pyRDDLGym-jax 2.0__tar.gz → 2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/PKG-INFO +22 -12
  2. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/README.md +21 -11
  3. pyrddlgym_jax-2.1/pyRDDLGym_jax/__init__.py +1 -0
  4. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/compiler.py +85 -190
  5. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/logic.py +313 -56
  6. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/planner.py +121 -130
  7. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/visualization.py +7 -8
  8. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/run_tune.py +10 -6
  9. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/PKG-INFO +22 -12
  10. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/setup.py +1 -1
  11. pyrddlgym_jax-2.0/pyRDDLGym_jax/__init__.py +0 -1
  12. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/LICENSE +0 -0
  13. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/__init__.py +0 -0
  14. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/assets/__init__.py +0 -0
  15. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/assets/favicon.ico +0 -0
  16. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/simulator.py +0 -0
  17. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/core/tuning.py +0 -0
  18. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/entry_point.py +0 -0
  19. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/__init__.py +0 -0
  20. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_drp.cfg +0 -0
  21. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_replan.cfg +0 -0
  22. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_slp.cfg +0 -0
  23. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg +0 -0
  24. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_slp.cfg +0 -0
  25. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/MountainCar_Continuous_gym_slp.cfg +0 -0
  26. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/MountainCar_ippc2023_slp.cfg +0 -0
  27. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_drp.cfg +0 -0
  28. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_replan.cfg +0 -0
  29. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_slp.cfg +0 -0
  30. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Quadcopter_drp.cfg +0 -0
  31. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Quadcopter_slp.cfg +0 -0
  32. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_drp.cfg +0 -0
  33. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_replan.cfg +0 -0
  34. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_slp.cfg +0 -0
  35. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/UAV_Continuous_slp.cfg +0 -0
  36. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_drp.cfg +0 -0
  37. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_replan.cfg +0 -0
  38. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_slp.cfg +0 -0
  39. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/__init__.py +0 -0
  40. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/default_drp.cfg +0 -0
  41. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/default_replan.cfg +0 -0
  42. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/default_slp.cfg +0 -0
  43. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/tuning_drp.cfg +0 -0
  44. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/tuning_replan.cfg +0 -0
  45. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/configs/tuning_slp.cfg +0 -0
  46. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/run_gradient.py +0 -0
  47. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/run_gym.py +0 -0
  48. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/run_plan.py +0 -0
  49. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax/examples/run_scipy.py +0 -0
  50. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/SOURCES.txt +0 -0
  51. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/dependency_links.txt +0 -0
  52. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/entry_points.txt +0 -0
  53. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/requires.txt +0 -0
  54. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/pyRDDLGym_jax.egg-info/top_level.txt +0 -0
  55. {pyrddlgym_jax-2.0 → pyrddlgym_jax-2.1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: pyRDDLGym-jax
3
- Version: 2.0
3
+ Version: 2.1
4
4
  Summary: pyRDDLGym-jax: automatic differentiation for solving sequential planning problems in JAX.
5
5
  Home-page: https://github.com/pyrddlgym-project/pyRDDLGym-jax
6
6
  Author: Michael Gimelfarb, Ayal Taitler, Scott Sanner
@@ -64,12 +64,12 @@ Purpose:
64
64
  Some demos of solved problems by JaxPlan:
65
65
 
66
66
  <p align="middle">
67
- <img src="Images/intruders.gif" width="120" height="120" margin=0/>
68
- <img src="Images/marsrover.gif" width="120" height="120" margin=0/>
69
- <img src="Images/pong.gif" width="120" height="120" margin=0/>
70
- <img src="Images/quadcopter.gif" width="120" height="120" margin=0/>
71
- <img src="Images/reacher.gif" width="120" height="120" margin=0/>
72
- <img src="Images/reservoir.gif" width="120" height="120" margin=0/>
67
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/intruders.gif" width="120" height="120" margin=0/>
68
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/marsrover.gif" width="120" height="120" margin=0/>
69
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/pong.gif" width="120" height="120" margin=0/>
70
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/quadcopter.gif" width="120" height="120" margin=0/>
71
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reacher.gif" width="120" height="120" margin=0/>
72
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reservoir.gif" width="120" height="120" margin=0/>
73
73
  </p>
74
74
 
75
75
  > [!WARNING]
@@ -219,7 +219,7 @@ Since version 1.0, JaxPlan has an optional dashboard that allows keeping track o
219
219
  and visualization of the policy or model, and other useful debugging features.
220
220
 
221
221
  <p align="middle">
222
- <img src="Images/dashboard.png" width="480" height="248" margin=0/>
222
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/dashboard.png" width="480" height="248" margin=0/>
223
223
  </p>
224
224
 
225
225
  To run the dashboard, add the following entry to your config file:
@@ -296,7 +296,7 @@ tuning.tune(key=42, log_file='path/to/log.csv')
296
296
  A basic run script is provided to run the automatic hyper-parameter tuning for the most sensitive parameters of JaxPlan:
297
297
 
298
298
  ```shell
299
- jaxplan tune <domain> <instance> <method> <trials> <iters> <workers>
299
+ jaxplan tune <domain> <instance> <method> <trials> <iters> <workers> <dashboard>
300
300
  ```
301
301
 
302
302
  where:
@@ -305,7 +305,8 @@ where:
305
305
  - ``method`` is the planning method to use (i.e. drp, slp, replan)
306
306
  - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
307
307
  - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
308
- - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``.
308
+ - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``
309
+ - ``dashboard`` is whether the optimizations are tracked in the dashboard application.
309
310
 
310
311
 
311
312
  ## Simulation
@@ -344,7 +345,16 @@ The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480
344
345
  ```
345
346
 
346
347
  Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
347
- - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
348
+ - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs, AAAI 2022](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
348
349
  - [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
350
+ - [Stochastic Planning with Lifted Symbolic Trajectory Optimization, AAAI 2019](https://ojs.aaai.org/index.php/ICAPS/article/view/3467/3335)
349
351
  - [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
350
-
352
+ - [Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE, ANN 2015](https://link.springer.com/chapter/10.1007/978-3-319-09903-3_13)
353
+
354
+ The model relaxations in JaxPlan are based on the following works:
355
+ - [Poisson Variational Autoencoder, NeurIPS 2025](https://proceedings.neurips.cc/paper_files/paper/2024/file/4f3cb9576dc99d62b80726690453716f-Paper-Conference.pdf)
356
+ - [Analyzing Differentiable Fuzzy Logic Operators, AI 2022](https://www.sciencedirect.com/science/article/pii/S0004370221001533)
357
+ - [Learning with algorithmic supervision via continuous relaxations, NeurIPS 2021](https://proceedings.neurips.cc/paper_files/paper/2021/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf)
358
+ - [Universally quantized neural compression, NeurIPS 2020](https://papers.nips.cc/paper_files/paper/2020/file/92049debbe566ca5782a3045cf300a3c-Paper.pdf)
359
+ - [Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables, 2020](https://arxiv.org/pdf/2003.01847)
360
+ - [Categorical Reparametrization with Gumbel-Softmax, ICLR 2017](https://openreview.net/pdf?id=rkE3y85ee)
@@ -18,12 +18,12 @@ Purpose:
18
18
  Some demos of solved problems by JaxPlan:
19
19
 
20
20
  <p align="middle">
21
- <img src="Images/intruders.gif" width="120" height="120" margin=0/>
22
- <img src="Images/marsrover.gif" width="120" height="120" margin=0/>
23
- <img src="Images/pong.gif" width="120" height="120" margin=0/>
24
- <img src="Images/quadcopter.gif" width="120" height="120" margin=0/>
25
- <img src="Images/reacher.gif" width="120" height="120" margin=0/>
26
- <img src="Images/reservoir.gif" width="120" height="120" margin=0/>
21
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/intruders.gif" width="120" height="120" margin=0/>
22
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/marsrover.gif" width="120" height="120" margin=0/>
23
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/pong.gif" width="120" height="120" margin=0/>
24
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/quadcopter.gif" width="120" height="120" margin=0/>
25
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reacher.gif" width="120" height="120" margin=0/>
26
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/reservoir.gif" width="120" height="120" margin=0/>
27
27
  </p>
28
28
 
29
29
  > [!WARNING]
@@ -173,7 +173,7 @@ Since version 1.0, JaxPlan has an optional dashboard that allows keeping track o
173
173
  and visualization of the policy or model, and other useful debugging features.
174
174
 
175
175
  <p align="middle">
176
- <img src="Images/dashboard.png" width="480" height="248" margin=0/>
176
+ <img src="https://github.com/pyrddlgym-project/pyRDDLGym-jax/blob/main/Images/dashboard.png" width="480" height="248" margin=0/>
177
177
  </p>
178
178
 
179
179
  To run the dashboard, add the following entry to your config file:
@@ -250,7 +250,7 @@ tuning.tune(key=42, log_file='path/to/log.csv')
250
250
  A basic run script is provided to run the automatic hyper-parameter tuning for the most sensitive parameters of JaxPlan:
251
251
 
252
252
  ```shell
253
- jaxplan tune <domain> <instance> <method> <trials> <iters> <workers>
253
+ jaxplan tune <domain> <instance> <method> <trials> <iters> <workers> <dashboard>
254
254
  ```
255
255
 
256
256
  where:
@@ -259,7 +259,8 @@ where:
259
259
  - ``method`` is the planning method to use (i.e. drp, slp, replan)
260
260
  - ``trials`` is the (optional) number of trials/episodes to average in evaluating each hyper-parameter setting
261
261
  - ``iters`` is the (optional) maximum number of iterations/evaluations of Bayesian optimization to perform
262
- - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``.
262
+ - ``workers`` is the (optional) number of parallel evaluations to be done at each iteration, e.g. the total evaluations = ``iters * workers``
263
+ - ``dashboard`` is whether the optimizations are tracked in the dashboard application.
263
264
 
264
265
 
265
266
  ## Simulation
@@ -298,7 +299,16 @@ The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480
298
299
  ```
299
300
 
300
301
  Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
301
- - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
302
+ - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs, AAAI 2022](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
302
303
  - [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
304
+ - [Stochastic Planning with Lifted Symbolic Trajectory Optimization, AAAI 2019](https://ojs.aaai.org/index.php/ICAPS/article/view/3467/3335)
303
305
  - [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
304
-
306
+ - [Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE, ANN 2015](https://link.springer.com/chapter/10.1007/978-3-319-09903-3_13)
307
+
308
+ The model relaxations in JaxPlan are based on the following works:
309
+ - [Poisson Variational Autoencoder, NeurIPS 2025](https://proceedings.neurips.cc/paper_files/paper/2024/file/4f3cb9576dc99d62b80726690453716f-Paper-Conference.pdf)
310
+ - [Analyzing Differentiable Fuzzy Logic Operators, AI 2022](https://www.sciencedirect.com/science/article/pii/S0004370221001533)
311
+ - [Learning with algorithmic supervision via continuous relaxations, NeurIPS 2021](https://proceedings.neurips.cc/paper_files/paper/2021/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf)
312
+ - [Universally quantized neural compression, NeurIPS 2020](https://papers.nips.cc/paper_files/paper/2020/file/92049debbe566ca5782a3045cf300a3c-Paper.pdf)
313
+ - [Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables, 2020](https://arxiv.org/pdf/2003.01847)
314
+ - [Categorical Reparametrization with Gumbel-Softmax, ICLR 2017](https://openreview.net/pdf?id=rkE3y85ee)
@@ -0,0 +1 @@
1
+ __version__ = '2.1'