py2ls 0.2.4.11__tar.gz → 0.2.4.13__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/PKG-INFO +2 -2
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/ips.py +141 -16
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/ml2ls.py +88 -5
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/netfinder.py +79 -34
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/plot.py +6 -11
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/pyproject.toml +2 -2
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/README.md +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.DS_Store +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/COMMIT_EDITMSG +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/FETCH_HEAD +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/HEAD +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/config +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/description +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/applypatch-msg.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/commit-msg.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/fsmonitor-watchman.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/post-update.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-applypatch.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-commit.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-merge-commit.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-push.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-rebase.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/pre-receive.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/prepare-commit-msg.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/push-to-checkout.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/hooks/update.sample +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/index +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/info/exclude +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/logs/HEAD +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/logs/refs/heads/main +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/logs/refs/remotes/origin/HEAD +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/logs/refs/remotes/origin/main +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/01/d5bd8065e6860c0bd23ff9fa57161806a099e1 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/09/08da26de58c114225ad81f484b80bf5d351b34 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/0b/409e1bc918277010f5679b402d1d1dda53e15c +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/12/c2808a1b3a4d0892a4154dfba1e2ae3770fa73 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/14/449a0e6ba4ea2f1a73acf63ef91c9c6193f9ed +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/15/a8e468aacfcb440e090020f36d0b985d45da23 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/1a/b4585881a6a42889f01aa0cfe25fd5acfaf46f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/1c/3f92adda34344bcbbbf9d409c79855ae2aaea8 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/1c/9314c5f69b9390068a2a8616875d974849d71f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/1d/fe9d9633b24ea560354f4f93d39c6e5f163ea0 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/20/72c28e83f4347959d29f7b3a6c1fc3e4ee6b59 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/24/6b368b986f758630c46dc02b7fa512b53422f7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/25/b796accd261b9135fd32a2c00785f68edf6c46 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/27/aa6074f652bc6f7078f8647489d9ee8e24f0e2 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/28/c2969d785c1b892c2a96b3f00eba63a59811b3 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/2a/ae95d517d213b660bf4f65a4e0cfae7bb893eb +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/2a/fdf45791a26d42ccead35ace76a8f0b2a56561 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/30/a2f8da47ee947811dc8d993f5a06a45de374f4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/32/fd627b62fad7cf3b2f9e34ab9777126a0987ad +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/34/9e31b6a3634cea102ce5588b98c11cc1738605 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/34/b6f3a2ee84f39bed4eee57f2c0e0afb994feb1 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/35/1a5f491ab97eee9d1ee699478d75a8bb5d3dc2 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/36/b4a1b7403abc6c360f8fe2cb656ab945254971 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/36/e56a361f526eafa59c5235a5c990bf288b5f9c +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/36/ef43e50009e59db11812c258846d9e38718173 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/39/7ead045fbbcfb17c62019eb18fe21ed05dbee5 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/39/b13be65125556784e44c7a1d9821703c7ab67e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/3b/507acc7f23391644cc0b824b1e79fd2677a362 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/3b/bd972aa7ad680858f8dfbd0f7fcd97756f0d6f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/3c/bbe5f4173d165127b9ad96119f1ec24c306ffc +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/3d/9d10d27724657a436c65a6254bfd213d4b3562 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/3f/d6561300938afbb3d11976cf9c8f29549280d9 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/41/dcf4b3bf0460946b2da93776cf9e836d62178f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/43/dbd49b2ee367c5434dd545e3b5795434f2ef0b +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/45/b1b6178bacbfc997811a998b5cc60c1ea7fac8 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/47/6cbd5a7c5e35cddef2f8a38bdc4896d403b095 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/48/a88fc5806305d0bb0755ee6801161b79696972 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/4f/7afb40dff2153d857fc85748c2eecb85125042 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/50/08ddfcf53c02e82d7eee2e57c38e5672ef89f6 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/53/e0deb1cb4c2c606bced6e7f9a66b0fda60980d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/56/e4e8b2d5545e0256090f45aa8fc42c5fe067d0 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/57/63d0c52f5c9c69e89d514a1f96034947abe21a +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/57/bd1c0199483ab316235b094543b85edec6c35e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/58/20a729045d4dc7e37ccaf8aa8eec126850afe2 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/59/380c4c26bdcd4d9b71ae3e2e35f05b3f26c5ab +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/5a/192565abf89c9d765af846ce6d53a92b1ce7ad +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/60/f273eb1c412d916fa3f11318a7da7a9911b52a +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/61/570cec8c061abe74121f27f5face6c69b98f99 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/62/4488173ed2c8936fa5cea3cf5dd3f26a30b86e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/62/7c81b23b4e56e87b042b650b0103653cc9e34a +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/62/d90ccf8cbefdc2e4fd475e7c6f4f76e9fdf801 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/63/100154b27846e8010e55b6bf4b3d7762c14c5f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/64/27a4edff08f93d98f511418423f09f2ab90bcd +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/66/6227eeeba24073e63811e89f1449f3d958f183 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/66/c998778721d424bd0aae80602dabbffa93af2e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/68/6df3072c8b025fb18106ed2df505994ad062a9 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/69/13c452ca319f7cbf6a0836dc10a5bb033c84e4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/6a/52e747a2b349b128d1490d9e896d2323818eb7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/6b/7fde264d93a7a0986d394c46c7650d0ce2ab92 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/6c/cebb29b7f3f5b0c889f6dadbf9ff066554587d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/6d/c2cdf4a84e538e5d4777486aeff87e42f41799 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/6d/ee29dbdcc84edeeacede105110446f3ccac963 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/71/36b2074a2754be8b58127d82250e5b37e3c373 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/72/245a05b0966011cb381e6b32b0465000e969ab +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/72/e4179337639859678ddaecf38b16f33aaec8e1 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/78/063f4c863fc371ec0313303c0a81283b35d9b6 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/78/3d4167bc95c9d2175e0df03ef1c1c880ba75ab +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/79/7ae089b2212a937840e215276005ce76881307 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/7e/5956c806b5edc344d46dab599dec337891ba1f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/81/8f26b7bf042269729020cf944fc362d66ba27e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/82/70b319ce4046854fbe7dc41054b6c2d112dab2 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/84/59071b722a255b774a80b27746033f8141ab39 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/85/aee46f478e9afdb84d50a05242c53b04ed2e21 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/86/e288b46f8fe179907e4413f665aeb5053fddb1 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/87/ef1fc3f7f1ddc4d0ab9b3e65381ce9f3388621 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/8b/84f56978e1de8f2ae82abce5f8b3e182d365cd +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/8e/55a7d2b96184030211f20c9b9af201eefcac82 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/91/c69ad88fe0ba94aa7859fb5f7edac5e6f1a3f7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/94/74152b4b463d70ae5ad07f0c658be3e296026b +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/94/f7dbe88e80c4205a901b71eb8f181974376bba +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/97/1aef09ea939f46b60b9646f8d524c78a9220f4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/9b/ec5ee2236ee2d5532c36bfd132e23c58fdb69c +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/9d/0df52899fe95279059286d9c0ec42287edc168 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/a1/5389729850729fc7bd78a54f26fce77f30be12 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/a1/906da89d1174f74867800c74c43af36253bd5e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/a4/63fdd23e5efd713db8a71f316f3a1c7bd60916 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/a5/ec8f74642fbba27f7ea78c53b372ae0c7dedce +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/a7/3e13eafee65c5b8d73ad2d3ea46d0eee82f0d3 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b0/56be4be89ba6b76949dd641df45bb7036050c8 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b0/9cd7856d58590578ee1a4f3ad45d1310a97f87 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b2/18e6a0f0f1c4df8cdefa9852058348abc713b7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b3/4f7f271c6d6105e35a6556ffda71d03afe8c96 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b3/69579064bde9de9a19d114fc33e4e48cc8c0e4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b5/61831c7dce8ea51e7ee6b6fa35745f14d8242d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/b7/2c9e75ab7d0afe594664650aa8f6c772f5ac64 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/bb/81ccc0513f18fc160b54a82861e9a80d23f4f6 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/bb/934eb33bc1a8b85630bf680caffd99560c1b8f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/bf/67907e337021ebff434e02b19b30a741c144af +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/bf/b54d65922ce1dfda1aaa014913a54e7172d0bc +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/c1/20fc812b9ad311c34a3608512d6a9d976bb48e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/c1/397c6ed72c4e20ef6b9ab83163e9a6baba5b45 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/c4/cba65f1163661999ee4b8ed23342b63bc1300c +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/c6/7f17e5707313600efcb85e9a3fedea35dba591 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/c6/f32aced880bd165a251cb52b26b0c1107e2141 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/cc/45df1d317a2eb63ff1ff3a5f3b4a9f98fd92b5 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/cd/822b3574a88ebdd1ed82fd6983f37e626d52b4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/cf/0c0d9c6fb09473aaeb7f7e2edbd770c3f2ef3d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d2/992df305f4b56a466a2f221aeb182ddd20f418 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d6/39e8af592cd75a318d8affddd1bcc70c2095f2 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d6/9ab1c4aadf279936dd778e8346ba60f74705b6 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d8/4688b54c0040a30976b3a6540bc47adf7ce680 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d9/005f2cc7fc4e65f14ed5518276007c08cf2fd0 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d9/c2403fd166ce791b4e9d0c6792ed8342c71fcd +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/d9/dfa5aee51e92a541b707e8e7baea6f06deff98 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/db/141dbaa93594df2a8156182f361ee4db829359 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/db/3f2cd643292057936230b95cf7ec3046affe11 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/db/ffa8ea7bda721d0cee7b9e4ce5b2ef927733ff +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/dc/c2bdbafb3296e09d9ee4955cfa55d275825f94 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/dc/cdbd4266765d840be2ae35ab1752a0fa312c16 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/dd/87fb5f606fe380d81e6fe3a2c98f9f99e3e09b +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/de/214c626ac2dd2685bfaa0bc0fc20f528d014d7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/df/e0770424b2a19faf507a501ebfc23be8f54e7b +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e2/f2f8f4c25e62a297fc55f36acc6b01cfbab76f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e3/1356f90ea6dd0577b5e0b40b206319adcbf085 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e3/5a4dafc50850cacac7bf76c56db2715cbda2c4 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e4/6c715352db9fe3c887a635f1916df4ca1f4ff9 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e5/0580a0bd1e1b3d29f834382b80fceb61d5cf0c +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/e9/391ffe371f1cc43b42ef09b705d9c767c2e14f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/ea/3a18cc75e53792744ef754e05d3f4481768c13 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/ec/40fd8bf8e4c342534a9fc020289e402ba6bc9d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/ec/d980279432b13f0374b90ca439a6329cdece0f +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/ee/cee64eacaff022dcdc509c0c2b1da492f21060 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f1/e50757fddc28b445545dc7e2759b54cdd0f42e +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f4/b64d3107b39e3ad6f540c6607004ea34e6c024 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f4/ba7f815b886797b73fede071d86e0c134d2bc7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f5/61c3c1bf1c9ea9c9d1f556a7be2869f71f3bdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f6/44a8ff56fa035105fc517cbb1ac46c3d8e349a +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f7/c98ba5c2f903e603b1f5e63d49fbc8a43815cc +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/f9/045a08e96eb76848fc4d68e3e3e687cca39a2d +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/fa/147e6bb78a2e8db241d231295fd7f1ed061af8 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/objects/fc/292e793ecfd42240ac43be407023bd731fa9e7 +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/refs/heads/main +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/refs/remotes/origin/HEAD +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.git/refs/remotes/origin/main +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.gitattributes +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/.gitignore +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/LICENSE +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/README.md +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/__init__.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/batman.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/bio.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/brain_atlas.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/chat.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/correlators.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/.DS_Store +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/db2ls_sql_chtsht.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/docs_links.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/email/email_html_template.html +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/lang_code_iso639.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/mygenes_fields_241022.txt +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/sns_info.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/.DS_Store +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style1.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style2.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style3.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style4.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style5.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style6.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style7.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style8.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/example/style9.pdf +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style1.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style10.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style11.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style12.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style2.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style3.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style4.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style5.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style6.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style7.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style8.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/style9.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/.DS_Store +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/grid.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/high-contrast.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/high-vis.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/ieee.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/light.mplstyl +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/muted.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/nature-reviews-latex.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/nature-reviews.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/nature.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/no-latex.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/notebook.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/paper.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/retro.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/sans.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/scatter.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/science.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/std-colors.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/styles/stylelib/vibrant.mplstyle +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/usages_pd copy.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/usages_pd.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/data/usages_sns.json +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/db2ls.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/doc.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/export_requirements.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/fetch_update.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/freqanalysis.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/ich2ls.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/mol.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/ocr.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/setuptools-70.1.0-py3-none-any.whl +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/sleep_events_detectors.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/stats.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/translator.py +0 -0
- {py2ls-0.2.4.11 → py2ls-0.2.4.13}/py2ls/wb_detector.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: py2ls
|
3
|
-
Version: 0.2.4.
|
3
|
+
Version: 0.2.4.13
|
4
4
|
Summary: py(thon)2(too)ls
|
5
5
|
Author: Jianfeng
|
6
6
|
Author-email: Jianfeng.Liu0413@gmail.com
|
@@ -132,7 +132,7 @@ Requires-Dist: nltk (>=3.8.1)
|
|
132
132
|
Requires-Dist: numba (>=0.59.1)
|
133
133
|
Requires-Dist: numcodecs (>=0.13.0)
|
134
134
|
Requires-Dist: numerizer (>=0.2.3)
|
135
|
-
Requires-Dist: numpy (>=1.26.4)
|
135
|
+
Requires-Dist: numpy (>=1.26.4,<2.0.0)
|
136
136
|
Requires-Dist: onnxruntime (>=1.18.1)
|
137
137
|
Requires-Dist: opencv-contrib-python (>=4.10.0.84)
|
138
138
|
Requires-Dist: opencv-python (>=4.10.0.84)
|
@@ -6289,6 +6289,12 @@ def df_reducer(
|
|
6289
6289
|
hue: str = None, # lda-specific
|
6290
6290
|
scale: bool = True,
|
6291
6291
|
fill_missing: bool = True,
|
6292
|
+
size=2,# for plot marker size
|
6293
|
+
markerscale=4,# for plot, legend marker size scale
|
6294
|
+
edgecolor='none',# for plot,
|
6295
|
+
legend_loc='best',# for plot,
|
6296
|
+
bbox_to_anchor=None,
|
6297
|
+
ncols=1,
|
6292
6298
|
debug: bool = False,
|
6293
6299
|
inplace: bool = True, # replace the oringinal data
|
6294
6300
|
plot_: bool = False, # plot scatterplot, but no 'hue',so it is meaningless
|
@@ -6312,6 +6318,13 @@ def df_reducer(
|
|
6312
6318
|
"ica": "ica(Independent Component Analysis):\n\tEffective for blind source separation (e.g., EEG, audio signal processing).is generally categorized under Non-linear Dimensionality Reduction, but it also serves a distinct role in Blind Source Separation. While ICA is commonly used for dimensionality reduction, particularly in contexts where data sources need to be disentangled (e.g., separating mixed signals like EEG or audio data), it focuses on finding statistically independent components rather than maximizing variance (like PCA) or preserving distances (like MDS or UMAP). Advantage: Extracts independent signals/components, useful in mixed signal scenarios. Limitation: Assumes statistical independence, sensitive to noise and algorithm choice.",
|
6313
6319
|
#! Anomaly Detection: Specialized for detecting outliers or unusual patterns
|
6314
6320
|
"isolation_forest": "Isolation Forest:\n\tDesigned for anomaly detection, especially in high-dimensional data. Advantage: Effective in detecting outliers, efficient for large datasets. Limitation: Sensitive to contamination ratio parameter, not ideal for highly structured or non-anomalous data.",
|
6321
|
+
#! more methods
|
6322
|
+
"truncated_svd": "Truncated Singular Value Decomposition (SVD):\n\tEfficient for large sparse datasets, useful for feature reduction in natural language processing (e.g., Latent Semantic Analysis). Advantage: Efficient in memory usage for large datasets. Limitation: Limited in non-linear transformation.",
|
6323
|
+
"spectral_embedding": "Spectral Embedding:\n\tBased on graph theory, it can be useful for clustering and visualization, especially for data with connected structures. Advantage: Preserves global structure, good for graph-type data. Limitation: Sensitive to parameter choice, not ideal for arbitrary non-connected data.",
|
6324
|
+
"autoencoder": "Autoencoder:\n\tA neural network-based approach for complex feature learning and non-linear dimensionality reduction. Advantage: Can capture very complex relationships. Limitation: Computationally expensive, requires neural network expertise for effective tuning.",
|
6325
|
+
"nmf": "Non-negative Matrix Factorization:\n\tEffective for parts-based decomposition, commonly used for sparse and non-negative data, e.g., text data or images. Advantage: Interpretability with non-negativity, efficient with sparse data. Limitation: Less effective for negative or zero-centered data.",
|
6326
|
+
"umap_hdbscan": "UMAP + HDBSCAN:\n\tCombination of UMAP for dimensionality reduction and HDBSCAN for density-based clustering, suitable for cluster discovery in high-dimensional data. Advantage: Effective in discovering clusters in embeddings. Limitation: Requires careful tuning of both UMAP and HDBSCAN parameters.",
|
6327
|
+
"manifold_learning": "Manifold Learning (Isomap, Hessian LLE, etc.):\n\tMethods designed to capture intrinsic geometrical structure. Advantage: Preserves non-linear relationships in low dimensions. Limitation: Computationally expensive and sensitive to noise."
|
6315
6328
|
}
|
6316
6329
|
|
6317
6330
|
from sklearn.preprocessing import StandardScaler
|
@@ -6322,17 +6335,9 @@ def df_reducer(
|
|
6322
6335
|
import seaborn as sns
|
6323
6336
|
# Check valid method input
|
6324
6337
|
methods = [
|
6325
|
-
"pca",
|
6326
|
-
"
|
6327
|
-
"
|
6328
|
-
"factor",
|
6329
|
-
"isolation_forest",
|
6330
|
-
"lda",
|
6331
|
-
"kpca",
|
6332
|
-
"ica",
|
6333
|
-
"mds",
|
6334
|
-
"lle",
|
6335
|
-
"svd",
|
6338
|
+
"pca", "umap", "umap_hdbscan", "tsne", "factor", "isolation_forest","manifold_learning", "lda", "kpca", "ica",
|
6339
|
+
"mds", "lle", "svd", "truncated_svd", "spectral_embedding",
|
6340
|
+
# "autoencoder","nmf",
|
6336
6341
|
]
|
6337
6342
|
method = strcmp(method, methods)[0]
|
6338
6343
|
print(f"\nprocessing with using {dict_methods[method]}:")
|
@@ -6637,12 +6642,131 @@ def df_reducer(
|
|
6637
6642
|
index=data.index,
|
6638
6643
|
columns=[f"SVD_{i+1}" for i in range(n_components)],
|
6639
6644
|
)
|
6645
|
+
colname_met = "SVD_"
|
6640
6646
|
if hue:
|
6641
6647
|
svd_df[hue] = y
|
6642
6648
|
if debug:
|
6643
6649
|
print("Singular Value Decomposition (SVD) completed.")
|
6650
|
+
elif method=="truncated_svd":
|
6651
|
+
from sklearn.decomposition import TruncatedSVD
|
6652
|
+
svd = TruncatedSVD(n_components=n_components, random_state=random_state)
|
6653
|
+
X_reduced = svd.fit_transform(X)
|
6654
|
+
reduced_df = pd.DataFrame(
|
6655
|
+
X_reduced,
|
6656
|
+
columns=[f"SVD Component {i+1}" for i in range(n_components)],
|
6657
|
+
index=data.index,
|
6658
|
+
)
|
6659
|
+
colname_met = "SVD Component "
|
6660
|
+
|
6661
|
+
if debug:
|
6662
|
+
print("Truncated SVD completed.")
|
6663
|
+
print("Explained Variance Ratio:", svd.explained_variance_ratio_)
|
6664
|
+
if hue:
|
6665
|
+
reduced_df[hue] = y
|
6666
|
+
|
6667
|
+
elif method == "spectral_embedding":
|
6668
|
+
from sklearn.manifold import SpectralEmbedding
|
6669
|
+
|
6670
|
+
spectral = SpectralEmbedding(n_components=n_components, random_state=random_state)
|
6671
|
+
X_reduced = spectral.fit_transform(X)
|
6672
|
+
reduced_df = pd.DataFrame(
|
6673
|
+
X_reduced,
|
6674
|
+
columns=[f"Dimension_{i+1}" for i in range(n_components)],
|
6675
|
+
index=data.index,
|
6676
|
+
)
|
6677
|
+
colname_met = "Dimension_"
|
6678
|
+
|
6679
|
+
if debug:
|
6680
|
+
print("Spectral Embedding completed.")
|
6681
|
+
if hue:
|
6682
|
+
reduced_df[hue] = y
|
6683
|
+
|
6684
|
+
elif method == "autoencoder":
|
6685
|
+
from tensorflow.keras.models import Model
|
6686
|
+
from tensorflow.keras.layers import Input, Dense
|
6687
|
+
|
6688
|
+
input_dim = X.shape[1]
|
6689
|
+
input_layer = Input(shape=(input_dim,))
|
6690
|
+
encoded = Dense(n_components * 2, activation="relu")(input_layer)
|
6691
|
+
encoded = Dense(n_components, activation="relu")(encoded)
|
6692
|
+
autoencoder = Model(input_layer, encoded)
|
6693
|
+
autoencoder.compile(optimizer="adam", loss="mean_squared_error")
|
6694
|
+
autoencoder.fit(X, X, epochs=50, batch_size=256, shuffle=True, verbose=0)
|
6695
|
+
|
6696
|
+
X_reduced = autoencoder.predict(X)
|
6697
|
+
reduced_df = pd.DataFrame(
|
6698
|
+
X_reduced,
|
6699
|
+
columns=[f"Score_{i+1}" for i in range(n_components)],
|
6700
|
+
index=data.index,
|
6701
|
+
)
|
6702
|
+
colname_met = "Score_"
|
6703
|
+
|
6704
|
+
if debug:
|
6705
|
+
print("Autoencoder reduction completed.")
|
6706
|
+
if hue:
|
6707
|
+
reduced_df[hue] = y
|
6708
|
+
|
6709
|
+
elif method == "nmf":
|
6710
|
+
from sklearn.decomposition import NMF
|
6711
|
+
|
6712
|
+
nmf = NMF(n_components=n_components, random_state=random_state)
|
6713
|
+
X_reduced = nmf.fit_transform(X)
|
6714
|
+
reduced_df = pd.DataFrame(
|
6715
|
+
X_reduced,
|
6716
|
+
columns=[f"NMF_{i+1}" for i in range(n_components)],
|
6717
|
+
index=data.index,
|
6718
|
+
)
|
6719
|
+
colname_met = "NMF_"
|
6644
6720
|
|
6645
|
-
|
6721
|
+
if debug:
|
6722
|
+
print("Non-negative Matrix Factorization completed.")
|
6723
|
+
if hue:
|
6724
|
+
reduced_df[hue] = y
|
6725
|
+
|
6726
|
+
elif method == "umap_hdbscan":
|
6727
|
+
import umap
|
6728
|
+
import hdbscan
|
6729
|
+
|
6730
|
+
umap_model = umap.UMAP(
|
6731
|
+
n_neighbors=umap_neighbors,
|
6732
|
+
min_dist=umap_min_dist,
|
6733
|
+
n_components=n_components,
|
6734
|
+
)
|
6735
|
+
X_umap = umap_model.fit_transform(X)
|
6736
|
+
|
6737
|
+
clusterer = hdbscan.HDBSCAN()
|
6738
|
+
clusters = clusterer.fit_predict(X_umap)
|
6739
|
+
|
6740
|
+
reduced_df = pd.DataFrame(
|
6741
|
+
X_umap,
|
6742
|
+
columns=[f"UMAP_{i+1}" for i in range(n_components)],
|
6743
|
+
index=data.index,
|
6744
|
+
)
|
6745
|
+
reduced_df["Cluster"] = clusters
|
6746
|
+
colname_met = "UMAP_"
|
6747
|
+
if debug:
|
6748
|
+
print("UMAP + HDBSCAN reduction and clustering completed.")
|
6749
|
+
if hue:
|
6750
|
+
reduced_df[hue] = y
|
6751
|
+
|
6752
|
+
elif method == "manifold_learning":
|
6753
|
+
from sklearn.manifold import Isomap
|
6754
|
+
|
6755
|
+
isomap = Isomap(n_components=n_components)
|
6756
|
+
X_reduced = isomap.fit_transform(X)
|
6757
|
+
reduced_df = pd.DataFrame(
|
6758
|
+
X_reduced,
|
6759
|
+
columns=[f"Manifold_{i+1}" for i in range(n_components)],
|
6760
|
+
index=data.index,
|
6761
|
+
)
|
6762
|
+
colname_met = "Manifold_"
|
6763
|
+
|
6764
|
+
if debug:
|
6765
|
+
print("Manifold Learning (Isomap) completed.")
|
6766
|
+
if hue:
|
6767
|
+
reduced_df[hue] = y
|
6768
|
+
|
6769
|
+
#! Return reduced data and info as a new DataFrame with the same index
|
6646
6770
|
if method == "pca":
|
6647
6771
|
reduced_df = pca_df
|
6648
6772
|
colname_met = "PC_"
|
@@ -6699,7 +6823,6 @@ def df_reducer(
|
|
6699
6823
|
# Quick plots
|
6700
6824
|
if plot_ and (not method in ["isolation_forest"]):
|
6701
6825
|
from .plot import plotxy
|
6702
|
-
|
6703
6826
|
if ax is None:
|
6704
6827
|
if figsize is None:
|
6705
6828
|
_, ax = plt.subplots(figsize=cm2inch(8, 8))
|
@@ -6707,16 +6830,18 @@ def df_reducer(
|
|
6707
6830
|
_, ax = plt.subplots(figsize=figsize)
|
6708
6831
|
else:
|
6709
6832
|
ax = ax.cla()
|
6833
|
+
xlabel = f"{colname_met}1" if xlabel is None else xlabel
|
6834
|
+
ylabel = f"{colname_met}2" if ylabel is None else ylabel
|
6710
6835
|
ax = plotxy(
|
6711
6836
|
data=reduced_df,
|
6712
6837
|
x=colname_met + "1",
|
6713
6838
|
y=colname_met + "2",
|
6714
6839
|
hue=hue,
|
6715
|
-
s=
|
6716
|
-
edgecolor=
|
6840
|
+
s=size,
|
6841
|
+
edgecolor=edgecolor,
|
6717
6842
|
kind="scater",
|
6718
6843
|
figsets=dict(
|
6719
|
-
legend=dict(loc=
|
6844
|
+
legend=dict(loc=legend_loc, markerscale=markerscale,bbox_to_anchor=bbox_to_anchor,ncols=ncols,fontsize=8),
|
6720
6845
|
xlabel=xlabel if xlabel else None,
|
6721
6846
|
ylabel=ylabel if ylabel else None,
|
6722
6847
|
),
|
@@ -1298,10 +1298,11 @@ def plot_validate_features_single(res_val, figsize=None):
|
|
1298
1298
|
mean_auc = res_val["roc_curve"][model_name]["auc"]
|
1299
1299
|
|
1300
1300
|
# Plotting
|
1301
|
-
plot_roc_curve(fpr, tpr, mean_auc, lower_ci, upper_ci,
|
1301
|
+
plot_roc_curve(fpr, tpr, mean_auc, lower_ci, upper_ci,
|
1302
|
+
model_name=model_name, ax=nexttile())
|
1302
1303
|
plot.figsets(title=model_name, sp=2)
|
1303
1304
|
|
1304
|
-
|
1305
|
+
plot_pr_binary(
|
1305
1306
|
recall=res_val["pr_curve"][model_name]["recall"],
|
1306
1307
|
precision=res_val["pr_curve"][model_name]["precision"],
|
1307
1308
|
avg_precision=res_val["pr_curve"][model_name]["avg_precision"],
|
@@ -1410,7 +1411,6 @@ def plot_roc_curve(
|
|
1410
1411
|
# ml2ls.plot_roc_curve(fpr, tpr, mean_auc, lower_ci, upper_ci)
|
1411
1412
|
# figsets(title=model_name)
|
1412
1413
|
|
1413
|
-
|
1414
1414
|
def plot_pr_curve(
|
1415
1415
|
recall=None,
|
1416
1416
|
precision=None,
|
@@ -1436,7 +1436,7 @@ def plot_pr_curve(
|
|
1436
1436
|
precision,
|
1437
1437
|
lw=lw,
|
1438
1438
|
color=color,
|
1439
|
-
label=(f"{model_name} (
|
1439
|
+
label=(f"{model_name} (AP={avg_precision:.2f})"),
|
1440
1440
|
clip_on=False,
|
1441
1441
|
**kwargs,
|
1442
1442
|
)
|
@@ -1453,7 +1453,6 @@ def plot_pr_curve(
|
|
1453
1453
|
ax.legend(loc=legend_loc)
|
1454
1454
|
return ax
|
1455
1455
|
|
1456
|
-
|
1457
1456
|
# * usage: ml2ls.plot_pr_curve()
|
1458
1457
|
# for md_name in flatten(validation_results["pr_curve"].keys()):
|
1459
1458
|
# ml2ls.plot_pr_curve(
|
@@ -1466,7 +1465,91 @@ def plot_pr_curve(
|
|
1466
1465
|
# color="r",
|
1467
1466
|
# )
|
1468
1467
|
|
1468
|
+
def plot_pr_binary(
|
1469
|
+
recall=None,
|
1470
|
+
precision=None,
|
1471
|
+
avg_precision=None,
|
1472
|
+
model_name=None,
|
1473
|
+
lw=2,
|
1474
|
+
figsize=[5, 5],
|
1475
|
+
title="Precision-Recall Curve",
|
1476
|
+
xlabel="Recall",
|
1477
|
+
ylabel="Precision",
|
1478
|
+
alpha=0.1,
|
1479
|
+
color="#FF8F00",
|
1480
|
+
legend_loc="lower left",
|
1481
|
+
ax=None,
|
1482
|
+
show_avg_precision=False,
|
1483
|
+
**kwargs,
|
1484
|
+
):
|
1485
|
+
from scipy.interpolate import interp1d
|
1486
|
+
if ax is None:
|
1487
|
+
fig, ax = plt.subplots(figsize=figsize)
|
1488
|
+
model_name = "Binary PR Curve" if model_name is None else model_name
|
1489
|
+
|
1490
|
+
#* use sklearn bulitin function 'PrecisionRecallDisplay'?
|
1491
|
+
# from sklearn.metrics import PrecisionRecallDisplay
|
1492
|
+
# disp = PrecisionRecallDisplay(precision=precision,
|
1493
|
+
# recall=recall,
|
1494
|
+
# average_precision=avg_precision,**kwargs)
|
1495
|
+
# disp.plot(ax=ax, name=model_name, color=color)
|
1496
|
+
|
1497
|
+
# Plot Precision-Recall curve
|
1498
|
+
ax.plot(
|
1499
|
+
recall,
|
1500
|
+
precision,
|
1501
|
+
lw=lw,
|
1502
|
+
color=color,
|
1503
|
+
label=(f"{model_name} (AP={avg_precision:.2f})"),
|
1504
|
+
clip_on=False,
|
1505
|
+
**kwargs,
|
1506
|
+
)
|
1469
1507
|
|
1508
|
+
# Fill area under the curve
|
1509
|
+
ax.fill_between(recall, precision, alpha=alpha, color=color)
|
1510
|
+
# Add F1 score iso-contours
|
1511
|
+
f_scores = np.linspace(0.2, 0.8, num=4)
|
1512
|
+
# for f_score in f_scores:
|
1513
|
+
# x = np.linspace(0.01, 1)
|
1514
|
+
# y = f_score * x / (2 * x - f_score)
|
1515
|
+
# plt.plot(x[y >= 0], y[y >= 0], color="gray", alpha=1)
|
1516
|
+
# plt.annotate(f"$f_1={f_score:0.1f}$", xy=(0.8, y[45] + 0.02))
|
1517
|
+
|
1518
|
+
pr_boundary = interp1d(recall, precision, kind="linear", fill_value="extrapolate")
|
1519
|
+
for f_score in f_scores:
|
1520
|
+
x_vals = np.linspace(0.01, 1, 10000)
|
1521
|
+
y_vals = f_score * x_vals / (2 * x_vals - f_score)
|
1522
|
+
y_vals_clipped = np.minimum(y_vals, pr_boundary(x_vals))
|
1523
|
+
y_vals_clipped = np.clip(y_vals_clipped, 1e-3, None) # Prevent going to zero
|
1524
|
+
valid = y_vals_clipped < pr_boundary(x_vals)
|
1525
|
+
valid_ = y_vals_clipped > 1e-3
|
1526
|
+
valid = valid&valid_
|
1527
|
+
x_vals = x_vals[valid]
|
1528
|
+
y_vals_clipped = y_vals_clipped[valid]
|
1529
|
+
if len(x_vals) > 0: # Ensure annotation is placed only if line segment exists
|
1530
|
+
ax.plot(x_vals, y_vals_clipped, color="gray", alpha=1)
|
1531
|
+
plt.annotate(f"$f_1={f_score:0.1f}$", xy=(0.8, y_vals_clipped[-int(len(y_vals_clipped)*0.35)] + 0.02))
|
1532
|
+
|
1533
|
+
|
1534
|
+
# # Plot the average precision line
|
1535
|
+
if show_avg_precision:
|
1536
|
+
plt.axhline(
|
1537
|
+
y=avg_precision,
|
1538
|
+
color="red",
|
1539
|
+
ls="--",
|
1540
|
+
lw=lw,
|
1541
|
+
label=f"Avg. precision={avg_precision:.2f}",
|
1542
|
+
)
|
1543
|
+
# Customize axes
|
1544
|
+
ax.set_title(title)
|
1545
|
+
ax.set_xlabel(xlabel)
|
1546
|
+
ax.set_ylabel(ylabel)
|
1547
|
+
ax.set_xlim([-0.01, 1.0])
|
1548
|
+
ax.set_ylim([0.0, 1.0])
|
1549
|
+
ax.grid(False)
|
1550
|
+
ax.legend(loc=legend_loc)
|
1551
|
+
return ax
|
1552
|
+
|
1470
1553
|
def plot_cm(
|
1471
1554
|
cm,
|
1472
1555
|
labels_name=None,
|
@@ -1,35 +1,9 @@
|
|
1
1
|
from bs4 import BeautifulSoup
|
2
2
|
import requests
|
3
|
-
from requests.utils import dict_from_cookiejar
|
4
|
-
from requests.exceptions import ChunkedEncodingError, ConnectionError
|
5
3
|
import os
|
6
|
-
from urllib.parse import urlparse, urljoin
|
7
|
-
import base64
|
8
4
|
import pandas as pd
|
9
|
-
from collections import Counter
|
10
|
-
import random
|
11
5
|
import logging
|
12
|
-
from time import sleep
|
13
|
-
import stem.process
|
14
|
-
from stem import Signal
|
15
|
-
from stem.control import Controller
|
16
6
|
import json
|
17
|
-
from fake_useragent import UserAgent
|
18
|
-
from selenium import webdriver
|
19
|
-
from selenium.webdriver.chrome.service import Service
|
20
|
-
from selenium.webdriver.common.by import By
|
21
|
-
from selenium.webdriver.chrome.options import Options
|
22
|
-
from selenium.webdriver.support.ui import WebDriverWait
|
23
|
-
from selenium.webdriver.support import expected_conditions as EC
|
24
|
-
from webdriver_manager.chrome import ChromeDriverManager
|
25
|
-
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
|
26
|
-
from pprint import pp
|
27
|
-
import mimetypes
|
28
|
-
import io
|
29
|
-
import matplotlib.pyplot as plt
|
30
|
-
from PIL import Image
|
31
|
-
from duckduckgo_search import DDGS
|
32
|
-
from datetime import datetime
|
33
7
|
import time
|
34
8
|
from . import ips
|
35
9
|
|
@@ -56,6 +30,8 @@ def user_agent(
|
|
56
30
|
verbose=False,
|
57
31
|
os=["windows", "macos", "linux"],
|
58
32
|
):
|
33
|
+
from fake_useragent import UserAgent
|
34
|
+
|
59
35
|
ua = UserAgent(browsers=browsers, platforms=platforms, os=os)
|
60
36
|
output_ua = ua.random
|
61
37
|
if verbose:
|
@@ -109,6 +85,8 @@ def get_attr(content, where=None, attr=None, **kwargs):
|
|
109
85
|
else:
|
110
86
|
print(f"The attribute '{attr}' is not found in the elements.")
|
111
87
|
else:
|
88
|
+
from pprint import pp
|
89
|
+
|
112
90
|
print(f"Cannot find tag '{where}' in the content.")
|
113
91
|
print("Available tags:")
|
114
92
|
pp(all_tags)
|
@@ -237,6 +215,8 @@ def flatten_json(y):
|
|
237
215
|
|
238
216
|
|
239
217
|
def get_proxy():
|
218
|
+
import random
|
219
|
+
|
240
220
|
list_ = []
|
241
221
|
headers = {"User-Agent": user_agent()}
|
242
222
|
response = requests.get(
|
@@ -275,6 +255,8 @@ def get_cookies(url, login={"username": "your_username", "password": "your_passw
|
|
275
255
|
|
276
256
|
### 更加平滑地移动鼠标, 这样更容易反爬
|
277
257
|
def scroll_smth_steps(driver, scroll_pause=0.5, min_step=200, max_step=600):
|
258
|
+
import random
|
259
|
+
|
278
260
|
"""Smoothly scrolls down the page to trigger lazy loading."""
|
279
261
|
current_scroll_position = 0
|
280
262
|
end_of_page = driver.execute_script("return document.body.scrollHeight")
|
@@ -383,7 +365,7 @@ def fetch_all(
|
|
383
365
|
if response.status_code == 403:
|
384
366
|
logger.warning("403 Forbidden error. Retrying...")
|
385
367
|
# Retry the request after a short delay
|
386
|
-
sleep(random.uniform(1, 3))
|
368
|
+
time.sleep(random.uniform(1, 3))
|
387
369
|
response = requests.get(
|
388
370
|
url, headers=headers, proxies=proxies_glob, timeout=30, stream=True
|
389
371
|
)
|
@@ -410,6 +392,18 @@ def fetch_all(
|
|
410
392
|
logger.warning("Unsupported content type")
|
411
393
|
return None, None
|
412
394
|
elif "se" in driver.lower():
|
395
|
+
import random
|
396
|
+
from selenium import webdriver
|
397
|
+
from selenium.webdriver.chrome.service import Service
|
398
|
+
from selenium.webdriver.common.by import By
|
399
|
+
from selenium.webdriver.chrome.options import Options
|
400
|
+
from selenium.webdriver.support.ui import WebDriverWait
|
401
|
+
from selenium.webdriver.support import expected_conditions as EC
|
402
|
+
from webdriver_manager.chrome import ChromeDriverManager
|
403
|
+
from selenium.webdriver.common.desired_capabilities import (
|
404
|
+
DesiredCapabilities,
|
405
|
+
)
|
406
|
+
|
413
407
|
chrome_options = Options()
|
414
408
|
chrome_options.add_argument("--headless")
|
415
409
|
chrome_options.add_argument("--no-sandbox")
|
@@ -501,7 +495,7 @@ def fetch_all(
|
|
501
495
|
content = BeautifulSoup(page_source, "html.parser")
|
502
496
|
if content and content.find_all(by):
|
503
497
|
break
|
504
|
-
sleep(
|
498
|
+
time.sleep(
|
505
499
|
random.uniform(2, 4)
|
506
500
|
) # Wait for a random time before polling again
|
507
501
|
|
@@ -575,6 +569,8 @@ def fetch_all(
|
|
575
569
|
# else:
|
576
570
|
# return None
|
577
571
|
def find_links(url, driver="request", booster=False):
|
572
|
+
from urllib.parse import urlparse, urljoin
|
573
|
+
|
578
574
|
links_href, cond_ex = [], ["javascript:", "mailto:", "tel:", "fax:"]
|
579
575
|
content_type, soup = fetch_all(url, driver=driver)
|
580
576
|
|
@@ -615,6 +611,8 @@ def find_links(url, driver="request", booster=False):
|
|
615
611
|
|
616
612
|
# To determine which links are related to target domains(e.g., pages) you are interested in
|
617
613
|
def filter_links(links, contains="html", driver="requ", booster=False):
|
614
|
+
from urllib.parse import urlparse, urljoin
|
615
|
+
|
618
616
|
filtered_links = []
|
619
617
|
if isinstance(contains, str):
|
620
618
|
contains = [contains]
|
@@ -631,6 +629,9 @@ def filter_links(links, contains="html", driver="requ", booster=False):
|
|
631
629
|
|
632
630
|
|
633
631
|
def find_domain(links):
|
632
|
+
from urllib.parse import urlparse, urljoin
|
633
|
+
from collections import Counter
|
634
|
+
|
634
635
|
if not links:
|
635
636
|
return None
|
636
637
|
domains = [urlparse(link).netloc for link in links]
|
@@ -685,6 +686,8 @@ def pdf_detector(url, contains=None, dir_save=None, booster=False):
|
|
685
686
|
pdf_links = filter_links(links=links_all, contains=["pdf"])
|
686
687
|
|
687
688
|
if pdf_links:
|
689
|
+
from pprint import pp
|
690
|
+
|
688
691
|
pp(f"pdf detected{pdf_links}")
|
689
692
|
else:
|
690
693
|
print("no pdf file")
|
@@ -719,6 +722,9 @@ def downloader(
|
|
719
722
|
n_try=3,
|
720
723
|
timestamp=False,
|
721
724
|
):
|
725
|
+
|
726
|
+
from requests.exceptions import ChunkedEncodingError, ConnectionError
|
727
|
+
|
722
728
|
if verbose:
|
723
729
|
print(
|
724
730
|
"usage: downloader(url, dir_save=None, kind=['.pdf','xls'], contains=None, booster=False)"
|
@@ -742,14 +748,14 @@ def downloader(
|
|
742
748
|
counter_ = str(counter)
|
743
749
|
new_filename = f"{base}_{counter_}{ext}"
|
744
750
|
counter += 1
|
745
|
-
return new_filename
|
746
|
-
|
751
|
+
return new_filename
|
752
|
+
|
747
753
|
if url.startswith("ftp"):
|
748
754
|
import urllib.request
|
749
755
|
|
750
756
|
if dir_save is None:
|
751
|
-
dir_save = "./"
|
752
|
-
dir_save+= os.path.basename(url)
|
757
|
+
dir_save = "./"
|
758
|
+
dir_save += os.path.basename(url)
|
753
759
|
print(dir_save)
|
754
760
|
urllib.request.urlretrieve(url, dir_save)
|
755
761
|
print(f"Downloaded file to: {dir_save}")
|
@@ -807,6 +813,8 @@ def downloader(
|
|
807
813
|
file_links = filter_links(links_all, contains=kind_)
|
808
814
|
if verbose:
|
809
815
|
if file_links:
|
816
|
+
from pprint import pp
|
817
|
+
|
810
818
|
print("Files detected:")
|
811
819
|
pp(file_links)
|
812
820
|
else:
|
@@ -845,6 +853,8 @@ def downloader(
|
|
845
853
|
dir_save, corrected_fname
|
846
854
|
)
|
847
855
|
if timestamp:
|
856
|
+
from datetime import datetime
|
857
|
+
|
848
858
|
corrected_fname = (
|
849
859
|
datetime.now().strftime("%y%m%d_%H%M%S_")
|
850
860
|
+ corrected_fname
|
@@ -878,6 +888,8 @@ def downloader(
|
|
878
888
|
|
879
889
|
# print(f"\n{len(fnames)} files were downloaded:")
|
880
890
|
if verbose:
|
891
|
+
from pprint import pp
|
892
|
+
|
881
893
|
if corrected_fname:
|
882
894
|
pp(corrected_fname)
|
883
895
|
print(f"\n\nsaved @:\n{dir_save}")
|
@@ -896,6 +908,9 @@ def find_img(url, driver="request", dir_save="images", rm_folder=False, verbose=
|
|
896
908
|
Returns:
|
897
909
|
str: HTML content with updated image URLs pointing to local files.
|
898
910
|
"""
|
911
|
+
from urllib.parse import urlparse, urljoin
|
912
|
+
import base64
|
913
|
+
|
899
914
|
if rm_folder:
|
900
915
|
ips.rm_folder(dir_save)
|
901
916
|
content_type, content = fetch_all(url, driver=driver)
|
@@ -961,6 +976,9 @@ def find_img(url, driver="request", dir_save="images", rm_folder=False, verbose=
|
|
961
976
|
|
962
977
|
|
963
978
|
def svg_to_png(svg_file):
|
979
|
+
import io
|
980
|
+
from PIL import Image
|
981
|
+
|
964
982
|
with WandImage(filename=svg_file, resolution=300) as img:
|
965
983
|
img.format = "png"
|
966
984
|
png_image = img.make_blob()
|
@@ -1026,6 +1044,16 @@ def fetch_selenium(
|
|
1026
1044
|
iframe_name=None, # Add option to handle iframe
|
1027
1045
|
**kwargs,
|
1028
1046
|
):
|
1047
|
+
import random
|
1048
|
+
from selenium import webdriver
|
1049
|
+
from selenium.webdriver.chrome.service import Service
|
1050
|
+
from selenium.webdriver.common.by import By
|
1051
|
+
from selenium.webdriver.chrome.options import Options
|
1052
|
+
from selenium.webdriver.support.ui import WebDriverWait
|
1053
|
+
from selenium.webdriver.support import expected_conditions as EC
|
1054
|
+
from webdriver_manager.chrome import ChromeDriverManager
|
1055
|
+
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
|
1056
|
+
|
1029
1057
|
chrome_options = Options()
|
1030
1058
|
chrome_options.add_argument("--headless")
|
1031
1059
|
chrome_options.add_argument("--no-sandbox")
|
@@ -1085,7 +1113,7 @@ def fetch_selenium(
|
|
1085
1113
|
if attempt == retry - 1:
|
1086
1114
|
logger.error("Failed to fetch the content after all retries")
|
1087
1115
|
return []
|
1088
|
-
sleep(random.uniform(1, 3))
|
1116
|
+
time.sleep(random.uniform(1, 3))
|
1089
1117
|
# Return empty list if nothing found after all retries
|
1090
1118
|
return []
|
1091
1119
|
|
@@ -1102,6 +1130,9 @@ def fetch(
|
|
1102
1130
|
output="text",
|
1103
1131
|
**kws,
|
1104
1132
|
):
|
1133
|
+
import random
|
1134
|
+
from urllib.parse import urlparse, urljoin
|
1135
|
+
|
1105
1136
|
if "xt" in output.lower():
|
1106
1137
|
for attempt in range(retry):
|
1107
1138
|
if verbose and attempt == 0:
|
@@ -1127,7 +1158,7 @@ def fetch(
|
|
1127
1158
|
else:
|
1128
1159
|
if texts:
|
1129
1160
|
break
|
1130
|
-
sleep(random.uniform(0.5, 1.5))
|
1161
|
+
time.sleep(random.uniform(0.5, 1.5))
|
1131
1162
|
if isinstance(texts, pd.core.frame.DataFrame):
|
1132
1163
|
condition_ = [texts.empty, booster]
|
1133
1164
|
else:
|
@@ -1453,6 +1484,8 @@ def isa(fpath, kind="img"):
|
|
1453
1484
|
|
1454
1485
|
|
1455
1486
|
def is_image(fpath):
|
1487
|
+
import mimetypes
|
1488
|
+
|
1456
1489
|
mime_type, _ = mimetypes.guess_type(fpath)
|
1457
1490
|
if mime_type and mime_type.startswith("image"):
|
1458
1491
|
return True
|
@@ -1461,6 +1494,8 @@ def is_image(fpath):
|
|
1461
1494
|
|
1462
1495
|
|
1463
1496
|
def is_document(fpath):
|
1497
|
+
import mimetypes
|
1498
|
+
|
1464
1499
|
mime_type, _ = mimetypes.guess_type(fpath)
|
1465
1500
|
if mime_type and (
|
1466
1501
|
mime_type.startswith("text/")
|
@@ -1481,6 +1516,8 @@ def is_document(fpath):
|
|
1481
1516
|
|
1482
1517
|
|
1483
1518
|
def is_zip(fpath):
|
1519
|
+
import mimetypes
|
1520
|
+
|
1484
1521
|
mime_type, _ = mimetypes.guess_type(fpath)
|
1485
1522
|
if mime_type == "application/zip":
|
1486
1523
|
return True
|
@@ -1500,6 +1537,8 @@ def search(
|
|
1500
1537
|
):
|
1501
1538
|
|
1502
1539
|
if "te" in kind.lower():
|
1540
|
+
from duckduckgo_search import DDGS
|
1541
|
+
|
1503
1542
|
results = DDGS().text(query, max_results=limit)
|
1504
1543
|
res = pd.DataFrame(results)
|
1505
1544
|
res.rename(columns={"href": "links"}, inplace=True)
|
@@ -1517,6 +1556,8 @@ def search(
|
|
1517
1556
|
|
1518
1557
|
|
1519
1558
|
def echo(query, model="gpt", verbose=True, log=True, dir_save=dir_save):
|
1559
|
+
from duckduckgo_search import DDGS
|
1560
|
+
|
1520
1561
|
def is_in_any(str_candi_short, str_full, ignore_case=True):
|
1521
1562
|
if isinstance(str_candi_short, str):
|
1522
1563
|
str_candi_short = [str_candi_short]
|
@@ -1545,8 +1586,12 @@ def echo(query, model="gpt", verbose=True, log=True, dir_save=dir_save):
|
|
1545
1586
|
model_valid = valid_mod_name(model)
|
1546
1587
|
res = DDGS().chat(query, model=model_valid)
|
1547
1588
|
if verbose:
|
1589
|
+
from pprint import pp
|
1590
|
+
|
1548
1591
|
pp(res)
|
1549
1592
|
if log:
|
1593
|
+
from datetime import datetime
|
1594
|
+
|
1550
1595
|
dt_str = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d_%H:%M:%S")
|
1551
1596
|
res_ = f"###{dt_str}\n\n>{res}\n"
|
1552
1597
|
os.makedirs(dir_save, exist_ok=True)
|