py-ewr 2.2.5__tar.gz → 2.2.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {py_ewr-2.2.5 → py_ewr-2.2.6}/PKG-INFO +48 -24
- {py_ewr-2.2.5 → py_ewr-2.2.6}/README.md +38 -14
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/data_inputs.py +18 -4
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/evaluate_EWRs.py +38 -18
- py_ewr-2.2.6/py_ewr/model_metadata/SiteID_MDBA.csv +2695 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/parameter_metadata/parameter_sheet.csv +3459 -3447
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/scenario_handling.py +82 -61
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr.egg-info/PKG-INFO +48 -24
- py_ewr-2.2.6/py_ewr.egg-info/requires.txt +8 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/setup.py +10 -10
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_data_inputs.py +14 -1
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_scenario_handling.py +173 -0
- py_ewr-2.2.5/py_ewr/model_metadata/SiteID_MDBA.csv +0 -2686
- py_ewr-2.2.5/py_ewr.egg-info/requires.txt +0 -9
- {py_ewr-2.2.5 → py_ewr-2.2.6}/LICENSE +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/__init__.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/io.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/model_metadata/SiteID_NSW.csv +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/model_metadata/iqqm_stations.csv +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/observed_handling.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/parameter_metadata/ewr2obj.csv +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/parameter_metadata/ewr_calc_config.json +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/parameter_metadata/obj2target.csv +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/parameter_metadata/obj2yrtarget.csv +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr/summarise_results.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr.egg-info/SOURCES.txt +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr.egg-info/dependency_links.txt +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/py_ewr.egg-info/top_level.txt +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/pyproject.toml +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/setup.cfg +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_evaluate_ewr_rest.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_evaluate_ewrs.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_observed_handling.py +0 -0
- {py_ewr-2.2.5 → py_ewr-2.2.6}/tests/test_summarise_results.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: py_ewr
|
|
3
|
-
Version: 2.2.
|
|
3
|
+
Version: 2.2.6
|
|
4
4
|
Summary: Environmental Water Requirement calculator
|
|
5
5
|
Home-page: https://github.com/MDBAuth/EWR_tool
|
|
6
6
|
Author: Martin Job
|
|
@@ -12,34 +12,38 @@ Classifier: Operating System :: OS Independent
|
|
|
12
12
|
Classifier: Development Status :: 4 - Beta
|
|
13
13
|
Classifier: Programming Language :: Python
|
|
14
14
|
Classifier: Programming Language :: Python :: 3
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
16
15
|
Classifier: Programming Language :: Python :: 3.9
|
|
17
16
|
Classifier: Programming Language :: Python :: 3.10
|
|
18
17
|
Classifier: Programming Language :: Python :: 3.11
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
19
20
|
Classifier: Framework :: Pytest
|
|
20
21
|
Description-Content-Type: text/markdown
|
|
21
22
|
License-File: LICENSE
|
|
22
|
-
Requires-Dist:
|
|
23
|
-
Requires-Dist:
|
|
24
|
-
Requires-Dist: pandas==2.0.3
|
|
25
|
-
Requires-Dist: requests==2.25.1
|
|
23
|
+
Requires-Dist: pandas>2
|
|
24
|
+
Requires-Dist: requests>2
|
|
26
25
|
Requires-Dist: mdba-gauge-getter==0.5.1
|
|
27
|
-
Requires-Dist: cachetools
|
|
28
|
-
Requires-Dist: xarray
|
|
29
|
-
Requires-Dist:
|
|
30
|
-
Requires-Dist:
|
|
26
|
+
Requires-Dist: cachetools>5
|
|
27
|
+
Requires-Dist: xarray
|
|
28
|
+
Requires-Dist: h5py
|
|
29
|
+
Requires-Dist: netCDF4
|
|
30
|
+
Requires-Dist: numpy
|
|
31
31
|
|
|
32
32
|
[]()
|
|
33
33
|
[](https://pypi.org/project/py-ewr/)
|
|
34
34
|
[](https://pypi.org/project/py-ewr/)
|
|
35
35
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
36
36
|
|
|
37
|
-
### **EWR tool version 2.2.
|
|
37
|
+
### **EWR tool version 2.2.6 README**
|
|
38
38
|
|
|
39
39
|
### **Notes on recent version updates**
|
|
40
|
+
- Including draft objective mapping files in the package (see below sub heading **Objective mapping** for more information). Objective mapping has been therefore pulled out of the parameter sheet
|
|
41
|
+
- Including an example parallel processing script for running the EWR tool
|
|
42
|
+
- Adding handling for cases where there are single MDBA bigmod site IDs mapping to multiple different gauges
|
|
43
|
+
- Fix SDL resource unit mapping in the parameter sheet
|
|
44
|
+
- Adding lat and lon to the parameter sheet
|
|
40
45
|
- ten thousand year handling - this has been brought back online.
|
|
41
46
|
- Remove TQDM loading bars
|
|
42
|
-
- Handle duplicate sites in MDBA siteID file - where a duplicate exists, the first match is used and the rest are skipped over
|
|
43
47
|
- Adding new model format handling - 'IQQM - netcdf'
|
|
44
48
|
- Standard time-series handling added - each column needs a gauge, followed by and underscore, followed by either flow or level (e.g. 409025_flow). This handling also has missing date filling - so any missing dates will be filled with NaN values in all columns.
|
|
45
49
|
- bug fixes: spells of length equal to the minimum required spell length were getting filtered out of the successful events table and successful interevents table, fixed misclassification of some gauges to flow, level, and lake level categories
|
|
@@ -47,7 +51,7 @@ Requires-Dist: numpy<2
|
|
|
47
51
|
|
|
48
52
|
### **Installation**
|
|
49
53
|
|
|
50
|
-
Note - requires Python 3.
|
|
54
|
+
Note - requires Python 3.9 to 3.13 (inclusive)
|
|
51
55
|
|
|
52
56
|
Step 1.
|
|
53
57
|
Upgrade pip
|
|
@@ -109,7 +113,30 @@ all_successful_interEvents = ewr_oh.get_all_successful_interEvents()
|
|
|
109
113
|
### Option 2: Running model scenarios through the EWR tool
|
|
110
114
|
|
|
111
115
|
1. Tell the tool where the model files are (can either be local or in a remote location)
|
|
112
|
-
2. Tell the tool what format the model files are in
|
|
116
|
+
2. Tell the tool what format the model files are in. The current model format options are:
|
|
117
|
+
- 'Bigmod - MDBA'
|
|
118
|
+
Bigmod formatted outputs
|
|
119
|
+
- 'Source - NSW (res.csv)'
|
|
120
|
+
Source res.csv formatted outputs
|
|
121
|
+
- 'Standard time-series'
|
|
122
|
+
The first column header should be *Date* with the date values in the YYYY-MM-DD format.
|
|
123
|
+
The next columns should have the *gauge* followed by *_* followed by either *flow* or *level*
|
|
124
|
+
E.g.
|
|
125
|
+
| Date | 409025_flow | 409025_level | 414203_flow |
|
|
126
|
+
| --- | --- | --- | --- |
|
|
127
|
+
| 1895-07-01 | 8505 | 5.25 | 8500 |
|
|
128
|
+
| 1895-07-02 | 8510 | 5.26 | 8505 |
|
|
129
|
+
|
|
130
|
+
- 'ten thousand year'
|
|
131
|
+
This has the same formatting requirements as the 'Standard time-series'. This can handle ten thousand years worth of hydrology data.
|
|
132
|
+
The first column header should be *Date* with the date values in the YYYY-MM-DD format.
|
|
133
|
+
The next columns should have the *gauge* followed by *_* followed by either *flow* or *level*
|
|
134
|
+
E.g.
|
|
135
|
+
| Date | 409025_flow | 409025_level | 414203_flow |
|
|
136
|
+
| --- | --- | --- | --- |
|
|
137
|
+
| 105-07-01 | 8505 | 5.25 | 8500 |
|
|
138
|
+
| 105-07-02 | 8510 | 5.26 | 8505 |
|
|
139
|
+
|
|
113
140
|
|
|
114
141
|
```python
|
|
115
142
|
#USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
@@ -199,11 +226,11 @@ For issues relating to the script, a tutorial, or feedback please contact Lara P
|
|
|
199
226
|
|
|
200
227
|
|
|
201
228
|
**Disclaimer**
|
|
202
|
-
Every effort has been taken to ensure the EWR database represents the original EWRs from state
|
|
229
|
+
Every effort has been taken to ensure the EWR database represents the original EWRs from state Long Term Water Plans (LTWPs) and Environmental Water Management Plans (EWMPs) as best as possible, and that the code within this tool has been developed to interpret and analyse these EWRs in an accurate way. However, there may still be unresolved bugs in the EWR parameter sheet and/or EWR tool. Please report any bugs to the issues tab under the GitHub project so we can investigate further.
|
|
203
230
|
|
|
204
231
|
|
|
205
232
|
**Notes on development of the dataset of EWRs**
|
|
206
|
-
The MDBA has worked with Basin state representatives to ensure scientific integrity of EWRs has been maintained when translating from raw EWRs in the Basin state
|
|
233
|
+
The MDBA has worked with Basin state representatives to ensure scientific integrity of EWRs has been maintained when translating from raw EWRs in the Basin state LTWPs and EWMPs to the machine readable format found in the parameter sheet within this tool.
|
|
207
234
|
|
|
208
235
|
**Compatibility**
|
|
209
236
|
|
|
@@ -226,11 +253,8 @@ NSW:
|
|
|
226
253
|
|
|
227
254
|
Consult the user manual for instructions on how to run the tool. Please email the above email addresses for a copy of the user manual.
|
|
228
255
|
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
```
|
|
235
|
-
*before* importing py-ewr in your script.
|
|
236
|
-
|
|
256
|
+
**Objective mapping**
|
|
257
|
+
Objective mapping csv files are now included in the EWR tool package. Currently this objective mapping is in an early draft format. The objective mapping will be finalised after consultation with relevant state representatives. The files are intended to be used together to link EWRs to the detailed objectives, theme level targets and specific goals. The three sheets are located in the py_ewr/parameter_metadata folder:
|
|
258
|
+
- ewr2obj.csv: For each planning unit, gauge, ewr combination there are either one or many env_obj codes. These env_obj codes come under one of five different theme level targets (Native Fish, Native vegetation, Waterbirds, Other species or Ecosystem functions)
|
|
259
|
+
- obj2target.csv: env_obj's are unique to their planning unit in the LTWP (noting there are often a lot of similarities between env_obj's in the same states). The plain english wording of the env objectives is also contained in this csv. The LTWP, planning unit and env_obj rows are repeated for each specific goal related to that LTWP, planning unit and env_obj.
|
|
260
|
+
- obj2yrtarget.csv: The environmental objectives are related to 5, 10 and 20 year targets
|
|
@@ -3,12 +3,16 @@
|
|
|
3
3
|
[](https://pypi.org/project/py-ewr/)
|
|
4
4
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
5
5
|
|
|
6
|
-
### **EWR tool version 2.2.
|
|
6
|
+
### **EWR tool version 2.2.6 README**
|
|
7
7
|
|
|
8
8
|
### **Notes on recent version updates**
|
|
9
|
+
- Including draft objective mapping files in the package (see below sub heading **Objective mapping** for more information). Objective mapping has been therefore pulled out of the parameter sheet
|
|
10
|
+
- Including an example parallel processing script for running the EWR tool
|
|
11
|
+
- Adding handling for cases where there are single MDBA bigmod site IDs mapping to multiple different gauges
|
|
12
|
+
- Fix SDL resource unit mapping in the parameter sheet
|
|
13
|
+
- Adding lat and lon to the parameter sheet
|
|
9
14
|
- ten thousand year handling - this has been brought back online.
|
|
10
15
|
- Remove TQDM loading bars
|
|
11
|
-
- Handle duplicate sites in MDBA siteID file - where a duplicate exists, the first match is used and the rest are skipped over
|
|
12
16
|
- Adding new model format handling - 'IQQM - netcdf'
|
|
13
17
|
- Standard time-series handling added - each column needs a gauge, followed by and underscore, followed by either flow or level (e.g. 409025_flow). This handling also has missing date filling - so any missing dates will be filled with NaN values in all columns.
|
|
14
18
|
- bug fixes: spells of length equal to the minimum required spell length were getting filtered out of the successful events table and successful interevents table, fixed misclassification of some gauges to flow, level, and lake level categories
|
|
@@ -16,7 +20,7 @@
|
|
|
16
20
|
|
|
17
21
|
### **Installation**
|
|
18
22
|
|
|
19
|
-
Note - requires Python 3.
|
|
23
|
+
Note - requires Python 3.9 to 3.13 (inclusive)
|
|
20
24
|
|
|
21
25
|
Step 1.
|
|
22
26
|
Upgrade pip
|
|
@@ -78,7 +82,30 @@ all_successful_interEvents = ewr_oh.get_all_successful_interEvents()
|
|
|
78
82
|
### Option 2: Running model scenarios through the EWR tool
|
|
79
83
|
|
|
80
84
|
1. Tell the tool where the model files are (can either be local or in a remote location)
|
|
81
|
-
2. Tell the tool what format the model files are in
|
|
85
|
+
2. Tell the tool what format the model files are in. The current model format options are:
|
|
86
|
+
- 'Bigmod - MDBA'
|
|
87
|
+
Bigmod formatted outputs
|
|
88
|
+
- 'Source - NSW (res.csv)'
|
|
89
|
+
Source res.csv formatted outputs
|
|
90
|
+
- 'Standard time-series'
|
|
91
|
+
The first column header should be *Date* with the date values in the YYYY-MM-DD format.
|
|
92
|
+
The next columns should have the *gauge* followed by *_* followed by either *flow* or *level*
|
|
93
|
+
E.g.
|
|
94
|
+
| Date | 409025_flow | 409025_level | 414203_flow |
|
|
95
|
+
| --- | --- | --- | --- |
|
|
96
|
+
| 1895-07-01 | 8505 | 5.25 | 8500 |
|
|
97
|
+
| 1895-07-02 | 8510 | 5.26 | 8505 |
|
|
98
|
+
|
|
99
|
+
- 'ten thousand year'
|
|
100
|
+
This has the same formatting requirements as the 'Standard time-series'. This can handle ten thousand years worth of hydrology data.
|
|
101
|
+
The first column header should be *Date* with the date values in the YYYY-MM-DD format.
|
|
102
|
+
The next columns should have the *gauge* followed by *_* followed by either *flow* or *level*
|
|
103
|
+
E.g.
|
|
104
|
+
| Date | 409025_flow | 409025_level | 414203_flow |
|
|
105
|
+
| --- | --- | --- | --- |
|
|
106
|
+
| 105-07-01 | 8505 | 5.25 | 8500 |
|
|
107
|
+
| 105-07-02 | 8510 | 5.26 | 8505 |
|
|
108
|
+
|
|
82
109
|
|
|
83
110
|
```python
|
|
84
111
|
#USER INPUT REQUIRED>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
|
@@ -168,11 +195,11 @@ For issues relating to the script, a tutorial, or feedback please contact Lara P
|
|
|
168
195
|
|
|
169
196
|
|
|
170
197
|
**Disclaimer**
|
|
171
|
-
Every effort has been taken to ensure the EWR database represents the original EWRs from state
|
|
198
|
+
Every effort has been taken to ensure the EWR database represents the original EWRs from state Long Term Water Plans (LTWPs) and Environmental Water Management Plans (EWMPs) as best as possible, and that the code within this tool has been developed to interpret and analyse these EWRs in an accurate way. However, there may still be unresolved bugs in the EWR parameter sheet and/or EWR tool. Please report any bugs to the issues tab under the GitHub project so we can investigate further.
|
|
172
199
|
|
|
173
200
|
|
|
174
201
|
**Notes on development of the dataset of EWRs**
|
|
175
|
-
The MDBA has worked with Basin state representatives to ensure scientific integrity of EWRs has been maintained when translating from raw EWRs in the Basin state
|
|
202
|
+
The MDBA has worked with Basin state representatives to ensure scientific integrity of EWRs has been maintained when translating from raw EWRs in the Basin state LTWPs and EWMPs to the machine readable format found in the parameter sheet within this tool.
|
|
176
203
|
|
|
177
204
|
**Compatibility**
|
|
178
205
|
|
|
@@ -195,11 +222,8 @@ NSW:
|
|
|
195
222
|
|
|
196
223
|
Consult the user manual for instructions on how to run the tool. Please email the above email addresses for a copy of the user manual.
|
|
197
224
|
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
```
|
|
204
|
-
*before* importing py-ewr in your script.
|
|
205
|
-
|
|
225
|
+
**Objective mapping**
|
|
226
|
+
Objective mapping csv files are now included in the EWR tool package. Currently this objective mapping is in an early draft format. The objective mapping will be finalised after consultation with relevant state representatives. The files are intended to be used together to link EWRs to the detailed objectives, theme level targets and specific goals. The three sheets are located in the py_ewr/parameter_metadata folder:
|
|
227
|
+
- ewr2obj.csv: For each planning unit, gauge, ewr combination there are either one or many env_obj codes. These env_obj codes come under one of five different theme level targets (Native Fish, Native vegetation, Waterbirds, Other species or Ecosystem functions)
|
|
228
|
+
- obj2target.csv: env_obj's are unique to their planning unit in the LTWP (noting there are often a lot of similarities between env_obj's in the same states). The plain english wording of the env objectives is also contained in this csv. The LTWP, planning unit and env_obj rows are repeated for each specific goal related to that LTWP, planning unit and env_obj.
|
|
229
|
+
- obj2yrtarget.csv: The environmental objectives are related to 5, 10 and 20 year targets
|
|
@@ -121,7 +121,7 @@ def get_MDBA_codes() -> pd.DataFrame:
|
|
|
121
121
|
pd.DataFrame: dataframe for linking MDBA model nodes to gauges
|
|
122
122
|
|
|
123
123
|
'''
|
|
124
|
-
metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str
|
|
124
|
+
metadata = pd.read_csv( BASE_PATH / 'model_metadata/SiteID_MDBA.csv', engine = 'python', dtype=str)#, encoding='windows-1252')
|
|
125
125
|
|
|
126
126
|
return metadata
|
|
127
127
|
|
|
@@ -392,12 +392,12 @@ def get_gauges(category: str, ewr_table_path: str = None) -> set:
|
|
|
392
392
|
multi_gauges = get_multi_gauges('gauges')
|
|
393
393
|
multi_gauges = list(multi_gauges.values())
|
|
394
394
|
if category == 'all gauges':
|
|
395
|
-
return set(EWR_table['Gauge'].to_list()
|
|
395
|
+
return set(EWR_table['Gauge'].to_list()+menindee_gauges+wp_gauges+multi_gauges+flow_barrage_gauges+level_barrage_gauges+qld_flow_gauges+qld_level_gauges+vic_level_gauges)
|
|
396
396
|
elif category == 'flow gauges':
|
|
397
397
|
return set(EWR_table['Gauge'].to_list() + multi_gauges + flow_barrage_gauges + qld_flow_gauges)
|
|
398
398
|
elif category == 'level gauges':
|
|
399
399
|
level_gauges = EWR_table[EWR_table['FlowLevelVolume']=='L']['Gauge'].to_list()
|
|
400
|
-
return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges)
|
|
400
|
+
return set(menindee_gauges + wp_gauges + level_barrage_gauges + qld_level_gauges + level_gauges + vic_level_gauges)
|
|
401
401
|
else:
|
|
402
402
|
raise ValueError('''No gauge category sent to the "get_gauges" function''')
|
|
403
403
|
|
|
@@ -439,4 +439,18 @@ def gauge_groups(parameter_sheet: pd.DataFrame) -> dict:
|
|
|
439
439
|
|
|
440
440
|
return flow_gauges, level_gauges, lake_level_gauges
|
|
441
441
|
|
|
442
|
-
# def gauges_to_measurand()
|
|
442
|
+
# def gauges_to_measurand()
|
|
443
|
+
|
|
444
|
+
def get_causal_ewr() -> dict:
|
|
445
|
+
|
|
446
|
+
ewr2obj_path = os.path.join(BASE_PATH, "parameter_metadata/ewr2obj.csv")
|
|
447
|
+
obj2target_path = os.path.join(BASE_PATH, "parameter_metadata/obj2target.csv")
|
|
448
|
+
obj2yrtarget_path = os.path.join(BASE_PATH, "parameter_metadata/obj2yrtarget.csv")
|
|
449
|
+
|
|
450
|
+
causal_ewr = {
|
|
451
|
+
"ewr2obj": pd.read_csv(ewr2obj_path),
|
|
452
|
+
"obj2target": pd.read_csv(obj2target_path),
|
|
453
|
+
"obj2yrtarget":pd.read_csv(obj2yrtarget_path)
|
|
454
|
+
}
|
|
455
|
+
|
|
456
|
+
return causal_ewr
|
|
@@ -4859,7 +4859,7 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
|
|
|
4859
4859
|
years_with_events = get_event_years_volume_achieved(events, unique_water_years)
|
|
4860
4860
|
|
|
4861
4861
|
YWE = pd.Series(name = str(EWR + '_eventYears'), data = years_with_events, index = unique_water_years)
|
|
4862
|
-
PU_df = pd.concat([PU_df, YWE], axis = 1)
|
|
4862
|
+
# PU_df = pd.concat([PU_df, YWE], axis = 1)
|
|
4863
4863
|
# Number of event achievements:
|
|
4864
4864
|
num_event_achievements = get_achievements(EWR_info, events, unique_water_years, durations)
|
|
4865
4865
|
|
|
@@ -4867,64 +4867,84 @@ def event_stats(df:pd.DataFrame, PU_df:pd.DataFrame, gauge:str, EWR:str, EWR_inf
|
|
|
4867
4867
|
num_event_achievements = get_achievements_connecting_events(events, unique_water_years)
|
|
4868
4868
|
|
|
4869
4869
|
NEA = pd.Series(name = str(EWR + '_numAchieved'), data= num_event_achievements, index = unique_water_years)
|
|
4870
|
-
PU_df = pd.concat([PU_df, NEA], axis = 1)
|
|
4870
|
+
# PU_df = pd.concat([PU_df, NEA], axis = 1)
|
|
4871
4871
|
# Total number of events THIS ONE IS ONLY ACHIEVED due to Filter Applied
|
|
4872
4872
|
num_events = get_number_events(EWR_info, events, unique_water_years, durations)
|
|
4873
4873
|
NE = pd.Series(name = str(EWR + '_numEvents'), data= num_events, index = unique_water_years)
|
|
4874
|
-
PU_df = pd.concat([PU_df, NE], axis = 1)
|
|
4874
|
+
# PU_df = pd.concat([PU_df, NE], axis = 1)
|
|
4875
4875
|
# Total number of events THIS ONE IS ALL EVENTS
|
|
4876
4876
|
num_events_all = get_all_events(events)
|
|
4877
4877
|
NEALL = pd.Series(name = str(EWR + '_numEventsAll'), data= num_events_all, index = unique_water_years)
|
|
4878
|
-
PU_df = pd.concat([PU_df, NEALL], axis = 1)
|
|
4878
|
+
# PU_df = pd.concat([PU_df, NEALL], axis = 1)
|
|
4879
4879
|
# Max inter event period
|
|
4880
4880
|
max_inter_period = get_max_inter_event_days(no_events, unique_water_years)
|
|
4881
4881
|
MIP = pd.Series(name = str(EWR + '_maxInterEventDays'), data= max_inter_period, index = unique_water_years)
|
|
4882
|
-
PU_df = pd.concat([PU_df, MIP], axis = 1)
|
|
4882
|
+
# PU_df = pd.concat([PU_df, MIP], axis = 1)
|
|
4883
4883
|
# Max inter event period achieved
|
|
4884
4884
|
max_inter_period_achieved = get_event_max_inter_event_achieved(EWR_info, no_events, unique_water_years)
|
|
4885
4885
|
MIPA = pd.Series(name = str(EWR + '_maxInterEventDaysAchieved'), data= max_inter_period_achieved, index = unique_water_years)
|
|
4886
|
-
PU_df = pd.concat([PU_df, MIPA], axis = 1)
|
|
4886
|
+
# PU_df = pd.concat([PU_df, MIPA], axis = 1)
|
|
4887
4887
|
# Average length of events
|
|
4888
4888
|
av_length = get_average_event_length(events, unique_water_years)
|
|
4889
4889
|
AL = pd.Series(name = str(EWR + '_eventLength'), data = av_length, index = unique_water_years)
|
|
4890
|
-
PU_df = pd.concat([PU_df, AL], axis = 1)
|
|
4890
|
+
# PU_df = pd.concat([PU_df, AL], axis = 1)
|
|
4891
4891
|
# Average length of events ONLY the ACHIEVED
|
|
4892
4892
|
av_length_achieved = get_average_event_length_achieved(EWR_info, events)
|
|
4893
4893
|
ALA = pd.Series(name = str(EWR + '_eventLengthAchieved' ), data = av_length_achieved, index = unique_water_years)
|
|
4894
|
-
PU_df = pd.concat([PU_df, ALA], axis = 1)
|
|
4894
|
+
# PU_df = pd.concat([PU_df, ALA], axis = 1)
|
|
4895
4895
|
# Total event days
|
|
4896
4896
|
total_days = get_total_days(events, unique_water_years)
|
|
4897
|
-
|
|
4898
|
-
PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4897
|
+
TD_A = pd.Series(name = str(EWR + '_totalEventDays'), data = total_days, index = unique_water_years)
|
|
4898
|
+
# PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4899
4899
|
# Total event days ACHIEVED
|
|
4900
4900
|
total_days_achieved = get_achieved_event_days(EWR_info, events)
|
|
4901
4901
|
TDA = pd.Series(name = str(EWR + '_totalEventDaysAchieved'), data = total_days_achieved, index = unique_water_years)
|
|
4902
|
-
PU_df = pd.concat([PU_df, TDA], axis = 1)
|
|
4902
|
+
# PU_df = pd.concat([PU_df, TDA], axis = 1)
|
|
4903
4903
|
# Max event days
|
|
4904
4904
|
max_days = get_max_event_days(events, unique_water_years)
|
|
4905
4905
|
MD = pd.Series(name = str(EWR + '_maxEventDays'), data = max_days, index = unique_water_years)
|
|
4906
|
-
PU_df = pd.concat([PU_df, MD], axis = 1)
|
|
4906
|
+
# PU_df = pd.concat([PU_df, MD], axis = 1)
|
|
4907
4907
|
# Max rolling consecutive event days
|
|
4908
4908
|
try:
|
|
4909
4909
|
max_consecutive_days = get_max_consecutive_event_days(events, unique_water_years)
|
|
4910
4910
|
MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
|
|
4911
|
-
PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4911
|
+
# PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4912
4912
|
except Exception as e:
|
|
4913
4913
|
max_consecutive_days = [0]*len(unique_water_years)
|
|
4914
4914
|
MR = pd.Series(name = str(EWR + '_maxRollingEvents'), data = max_consecutive_days, index = unique_water_years)
|
|
4915
|
-
PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4915
|
+
# PU_df = pd.concat([PU_df, MR], axis = 1)
|
|
4916
4916
|
log.error(e)
|
|
4917
4917
|
# Max rolling duration achieved
|
|
4918
4918
|
achieved_max_rolling_duration = get_max_rolling_duration_achievement(durations, max_consecutive_days)
|
|
4919
4919
|
MRA = pd.Series(name = str(EWR + '_maxRollingAchievement'), data = achieved_max_rolling_duration, index = unique_water_years)
|
|
4920
|
-
PU_df = pd.concat([PU_df, MRA], axis = 1)
|
|
4920
|
+
# PU_df = pd.concat([PU_df, MRA], axis = 1)
|
|
4921
4921
|
# Append information around available and missing data:
|
|
4922
4922
|
yearly_gap = get_data_gap(df, water_years, gauge)
|
|
4923
4923
|
total_days = get_total_series_days(water_years)
|
|
4924
4924
|
YG = pd.Series(name = str(EWR + '_missingDays'), data = yearly_gap, index = unique_water_years)
|
|
4925
|
-
|
|
4926
|
-
PU_df = pd.concat([PU_df, YG], axis = 1)
|
|
4927
|
-
PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4925
|
+
TD_B = pd.Series(name = str(EWR + '_totalPossibleDays'), data = total_days, index = unique_water_years)
|
|
4926
|
+
# PU_df = pd.concat([PU_df, YG], axis = 1)
|
|
4927
|
+
# PU_df = pd.concat([PU_df, TD], axis = 1)
|
|
4928
|
+
PU_df = pd.concat(
|
|
4929
|
+
[PU_df,
|
|
4930
|
+
YWE,
|
|
4931
|
+
NEA,
|
|
4932
|
+
NE,
|
|
4933
|
+
NEALL,
|
|
4934
|
+
MIP,
|
|
4935
|
+
MIPA,
|
|
4936
|
+
AL,
|
|
4937
|
+
ALA,
|
|
4938
|
+
TD_A,
|
|
4939
|
+
TDA,
|
|
4940
|
+
MD,
|
|
4941
|
+
MR,
|
|
4942
|
+
MRA,
|
|
4943
|
+
YG,
|
|
4944
|
+
TD_B
|
|
4945
|
+
],
|
|
4946
|
+
axis=1
|
|
4947
|
+
)
|
|
4928
4948
|
|
|
4929
4949
|
return PU_df
|
|
4930
4950
|
|