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/default_slp.cfg +0 -0
  43. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/tuning_drp.cfg +0 -0
  44. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/tuning_replan.cfg +0 -0
  45. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/configs/tuning_slp.cfg +0 -0
  46. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/run_gradient.py +0 -0
  47. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/run_gym.py +0 -0
  48. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/run_plan.py +0 -0
  49. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax/examples/run_scipy.py +0 -0
  50. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/SOURCES.txt +0 -0
  51. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/dependency_links.txt +0 -0
  52. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/entry_points.txt +0 -0
  53. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/requires.txt +0 -0
  54. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/pyRDDLGym_jax.egg-info/top_level.txt +0 -0
  55. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.2}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: pyRDDLGym-jax
3
- Version: 2.0
3
+ Version: 2.2
4
4
  Summary: pyRDDLGym-jax: automatic differentiation for solving sequential planning problems in JAX.
5
5
  Home-page: https://github.com/pyrddlgym-project/pyRDDLGym-jax
6
6
  Author: Michael Gimelfarb, Ayal Taitler, Scott Sanner
@@ -58,18 +58,21 @@ Dynamic: summary
58
58
 
59
59
  Purpose:
60
60
 
61
- 1. automatic translation of any RDDL description file into a differentiable simulator in JAX
62
- 2. flexible policy class representations, automatic model relaxations for working in discrete and hybrid domains, and Bayesian hyper-parameter tuning.
61
+ 1. automatic translation of RDDL description files into differentiable JAX simulators
62
+ 2. implementation of (highly configurable) operator relaxations for working in discrete and hybrid domains
63
+ 3. flexible policy representations and automated Bayesian hyper-parameter tuning
64
+ 4. interactive dashboard for dyanmic visualization and debugging
65
+ 5. hybridization with parameter-exploring policy gradients.
63
66
 
64
67
  Some demos of solved problems by JaxPlan:
65
68
 
66
69
  <p align="middle">
67
- <img src="Images/intruders.gif" width="120" height="120" margin=0/>
68
- <img src="Images/marsrover.gif" width="120" height="120" margin=0/>
69
- <img src="Images/pong.gif" width="120" height="120" margin=0/>
70
- <img src="Images/quadcopter.gif" width="120" height="120" margin=0/>
71
- <img src="Images/reacher.gif" width="120" height="120" margin=0/>
72
- <img src="Images/reservoir.gif" width="120" height="120" margin=0/>
70
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/intruders.gif" width="120" height="120" margin=0/>
71
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/marsrover.gif" width="120" height="120" margin=0/>
72
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/pong.gif" width="120" height="120" margin=0/>
73
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/quadcopter.gif" width="120" height="120" margin=0/>
74
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reacher.gif" width="120" height="120" margin=0/>
75
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reservoir.gif" width="120" height="120" margin=0/>
73
76
  </p>
74
77
 
75
78
  > [!WARNING]
@@ -219,7 +222,7 @@ Since version 1.0, JaxPlan has an optional dashboard that allows keeping track o
219
222
  and visualization of the policy or model, and other useful debugging features.
220
223
 
221
224
  <p align="middle">
222
- <img src="Images/dashboard.png" width="480" height="248" margin=0/>
225
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/dashboard.png" width="480" height="248" margin=0/>
223
226
  </p>
224
227
 
225
228
  To run the dashboard, add the following entry to your config file:
@@ -235,8 +238,23 @@ More documentation about this and other new features will be coming soon.
235
238
 
236
239
  ## Tuning the Planner
237
240
 
238
- It is easy to tune the planner's hyper-parameters efficiently and automatically using Bayesian optimization.
239
- To do this, first create a config file template with patterns replacing concrete parameter values that you want to tune, e.g.:
241
+ A basic run script is provided to run automatic Bayesian hyper-parameter tuning for the most sensitive parameters of JaxPlan:
242
+
243
+ ```shell
244
+ jaxplan tune <domain> <instance> <method> <trials> <iters> <workers> <dashboard>
245
+ ```
246
+
247
+ where:
248
+ - ``domain`` is the domain identifier as specified in rddlrepository
249
+ - ``instance`` is the instance identifier
250
+ - ``method`` is the planning method to use (i.e. drp, slp, replan)
251
+ - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
252
+ - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
253
+ - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``
254
+ - ``dashboard`` is whether the optimizations are tracked in the dashboard application.
255
+
256
+ It is easy to tune a custom range of the planner's hyper-parameters efficiently.
257
+ First create a config file template with patterns replacing concrete parameter values that you want to tune, e.g.:
240
258
 
241
259
  ```ini
242
260
  [Model]
@@ -260,7 +278,7 @@ train_on_reset=True
260
278
 
261
279
  would allow to tune the sharpness of model relaxations, and the learning rate of the optimizer.
262
280
 
263
- Next, you must link the patterns in the config with concrete hyper-parameter ranges the tuner will understand:
281
+ Next, you must link the patterns in the config with concrete hyper-parameter ranges the tuner will understand, and run the optimizer:
264
282
 
265
283
  ```python
266
284
  import pyRDDLGym
@@ -292,21 +310,7 @@ tuning = JaxParameterTuning(env=env,
292
310
  gp_iters=iters)
293
311
  tuning.tune(key=42, log_file='path/to/log.csv')
294
312
  ```
295
-
296
- A basic run script is provided to run the automatic hyper-parameter tuning for the most sensitive parameters of JaxPlan:
297
-
298
- ```shell
299
- jaxplan tune <domain> <instance> <method> <trials> <iters> <workers>
300
- ```
301
-
302
- where:
303
- - ``domain`` is the domain identifier as specified in rddlrepository
304
- - ``instance`` is the instance identifier
305
- - ``method`` is the planning method to use (i.e. drp, slp, replan)
306
- - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
307
- - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
308
- - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``.
309
-
313
+
310
314
 
311
315
  ## Simulation
312
316
 
@@ -344,7 +348,16 @@ The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480
344
348
  ```
345
349
 
346
350
  Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
347
- - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
351
+ - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs, AAAI 2022](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
348
352
  - [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
353
+ - [Stochastic Planning with Lifted Symbolic Trajectory Optimization, AAAI 2019](https://ojs.aaai.org/index.php/ICAPS/article/view/3467/3335)
349
354
  - [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
350
-
355
+ - [Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE, ANN 2015](https://link.springer.com/chapter/10.1007/978-3-319-09903-3_13)
356
+
357
+ The model relaxations in JaxPlan are based on the following works:
358
+ - [Poisson Variational Autoencoder, NeurIPS 2025](https://proceedings.neurips.cc/paper_files/paper/2024/file/4f3cb9576dc99d62b80726690453716f-Paper-Conference.pdf)
359
+ - [Analyzing Differentiable Fuzzy Logic Operators, AI 2022](https://www.sciencedirect.com/science/article/pii/S0004370221001533)
360
+ - [Learning with algorithmic supervision via continuous relaxations, NeurIPS 2021](https://proceedings.neurips.cc/paper_files/paper/2021/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf)
361
+ - [Universally quantized neural compression, NeurIPS 2020](https://papers.nips.cc/paper_files/paper/2020/file/92049debbe566ca5782a3045cf300a3c-Paper.pdf)
362
+ - [Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables, 2020](https://arxiv.org/pdf/2003.01847)
363
+ - [Categorical Reparametrization with Gumbel-Softmax, ICLR 2017](https://openreview.net/pdf?id=rkE3y85ee)
@@ -12,18 +12,21 @@
12
12
 
13
13
  Purpose:
14
14
 
15
- 1. automatic translation of any RDDL description file into a differentiable simulator in JAX
16
- 2. flexible policy class representations, automatic model relaxations for working in discrete and hybrid domains, and Bayesian hyper-parameter tuning.
15
+ 1. automatic translation of RDDL description files into differentiable JAX simulators
16
+ 2. implementation of (highly configurable) operator relaxations for working in discrete and hybrid domains
17
+ 3. flexible policy representations and automated Bayesian hyper-parameter tuning
18
+ 4. interactive dashboard for dyanmic visualization and debugging
19
+ 5. hybridization with parameter-exploring policy gradients.
17
20
 
18
21
  Some demos of solved problems by JaxPlan:
19
22
 
20
23
  <p align="middle">
21
- <img src="Images/intruders.gif" width="120" height="120" margin=0/>
22
- <img src="Images/marsrover.gif" width="120" height="120" margin=0/>
23
- <img src="Images/pong.gif" width="120" height="120" margin=0/>
24
- <img src="Images/quadcopter.gif" width="120" height="120" margin=0/>
25
- <img src="Images/reacher.gif" width="120" height="120" margin=0/>
26
- <img src="Images/reservoir.gif" width="120" height="120" margin=0/>
24
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/intruders.gif" width="120" height="120" margin=0/>
25
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/marsrover.gif" width="120" height="120" margin=0/>
26
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/pong.gif" width="120" height="120" margin=0/>
27
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/quadcopter.gif" width="120" height="120" margin=0/>
28
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reacher.gif" width="120" height="120" margin=0/>
29
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reservoir.gif" width="120" height="120" margin=0/>
27
30
  </p>
28
31
 
29
32
  > [!WARNING]
@@ -173,7 +176,7 @@ Since version 1.0, JaxPlan has an optional dashboard that allows keeping track o
173
176
  and visualization of the policy or model, and other useful debugging features.
174
177
 
175
178
  <p align="middle">
176
- <img src="Images/dashboard.png" width="480" height="248" margin=0/>
179
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/dashboard.png" width="480" height="248" margin=0/>
177
180
  </p>
178
181
 
179
182
  To run the dashboard, add the following entry to your config file:
@@ -189,8 +192,23 @@ More documentation about this and other new features will be coming soon.
189
192
 
190
193
  ## Tuning the Planner
191
194
 
192
- It is easy to tune the planner's hyper-parameters efficiently and automatically using Bayesian optimization.
193
- To do this, first create a config file template with patterns replacing concrete parameter values that you want to tune, e.g.:
195
+ A basic run script is provided to run automatic Bayesian hyper-parameter tuning for the most sensitive parameters of JaxPlan:
196
+
197
+ ```shell
198
+ jaxplan tune <domain> <instance> <method> <trials> <iters> <workers> <dashboard>
199
+ ```
200
+
201
+ where:
202
+ - ``domain`` is the domain identifier as specified in rddlrepository
203
+ - ``instance`` is the instance identifier
204
+ - ``method`` is the planning method to use (i.e. drp, slp, replan)
205
+ - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
206
+ - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
207
+ - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``
208
+ - ``dashboard`` is whether the optimizations are tracked in the dashboard application.
209
+
210
+ It is easy to tune a custom range of the planner's hyper-parameters efficiently.
211
+ First create a config file template with patterns replacing concrete parameter values that you want to tune, e.g.:
194
212
 
195
213
  ```ini
196
214
  [Model]
@@ -214,7 +232,7 @@ train_on_reset=True
214
232
 
215
233
  would allow to tune the sharpness of model relaxations, and the learning rate of the optimizer.
216
234
 
217
- Next, you must link the patterns in the config with concrete hyper-parameter ranges the tuner will understand:
235
+ Next, you must link the patterns in the config with concrete hyper-parameter ranges the tuner will understand, and run the optimizer:
218
236
 
219
237
  ```python
220
238
  import pyRDDLGym
@@ -246,21 +264,7 @@ tuning = JaxParameterTuning(env=env,
246
264
  gp_iters=iters)
247
265
  tuning.tune(key=42, log_file='path/to/log.csv')
248
266
  ```
249
-
250
- A basic run script is provided to run the automatic hyper-parameter tuning for the most sensitive parameters of JaxPlan:
251
-
252
- ```shell
253
- jaxplan tune <domain> <instance> <method> <trials> <iters> <workers>
254
- ```
255
-
256
- where:
257
- - ``domain`` is the domain identifier as specified in rddlrepository
258
- - ``instance`` is the instance identifier
259
- - ``method`` is the planning method to use (i.e. drp, slp, replan)
260
- - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
261
- - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
262
- - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``.
263
-
267
+
264
268
 
265
269
  ## Simulation
266
270
 
@@ -298,7 +302,16 @@ The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480
298
302
  ```
299
303
 
300
304
  Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
301
- - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
305
+ - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs, AAAI 2022](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
302
306
  - [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
307
+ - [Stochastic Planning with Lifted Symbolic Trajectory Optimization, AAAI 2019](https://ojs.aaai.org/index.php/ICAPS/article/view/3467/3335)
303
308
  - [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
304
-
309
+ - [Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE, ANN 2015](https://link.springer.com/chapter/10.1007/978-3-319-09903-3_13)
310
+
311
+ The model relaxations in JaxPlan are based on the following works:
312
+ - [Poisson Variational Autoencoder, NeurIPS 2025](https://proceedings.neurips.cc/paper_files/paper/2024/file/4f3cb9576dc99d62b80726690453716f-Paper-Conference.pdf)
313
+ - [Analyzing Differentiable Fuzzy Logic Operators, AI 2022](https://www.sciencedirect.com/science/article/pii/S0004370221001533)
314
+ - [Learning with algorithmic supervision via continuous relaxations, NeurIPS 2021](https://proceedings.neurips.cc/paper_files/paper/2021/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf)
315
+ - [Universally quantized neural compression, NeurIPS 2020](https://papers.nips.cc/paper_files/paper/2020/file/92049debbe566ca5782a3045cf300a3c-Paper.pdf)
316
+ - [Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables, 2020](https://arxiv.org/pdf/2003.01847)
317
+ - [Categorical Reparametrization with Gumbel-Softmax, ICLR 2017](https://openreview.net/pdf?id=rkE3y85ee)
@@ -0,0 +1 @@
1
+ __version__ = '2.2'