pyCLINE 0.1.7__tar.gz → 0.1.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pycline-0.1.7 → pycline-0.1.9}/PKG-INFO +7 -6
- {pycline-0.1.7 → pycline-0.1.9}/README.md +3 -3
- {pycline-0.1.7 → pycline-0.1.9}/pyproject.toml +2 -2
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/recovery_methods/data_preparation.py +6 -6
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE.egg-info/PKG-INFO +7 -6
- {pycline-0.1.7 → pycline-0.1.9}/LICENSE +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/setup.cfg +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/__init__.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/example.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/generate_data.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/model.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/recovery_methods/__init__.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE/recovery_methods/nn_training.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE.egg-info/SOURCES.txt +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE.egg-info/dependency_links.txt +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE.egg-info/requires.txt +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/src/pyCLINE.egg-info/top_level.txt +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/tests/test_data_preparation.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/tests/test_generate_data.py +0 -0
- {pycline-0.1.7 → pycline-0.1.9}/tests/test_nn_training.py +0 -0
@@ -1,7 +1,7 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: pyCLINE
|
3
|
-
Version: 0.1.
|
4
|
-
Summary: This package is the
|
3
|
+
Version: 0.1.9
|
4
|
+
Summary: This package is the Python implementation of the CLINE method
|
5
5
|
Author-email: Bartosz Prokop <bartosz.prokop@kuleuven.be>, Nikita Frolov <nikita.frolov@kuleuven.be>, Lendert Gelens <lendert.gelens@kuleuven.be>
|
6
6
|
Project-URL: Homepage, https://pycline-ec8369.pages.gitlab.kuleuven.be/
|
7
7
|
Project-URL: Issues, https://gitlab.kuleuven.be/gelenslab/publications/pycline/-/issues
|
@@ -19,6 +19,7 @@ Requires-Dist: torch>=2.4.1
|
|
19
19
|
Requires-Dist: tqdm>=4.66.1
|
20
20
|
Requires-Dist: jitcdde>=1.8.1
|
21
21
|
Requires-Dist: scipy>=1.9.3
|
22
|
+
Dynamic: license-file
|
22
23
|
|
23
24
|
# PyCLINE - python package for CLINE
|
24
25
|
|
@@ -27,13 +28,13 @@ It can be downloaded from PyPI with pip by using
|
|
27
28
|
|
28
29
|
pip install pyCLINE
|
29
30
|
|
30
|
-
The package allows to recreate all data, models and results shown in
|
31
|
-
In order to generate data used in
|
31
|
+
The package allows to recreate all data, models and results shown in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), and to apply CLINE to other data sets.
|
32
|
+
In order to generate data used in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), a set of different models is being provided under `pyCLINE.model`.
|
32
33
|
Data from these models can be generated using `pyCLINE.generate_data()`.
|
33
34
|
For setting up the data prepartion and adjacent training a neural network, the submodule `pyCLINE.recovery_methods` is used.
|
34
35
|
The submodule contains the module for data_preparation `pyCLINE.recovery_methods.data_preparation` and for neural network training `pyCLINE.recovery_methods.nn_training`.
|
35
36
|
|
36
|
-
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four
|
37
|
+
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four examples also found in XXX with step by step instructions on how to setup a CLINE pipeline.
|
37
38
|
|
38
39
|
The structure of `pyCLINE` is shown here:
|
39
40
|
|
@@ -5,13 +5,13 @@ It can be downloaded from PyPI with pip by using
|
|
5
5
|
|
6
6
|
pip install pyCLINE
|
7
7
|
|
8
|
-
The package allows to recreate all data, models and results shown in
|
9
|
-
In order to generate data used in
|
8
|
+
The package allows to recreate all data, models and results shown in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), and to apply CLINE to other data sets.
|
9
|
+
In order to generate data used in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), a set of different models is being provided under `pyCLINE.model`.
|
10
10
|
Data from these models can be generated using `pyCLINE.generate_data()`.
|
11
11
|
For setting up the data prepartion and adjacent training a neural network, the submodule `pyCLINE.recovery_methods` is used.
|
12
12
|
The submodule contains the module for data_preparation `pyCLINE.recovery_methods.data_preparation` and for neural network training `pyCLINE.recovery_methods.nn_training`.
|
13
13
|
|
14
|
-
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four
|
14
|
+
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four examples also found in XXX with step by step instructions on how to setup a CLINE pipeline.
|
15
15
|
|
16
16
|
The structure of `pyCLINE` is shown here:
|
17
17
|
|
@@ -4,8 +4,8 @@ build-backend = "setuptools.build_meta"
|
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "pyCLINE"
|
7
|
-
version = "0.1.
|
8
|
-
description = "This package is the
|
7
|
+
version = "0.1.9"
|
8
|
+
description = "This package is the Python implementation of the CLINE method"
|
9
9
|
readme = "README.md"
|
10
10
|
requires-python = ">=3.10"
|
11
11
|
classifiers = [ "Development Status :: 3 - Alpha", "Programming Language :: Python :: 3", "Operating System :: OS Independent",]
|
@@ -201,12 +201,12 @@ def prepare_data(df, vars, time, tmin=None, tmax=None, scheme='newton_difference
|
|
201
201
|
raise ValueError("Unknown scheme: {:}".format(scheme))
|
202
202
|
|
203
203
|
# slice the data in the range [tmin; tmax] if needed
|
204
|
-
if ((tmin is None) or (tmax is None)):
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
204
|
+
# if ((tmin is None) or (tmax is None)):
|
205
|
+
if tmin is None:
|
206
|
+
tmin = df[time].min()
|
207
|
+
if tmax is None:
|
208
|
+
tmax = df[time].max()
|
209
|
+
df_slice = df[(df[time]>=tmin) & (df[time]<=tmax)].copy()
|
210
210
|
|
211
211
|
# min-max normalization of each variable in the range [value_min; value_max]
|
212
212
|
if normalize:
|
@@ -1,7 +1,7 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: pyCLINE
|
3
|
-
Version: 0.1.
|
4
|
-
Summary: This package is the
|
3
|
+
Version: 0.1.9
|
4
|
+
Summary: This package is the Python implementation of the CLINE method
|
5
5
|
Author-email: Bartosz Prokop <bartosz.prokop@kuleuven.be>, Nikita Frolov <nikita.frolov@kuleuven.be>, Lendert Gelens <lendert.gelens@kuleuven.be>
|
6
6
|
Project-URL: Homepage, https://pycline-ec8369.pages.gitlab.kuleuven.be/
|
7
7
|
Project-URL: Issues, https://gitlab.kuleuven.be/gelenslab/publications/pycline/-/issues
|
@@ -19,6 +19,7 @@ Requires-Dist: torch>=2.4.1
|
|
19
19
|
Requires-Dist: tqdm>=4.66.1
|
20
20
|
Requires-Dist: jitcdde>=1.8.1
|
21
21
|
Requires-Dist: scipy>=1.9.3
|
22
|
+
Dynamic: license-file
|
22
23
|
|
23
24
|
# PyCLINE - python package for CLINE
|
24
25
|
|
@@ -27,13 +28,13 @@ It can be downloaded from PyPI with pip by using
|
|
27
28
|
|
28
29
|
pip install pyCLINE
|
29
30
|
|
30
|
-
The package allows to recreate all data, models and results shown in
|
31
|
-
In order to generate data used in
|
31
|
+
The package allows to recreate all data, models and results shown in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), and to apply CLINE to other data sets.
|
32
|
+
In order to generate data used in [Prokop, Billen, Frolov and Gelens (2025)](https://arxiv.org/abs/2503.16240), a set of different models is being provided under `pyCLINE.model`.
|
32
33
|
Data from these models can be generated using `pyCLINE.generate_data()`.
|
33
34
|
For setting up the data prepartion and adjacent training a neural network, the submodule `pyCLINE.recovery_methods` is used.
|
34
35
|
The submodule contains the module for data_preparation `pyCLINE.recovery_methods.data_preparation` and for neural network training `pyCLINE.recovery_methods.nn_training`.
|
35
36
|
|
36
|
-
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four
|
37
|
+
For a better understanding, `pyCLINE` also contains the module `pyCLINE.example` which provides four examples also found in XXX with step by step instructions on how to setup a CLINE pipeline.
|
37
38
|
|
38
39
|
The structure of `pyCLINE` is shown here:
|
39
40
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|