pyRDDLGym-jax 0.1__tar.gz → 0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/PKG-INFO +1 -1
  2. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/README.md +24 -22
  3. pyrddlgym_jax-0.3/pyRDDLGym_jax/__init__.py +1 -0
  4. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/core/compiler.py +444 -221
  5. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/core/logic.py +129 -62
  6. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/core/planner.py +965 -394
  7. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/core/simulator.py +5 -7
  8. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/core/tuning.py +29 -15
  9. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_drp.cfg → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_drp.cfg +2 -3
  10. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/HVAC_drp.cfg → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_drp.cfg +4 -4
  11. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/MarsRover_drp.cfg → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_drp.cfg +1 -0
  12. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/MountainCar_ippc2023_slp.cfg +19 -0
  13. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Pendulum_slp.cfg → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Pendulum_gym_slp.cfg +1 -1
  14. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Pong_slp.cfg → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Quadcopter_drp.cfg +5 -5
  15. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_drp.cfg +18 -0
  16. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_slp.cfg +1 -1
  17. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/UAV_Continuous_slp.cfg +1 -1
  18. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/default_drp.cfg +19 -0
  19. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/default_replan.cfg +20 -0
  20. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/default_slp.cfg +19 -0
  21. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/run_gradient.py +1 -1
  22. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/run_gym.py +3 -7
  23. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/run_plan.py +10 -5
  24. pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/run_scipy.py +61 -0
  25. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/run_tune.py +8 -3
  26. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax.egg-info/PKG-INFO +1 -1
  27. pyrddlgym_jax-0.3/pyRDDLGym_jax.egg-info/SOURCES.txt +47 -0
  28. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/setup.py +1 -1
  29. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/SupplyChain_slp.cfg +0 -18
  30. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Traffic_slp.cfg +0 -20
  31. pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/__init__.py +0 -0
  32. pyRDDLGym-jax-0.1/pyRDDLGym_jax.egg-info/SOURCES.txt +0 -43
  33. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/LICENSE +0 -0
  34. {pyRDDLGym-jax-0.1/pyRDDLGym_jax → pyrddlgym_jax-0.3/pyRDDLGym_jax/core}/__init__.py +0 -0
  35. {pyRDDLGym-jax-0.1/pyRDDLGym_jax/core → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples}/__init__.py +0 -0
  36. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_replan.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_replan.cfg +0 -0
  37. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_slp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/Cartpole_Continuous_gym_slp.cfg +0 -0
  38. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/HVAC_slp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/HVAC_ippc2023_slp.cfg +0 -0
  39. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/MarsRover_slp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/MarsRover_ippc2023_slp.cfg +0 -0
  40. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/MountainCar_slp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/MountainCar_Continuous_gym_slp.cfg +0 -0
  41. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/PowerGen_drp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_drp.cfg +0 -0
  42. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/PowerGen_replan.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_replan.cfg +0 -0
  43. /pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples/configs/PowerGen_slp.cfg → /pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs/PowerGen_Continuous_slp.cfg +0 -0
  44. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Quadcopter_slp.cfg +0 -0
  45. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Reservoir_Continuous_replan.cfg +0 -0
  46. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_drp.cfg +0 -0
  47. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_replan.cfg +0 -0
  48. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax/examples/configs/Wildfire_MDP_ippc2014_slp.cfg +0 -0
  49. {pyRDDLGym-jax-0.1/pyRDDLGym_jax/examples → pyrddlgym_jax-0.3/pyRDDLGym_jax/examples/configs}/__init__.py +0 -0
  50. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax.egg-info/dependency_links.txt +0 -0
  51. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax.egg-info/requires.txt +0 -0
  52. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/pyRDDLGym_jax.egg-info/top_level.txt +0 -0
  53. {pyRDDLGym-jax-0.1 → pyrddlgym_jax-0.3}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyRDDLGym-jax
3
- Version: 0.1
3
+ Version: 0.3
4
4
  Summary: pyRDDLGym-jax: JAX compilation of RDDL description files, and a differentiable planner in JAX.
5
5
  Home-page: https://github.com/pyrddlgym-project/pyRDDLGym-jax
6
6
  Author: Michael Gimelfarb, Ayal Taitler, Scott Sanner
@@ -33,24 +33,12 @@ To use the compiler or planner without the automated hyper-parameter tuning, you
33
33
 
34
34
  Additionally, if you wish to run the examples, you need ``rddlrepository>=2``, and run the automated tuning optimization, you will also need ``bayesian-optimization>=1.4.3``.
35
35
 
36
- You can install this package, together with all of its requirements as follows (assuming Anaconda):
36
+ You can install this package, together with all of its requirements via pip:
37
37
 
38
38
  ```shell
39
- # Create a new conda environment
40
- conda create -n jaxplan python=3.11
41
- conda activate jaxplan
42
- conda install pip git
43
-
44
- # Manually install pyRDDLGym and rddlrepository
45
- pip install git+https://github.com/pyrddlgym-project/pyRDDLGym
46
- pip install git+https://github.com/pyrddlgym-project/rddlrepository
47
-
48
- # Install pyRDDLGym-jax
49
- pip install git+https://github.com/pyrddlgym-project/pyRDDLGym-jax
39
+ pip install rddlrepository pyRDDLGym-jax
50
40
  ```
51
41
 
52
- A pip installer will be coming soon.
53
-
54
42
  ## Running the Basic Examples
55
43
 
56
44
  A basic run script is provided to run the Jax Planner on any domain in ``rddlrepository``, provided a config file is available (currently, only a limited subset of configs are provided as examples).
@@ -232,19 +220,33 @@ An [example is provided to illustrate how you can define your own policy class a
232
220
 
233
221
  ## Citing pyRDDLGym-jax
234
222
 
235
- The main ideas of this approach are discussed in the following preprint:
223
+ The [following citation](https://ojs.aaai.org/index.php/ICAPS/article/view/31480) describes the main ideas of the framework. Please cite it if you found it useful:
224
+
225
+ ```
226
+ @inproceedings{gimelfarb2024jaxplan,
227
+ title={JaxPlan and GurobiPlan: Optimization Baselines for Replanning in Discrete and Mixed Discrete and Continuous Probabilistic Domains},
228
+ author={Michael Gimelfarb and Ayal Taitler and Scott Sanner},
229
+ booktitle={34th International Conference on Automated Planning and Scheduling},
230
+ year={2024},
231
+ url={https://openreview.net/forum?id=7IKtmUpLEH}
232
+ }
233
+ ```
234
+
235
+ The utility optimization is discussed in [this paper](https://ojs.aaai.org/index.php/AAAI/article/view/21226):
236
236
 
237
237
  ```
238
- @article{taitler2022pyrddlgym,
239
- title={pyRDDLGym: From RDDL to Gym Environments},
240
- author={Taitler, Ayal and Gimelfarb, Michael and Gopalakrishnan, Sriram and Mladenov, Martin and Liu, Xiaotian and Sanner, Scott},
241
- journal={arXiv preprint arXiv:2211.05939},
242
- year={2022}
238
+ @inproceedings{patton2022distributional,
239
+ title={A distributional framework for risk-sensitive end-to-end planning in continuous mdps},
240
+ author={Patton, Noah and Jeong, Jihwan and Gimelfarb, Mike and Sanner, Scott},
241
+ booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
242
+ volume={36},
243
+ number={9},
244
+ pages={9894--9901},
245
+ year={2022}
243
246
  }
244
247
  ```
245
248
 
246
- Many of the implementation details discussed come from the following literature, which you may wish to cite in your research papers:
247
- - [A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDP, AAAI 2022](https://ojs.aaai.org/index.php/AAAI/article/view/21226)
249
+ Some of the implementation details derive from the following literature, which you may wish to also cite in your research papers:
248
250
  - [Deep reactive policies for planning in stochastic nonlinear domains, AAAI 2019](https://ojs.aaai.org/index.php/AAAI/article/view/4744)
249
251
  - [Scalable planning with tensorflow for hybrid nonlinear domains, NeurIPS 2017](https://proceedings.neurips.cc/paper/2017/file/98b17f068d5d9b7668e19fb8ae470841-Paper.pdf)
250
252
 
@@ -0,0 +1 @@
1
+ __version__ = '0.3'