py-ewr 2.2.3__tar.gz → 2.2.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {py_ewr-2.2.3 → py_ewr-2.2.4}/PKG-INFO +2 -2
- {py_ewr-2.2.3 → py_ewr-2.2.4}/README.md +1 -1
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/data_inputs.py +24 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/evaluate_EWRs.py +13 -13
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/observed_handling.py +2 -2
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/scenario_handling.py +35 -1
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr.egg-info/PKG-INFO +2 -2
- {py_ewr-2.2.3 → py_ewr-2.2.4}/setup.py +1 -1
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_evaluate_ewr_rest.py +43 -43
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_evaluate_ewrs.py +22 -22
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_observed_handling.py +1 -1
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_scenario_handling.py +1 -1
- {py_ewr-2.2.3 → py_ewr-2.2.4}/LICENSE +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/__init__.py +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/io.py +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/model_metadata/SiteID_MDBA.csv +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/model_metadata/SiteID_NSW.csv +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/model_metadata/iqqm_stations.csv +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/parameter_metadata/ewr_calc_config.json +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/parameter_metadata/parameter_sheet.csv +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr/summarise_results.py +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr.egg-info/SOURCES.txt +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr.egg-info/dependency_links.txt +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr.egg-info/requires.txt +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/py_ewr.egg-info/top_level.txt +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/pyproject.toml +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/setup.cfg +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_data_inputs.py +0 -0
- {py_ewr-2.2.3 → py_ewr-2.2.4}/tests/test_summarise_results.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: py_ewr
|
|
3
|
-
Version: 2.2.
|
|
3
|
+
Version: 2.2.4
|
|
4
4
|
Summary: Environmental Water Requirement calculator
|
|
5
5
|
Home-page: https://github.com/MDBAuth/EWR_tool
|
|
6
6
|
Author: Martin Job
|
|
@@ -34,7 +34,7 @@ Requires-Dist: numpy<2
|
|
|
34
34
|
[](https://pypi.org/project/py-ewr/)
|
|
35
35
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
36
36
|
|
|
37
|
-
### **EWR tool version 2.2.
|
|
37
|
+
### **EWR tool version 2.2.4 README**
|
|
38
38
|
|
|
39
39
|
### **Notes on recent version update**
|
|
40
40
|
- Remove TQDM loading bars
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
[](https://pypi.org/project/py-ewr/)
|
|
4
4
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
5
5
|
|
|
6
|
-
### **EWR tool version 2.2.
|
|
6
|
+
### **EWR tool version 2.2.4 README**
|
|
7
7
|
|
|
8
8
|
### **Notes on recent version update**
|
|
9
9
|
- Remove TQDM loading bars
|
|
@@ -416,3 +416,27 @@ def get_scenario_gauges(gauge_results: dict) -> list:
|
|
|
416
416
|
for gauge in scenario.keys():
|
|
417
417
|
scenario_gauges.append(gauge)
|
|
418
418
|
return list(set(scenario_gauges))
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
def gauge_groups(parameter_sheet: pd.DataFrame) -> dict:
|
|
422
|
+
'''
|
|
423
|
+
Returns a dictionary of flow, level, and lake level gauges based on the parameter sheet and some hard coding of other EWRs
|
|
424
|
+
|
|
425
|
+
Args:
|
|
426
|
+
parameter_sheet (pd.DataFrame): input parameter sheet
|
|
427
|
+
|
|
428
|
+
Returns:
|
|
429
|
+
dict: keys as flow, level, and lake level gauges, values as the list of gauges
|
|
430
|
+
'''
|
|
431
|
+
|
|
432
|
+
# Hard coded gauges for the CLLMM EWRs
|
|
433
|
+
hard_code_levels = ['A4260527', 'A4260524', 'A4260633', 'A4261209', 'A4261165']
|
|
434
|
+
hard_code_lake_levels = ['A4261133', 'A4260574', 'A4260575']
|
|
435
|
+
|
|
436
|
+
flow_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'F']['Gauge']) + set(parameter_sheet['Multigauge'])
|
|
437
|
+
level_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'L']['Gauge']) + set(parameter_sheet['WeirpoolGauge']) + set(hard_code_levels)
|
|
438
|
+
lake_level_gauges = set(parameter_sheet[parameter_sheet['GaugeType'] == 'LL']['Gauge'])+set(hard_code_lake_levels)
|
|
439
|
+
|
|
440
|
+
return flow_gauges, level_gauges, lake_level_gauges
|
|
441
|
+
|
|
442
|
+
# def gauges_to_measurand()
|
|
@@ -445,8 +445,8 @@ def get_index_date(date_index:Any)-> datetime.date:
|
|
|
445
445
|
"""
|
|
446
446
|
if type(date_index) == pd._libs.tslibs.timestamps.Timestamp:
|
|
447
447
|
return date_index.date()
|
|
448
|
-
if type(date_index) == pd._libs.tslibs.period.Period:
|
|
449
|
-
|
|
448
|
+
# if type(date_index) == pd._libs.tslibs.period.Period:
|
|
449
|
+
# return date_index.date()#.to_timestamp()
|
|
450
450
|
else:
|
|
451
451
|
return date_index
|
|
452
452
|
|
|
@@ -1958,7 +1958,7 @@ def water_stability_check(EWR_info:Dict, iteration:int, flows:List, all_events:D
|
|
|
1958
1958
|
if levels_are_stable:
|
|
1959
1959
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1960
1960
|
# if the last day of the event is not over the last day of the event window
|
|
1961
|
-
iteration_date = flow_date.to_timestamp().date()
|
|
1961
|
+
iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1962
1962
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
1963
1963
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
1964
1964
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -1995,7 +1995,7 @@ def water_stability_level_check(EWR_info:Dict, iteration:int, all_events:Dict, w
|
|
|
1995
1995
|
if levels_are_stable:
|
|
1996
1996
|
# record event opportunity for the next n days for the total period of (EggDaysSpell)+ larvae (LarvaeDaysSpell)
|
|
1997
1997
|
# if the last day of the event is not over the last day of the event window
|
|
1998
|
-
iteration_date = flow_date.to_timestamp().date()
|
|
1998
|
+
iteration_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
1999
1999
|
last_day_window = get_last_day_of_window(iteration_date, EWR_info['end_month'])
|
|
2000
2000
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2001
2001
|
if is_date_in_window(iteration_date, last_day_window, event_size):
|
|
@@ -2604,7 +2604,7 @@ def lower_lakes_level_check(EWR_info: dict, levels: pd.Series, event: list, all_
|
|
|
2604
2604
|
#------------------------------------ Calculation functions --------------------------------------#
|
|
2605
2605
|
|
|
2606
2606
|
|
|
2607
|
-
def create_water_stability_event(flow_date: pd.
|
|
2607
|
+
def create_water_stability_event(flow_date: pd.Timestamp, flows:List, iteration: int, EWR_info:dict)->List:#pd.Period
|
|
2608
2608
|
"""create overlapping event that meets an achievement for fish recruitment water stability
|
|
2609
2609
|
|
|
2610
2610
|
Args:
|
|
@@ -2617,7 +2617,7 @@ def create_water_stability_event(flow_date: pd.Period, flows:List, iteration: in
|
|
|
2617
2617
|
"""
|
|
2618
2618
|
event_size = EWR_info['eggs_days_spell'] + EWR_info['larvae_days_spell']
|
|
2619
2619
|
event_flows = flows[iteration: iteration + event_size]
|
|
2620
|
-
start_event_date = flow_date.to_timestamp().date()
|
|
2620
|
+
start_event_date = flow_date.date()#flow_date.to_timestamp().date()
|
|
2621
2621
|
event_dates = [ start_event_date + timedelta(i) for i in range(event_size)]
|
|
2622
2622
|
|
|
2623
2623
|
return [(d, flow) for d, flow in zip(event_dates, event_flows)]
|
|
@@ -3810,16 +3810,16 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3810
3810
|
flow_percent_change = calc_flow_percent_change(i, flows)
|
|
3811
3811
|
trigger_day = date(dates[i].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3812
3812
|
cut_date = calc_nest_cut_date(EWR_info, i, dates)
|
|
3813
|
-
is_in_trigger_window = dates[i].
|
|
3814
|
-
and dates[i].
|
|
3813
|
+
is_in_trigger_window = dates[i].date() >= trigger_day \
|
|
3814
|
+
and dates[i].date() <= trigger_day + timedelta(days=14) #.to_timestamp() .to_timestamp()
|
|
3815
3815
|
iteration_no_event = 0
|
|
3816
3816
|
|
|
3817
3817
|
## if there IS an ongoing event check if we are on the trigger season window
|
|
3818
3818
|
# if yes then check the current flow
|
|
3819
3819
|
if total_event > 0:
|
|
3820
|
-
if (dates[i].
|
|
3820
|
+
if (dates[i].date() >= trigger_day) and (dates[i].date() <= cut_date):
|
|
3821
3821
|
event, all_events, gap_track, total_event, iteration_no_event = nest_flow_check(EWR_info, i, flow, event, all_events,
|
|
3822
|
-
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event)
|
|
3822
|
+
gap_track, water_years, total_event, flow_date, flow_percent_change, iteration_no_event) #.to_timestamp() .to_timestamp()
|
|
3823
3823
|
|
|
3824
3824
|
# this path will only be executed if an event extends beyond the cut date
|
|
3825
3825
|
else:
|
|
@@ -3840,12 +3840,12 @@ def nest_calc_percent_trigger(EWR_info:Dict, flows:List, water_years:List, dates
|
|
|
3840
3840
|
|
|
3841
3841
|
# Check final iteration in the flow timeseries, saving any ongoing events/event gaps to their spots in the dictionaries:
|
|
3842
3842
|
# reset all variable to last flow
|
|
3843
|
-
flow_date = dates[-1].
|
|
3843
|
+
flow_date = dates[-1].date()#.to_timestamp()
|
|
3844
3844
|
flow_percent_change = calc_flow_percent_change(-1, flows)
|
|
3845
3845
|
trigger_day = date(dates[-1].year,EWR_info["trigger_month"], EWR_info["trigger_day"])
|
|
3846
3846
|
cut_date = calc_nest_cut_date(EWR_info, -1, dates)
|
|
3847
|
-
is_in_trigger_window = dates[-1].
|
|
3848
|
-
and dates[-1].
|
|
3847
|
+
is_in_trigger_window = dates[-1].date() >= trigger_day - timedelta(days=7) \
|
|
3848
|
+
and dates[-1].date() <= trigger_day + timedelta(days=7) #.to_timestamp() .to_timestamp()
|
|
3849
3849
|
iteration_no_event = 0
|
|
3850
3850
|
|
|
3851
3851
|
if total_event > 0:
|
|
@@ -130,7 +130,7 @@ def observed_cleaner(input_df: pd.DataFrame, dates: dict) -> pd.DataFrame:
|
|
|
130
130
|
start_date = datetime(dates['start_date'].year, dates['start_date'].month, dates['start_date'].day)
|
|
131
131
|
end_date = datetime(dates['end_date'].year, dates['end_date'].month, dates['end_date'].day)
|
|
132
132
|
|
|
133
|
-
df_index = pd.date_range(start=start_date,end=end_date - timedelta(days=1))
|
|
133
|
+
df_index = pd.date_range(start=start_date,end=end_date - timedelta(days=1))#.to_period()
|
|
134
134
|
gauge_data_df = pd.DataFrame()
|
|
135
135
|
gauge_data_df['Date'] = df_index
|
|
136
136
|
gauge_data_df = gauge_data_df.set_index('Date')
|
|
@@ -139,7 +139,7 @@ def observed_cleaner(input_df: pd.DataFrame, dates: dict) -> pd.DataFrame:
|
|
|
139
139
|
|
|
140
140
|
|
|
141
141
|
input_df['Date'] = pd.to_datetime(input_df['DATETIME'], format = '%Y-%m-%d')
|
|
142
|
-
input_df['Date'] = input_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
142
|
+
# input_df['Date'] = input_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
143
143
|
|
|
144
144
|
# Check with states for more codes:
|
|
145
145
|
bad_data_codes = data_inputs.get_bad_QA_codes()
|
|
@@ -258,7 +258,7 @@ def cleaner_MDBA(input_df: pd.DataFrame) -> pd.DataFrame:
|
|
|
258
258
|
|
|
259
259
|
cleaned_df = input_df.rename(columns={'Mn': 'Month', 'Dy': 'Day'})
|
|
260
260
|
cleaned_df['Date'] = pd.to_datetime(cleaned_df[['Year', 'Month', 'Day']], format = '%Y-%m-%d')
|
|
261
|
-
cleaned_df['Date'] = cleaned_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
261
|
+
# cleaned_df['Date'] = cleaned_df['Date'].apply(lambda x: x.to_period(freq='D'))
|
|
262
262
|
cleaned_df = cleaned_df.drop(['Day', 'Month', 'Year'], axis = 1)
|
|
263
263
|
cleaned_df = cleaned_df.set_index('Date')
|
|
264
264
|
|
|
@@ -436,6 +436,40 @@ def extract_gauge_from_string(input_string: str) -> str:
|
|
|
436
436
|
gauge = input_string.split('_')[0]
|
|
437
437
|
return gauge
|
|
438
438
|
|
|
439
|
+
# def match_MDBA_nodes_dev(input_df: pd.DataFrame, model_metadata: pd.DataFrame, ewr_table_path: str) -> tuple:
|
|
440
|
+
# '''
|
|
441
|
+
# Iterate over the gauges in the parameter sheet,
|
|
442
|
+
# find all the occurences of that gauge in the ARWC column in the model metadata file,
|
|
443
|
+
# for each match, search for the matching siteID in the model file,
|
|
444
|
+
# append the column to the flow dataframe.
|
|
445
|
+
|
|
446
|
+
# Args:
|
|
447
|
+
# input_df (pd.DataFrame): flow/water level dataframe
|
|
448
|
+
# model_metadata (pd.DataFrame): dataframe linking model nodes to gauges
|
|
449
|
+
|
|
450
|
+
# Returns:
|
|
451
|
+
# tuple[pd.DataFrame, pd.DataFrame]: flow dataframe, water level dataframe
|
|
452
|
+
|
|
453
|
+
# '''
|
|
454
|
+
# df_flow = pd.DataFrame(index = input_df.index)
|
|
455
|
+
# df_level = pd.DataFrame(index = input_df.index)
|
|
456
|
+
|
|
457
|
+
# unique_gauges = #Get unique gauges from the parameter sheet
|
|
458
|
+
# #TODO: include logic to have the measurand included
|
|
459
|
+
# for i in unique_gauges:
|
|
460
|
+
# # Subset of the SiteID file with the gauges
|
|
461
|
+
# subset_df = model_metadata[model_metadata['AWRC'] == i]
|
|
462
|
+
# # Iterate over the occurences of the gauge and check if the matching SiteID file is in the model file
|
|
463
|
+
# for j in subset_df.iterrows:
|
|
464
|
+
# site_mm = j['SITEID']
|
|
465
|
+
# if site_mm in input_df.columns:
|
|
466
|
+
# df_flow[i] = input_df[site_mm+INPUT_MEASURAND+ANY_QUALITY_CODE]
|
|
467
|
+
# or
|
|
468
|
+
# df_level[i] = input_df[site_mm+INPUT_MEASURAND+ANY_QUALITY_CODE]
|
|
469
|
+
|
|
470
|
+
# if df_flow.empty and df_level.empty:
|
|
471
|
+
# raise ValueError('No relevant gauges and or measurands found in dataset, the EWR tool cannot evaluate this model output file')
|
|
472
|
+
# return df_flow, df_level
|
|
439
473
|
|
|
440
474
|
|
|
441
475
|
def match_MDBA_nodes(input_df: pd.DataFrame, model_metadata: pd.DataFrame, ewr_table_path: str) -> tuple:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: py_ewr
|
|
3
|
-
Version: 2.2.
|
|
3
|
+
Version: 2.2.4
|
|
4
4
|
Summary: Environmental Water Requirement calculator
|
|
5
5
|
Home-page: https://github.com/MDBAuth/EWR_tool
|
|
6
6
|
Author: Martin Job
|
|
@@ -34,7 +34,7 @@ Requires-Dist: numpy<2
|
|
|
34
34
|
[](https://pypi.org/project/py-ewr/)
|
|
35
35
|
[](https://zenodo.org/badge/latestdoi/342122359)
|
|
36
36
|
|
|
37
|
-
### **EWR tool version 2.2.
|
|
37
|
+
### **EWR tool version 2.2.4 README**
|
|
38
38
|
|
|
39
39
|
### **Notes on recent version update**
|
|
40
40
|
- Remove TQDM loading bars
|
|
@@ -520,8 +520,8 @@ def test_flow_calc(flows,expected_all_events,expected_all_no_events):
|
|
|
520
520
|
# Set up input data
|
|
521
521
|
EWR_info = {'min_flow': 5, 'max_flow': 20, 'gap_tolerance': 0, 'min_event':10, 'duration': 10}
|
|
522
522
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
523
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
524
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
523
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
524
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
525
525
|
# Set up expected output data
|
|
526
526
|
expected_durations = [10]*4
|
|
527
527
|
# Send inputs to test function and test
|
|
@@ -542,8 +542,8 @@ def test_lowflow_calc():
|
|
|
542
542
|
EWR_info = {'min_flow': 10, 'max_flow': 20, 'min_event':1, 'duration': 300, 'duration_VD': 10}
|
|
543
543
|
flows = np.array([5]*295+[0]*25+[10]*45 + [0]*355+[5000]*10 + [0]*355+[10]*10 + [5]*295+[0]*25+[10]*45+[10]*1)
|
|
544
544
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
545
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
546
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
545
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
546
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
547
547
|
# Set up expected output data
|
|
548
548
|
expected_all_events = {2012: [[(date(2013, 5, 17), 10), (date(2013, 5, 18), 10), (date(2013, 5, 19), 10),
|
|
549
549
|
(date(2013, 5, 20), 10), (date(2013, 5, 21), 10), (date(2013, 5, 22), 10), (date(2013, 5, 23), 10),
|
|
@@ -590,8 +590,8 @@ def test_lowflow_calc():
|
|
|
590
590
|
'duration_VD': 5, 'start_month': 7, 'end_month': 12, 'start_day': None, 'end_day': None}
|
|
591
591
|
flows = np.array([10]*5+[0]*35+[5]*5+[0]*295+[0]*25 + [0]*355+[5]*10 + [10]*10+[0]*355 + [5]*295+[0]*25+[10]*45+[10]*1)
|
|
592
592
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
593
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
594
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
593
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
594
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
595
595
|
masked_dates = masked_dates[((masked_dates.month >= 7) & (masked_dates.month <= 12))] # Just want the dates in the date range
|
|
596
596
|
# Set up expected output data
|
|
597
597
|
expected_all_events = {2012: [[(date(2012, 7, 1), 10), (date(2012, 7, 2), 10), (date(2012, 7, 3), 10),
|
|
@@ -618,8 +618,8 @@ def test_ctf_calc():
|
|
|
618
618
|
EWR_info = {'min_flow': 0, 'max_flow': 1, 'min_event':5, 'duration': 20, 'duration_VD': 10}
|
|
619
619
|
flows = np.array([5]*295+[0]*25+[10]*45 + [20]*355+[5000]*5+[0]*5 + [0]*355+[10]*10 + [1]*295+[20]*25+[0]*45+[0]*1)
|
|
620
620
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
621
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
622
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
621
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
622
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
623
623
|
# Set up expected output data
|
|
624
624
|
expected_all_events = {2012: [[(date(2013, 4, 22)+timedelta(days=i), 0) for i in range(25)]],
|
|
625
625
|
2013: [[(date(2014, 6, 26)+timedelta(days=i), 0) for i in range(5)]],
|
|
@@ -643,8 +643,8 @@ def test_ctf_calc():
|
|
|
643
643
|
[10]*10+[0]*355 +
|
|
644
644
|
[5]*295+[0]*25+[10]*45+[10]*1)
|
|
645
645
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
646
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
647
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
646
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
647
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
648
648
|
masked_dates = masked_dates[((masked_dates.month >= 7) & (masked_dates.month <= 12))] # Just want the dates in the date range
|
|
649
649
|
# Set up expected output data
|
|
650
650
|
expected_all_events = {2012: [[(date(2012, 7, 1)+timedelta(days=i), 10) for i in range(5)],
|
|
@@ -738,7 +738,7 @@ def test_ctf_calc_anytime(flows, expected_all_events, expected_all_no_events):
|
|
|
738
738
|
# Set up input data
|
|
739
739
|
EWR_info = {'min_flow': 0, 'max_flow': 1, 'min_event':5, 'duration': 20, 'duration_VD': 10}
|
|
740
740
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
741
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
741
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
742
742
|
# Send to test function and then test
|
|
743
743
|
all_events, durations = evaluate_EWRs.ctf_calc_anytime(EWR_info, flows, water_years, dates)
|
|
744
744
|
for year in all_events:
|
|
@@ -799,7 +799,7 @@ def test_flow_calc_anytime(flows, expected_all_events, expected_all_no_events):
|
|
|
799
799
|
expected_durations = [10]*4
|
|
800
800
|
# Send to test function and then test
|
|
801
801
|
dates = 1
|
|
802
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
802
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
803
803
|
all_events, durations = evaluate_EWRs.flow_calc_anytime(EWR_info, flows, water_years, dates)
|
|
804
804
|
|
|
805
805
|
for year in all_events:
|
|
@@ -808,8 +808,8 @@ def test_flow_calc_anytime(flows, expected_all_events, expected_all_no_events):
|
|
|
808
808
|
assert durations == expected_durations
|
|
809
809
|
|
|
810
810
|
|
|
811
|
-
def test_get_index_date(
|
|
812
|
-
assert evaluate_EWRs.get_index_date(
|
|
811
|
+
def test_get_index_date(datetime_date, stamp_date):#period_date
|
|
812
|
+
assert evaluate_EWRs.get_index_date(datetime_date) == evaluate_EWRs.get_index_date(stamp_date)
|
|
813
813
|
|
|
814
814
|
|
|
815
815
|
@pytest.mark.parametrize("EWR_info,flows,expected_all_events,expected_all_no_events",[
|
|
@@ -870,7 +870,7 @@ def test_get_index_date(period_date, stamp_date):
|
|
|
870
870
|
def test_cumulative_calc(EWR_info, flows, expected_all_events, expected_all_no_events):
|
|
871
871
|
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
872
872
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
873
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
873
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
874
874
|
all_events, durations = evaluate_EWRs.cumulative_calc(EWR_info, flows, water_years, dates, masked_dates)
|
|
875
875
|
|
|
876
876
|
assert all_events == expected_all_events
|
|
@@ -932,7 +932,7 @@ def test_cumulative_calc_qld(EWR_info, flows, expected_all_events):
|
|
|
932
932
|
"""
|
|
933
933
|
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
934
934
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
935
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
935
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
936
936
|
all_events, _ = evaluate_EWRs.cumulative_calc_qld(EWR_info, flows, water_years, dates, masked_dates)
|
|
937
937
|
|
|
938
938
|
assert all_events == expected_all_events
|
|
@@ -2112,7 +2112,7 @@ def test_nest_calc_percent_trigger(EWR_info, flows, expected_all_events, expecte
|
|
|
2112
2112
|
"""
|
|
2113
2113
|
# non changing parameters
|
|
2114
2114
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
2115
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
2115
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
2116
2116
|
|
|
2117
2117
|
all_events, _ = evaluate_EWRs.nest_calc_percent_trigger(EWR_info, flows, water_years, dates)
|
|
2118
2118
|
|
|
@@ -3176,8 +3176,8 @@ def test_coorong_check(EWR_info, iteration, levels_data, event, all_events,
|
|
|
3176
3176
|
])
|
|
3177
3177
|
def test_coorong_level_calc(EWR_info, levels_data, expected_all_events):
|
|
3178
3178
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
3179
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3180
|
-
masked_dates = masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3179
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3180
|
+
masked_dates = masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3181
3181
|
levels = pd.Series(levels_data, index=dates)
|
|
3182
3182
|
|
|
3183
3183
|
all_events, _ = evaluate_EWRs.coorong_level_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
@@ -3258,8 +3258,8 @@ def test_lower_lakes_level_check(EWR_info, iteration, levels_data, event, all_ev
|
|
|
3258
3258
|
def test_lower_lakes_level_calc(EWR_info, levels_data, expected_all_events):
|
|
3259
3259
|
|
|
3260
3260
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
3261
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3262
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3261
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3262
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3263
3263
|
levels = pd.Series(levels_data, index=dates)
|
|
3264
3264
|
|
|
3265
3265
|
all_events, _ = evaluate_EWRs.lower_lakes_level_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
@@ -3382,8 +3382,8 @@ def test_flow_calc_sa(EWR_info, flows_data, expected_all_events):
|
|
|
3382
3382
|
"""
|
|
3383
3383
|
|
|
3384
3384
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
3385
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3386
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3385
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3386
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3387
3387
|
flow_series = pd.Series(flows_data, index=dates)
|
|
3388
3388
|
|
|
3389
3389
|
all_events, _ = evaluate_EWRs.flow_calc_sa(EWR_info, flow_series, water_years, dates, masked_dates)
|
|
@@ -3805,8 +3805,8 @@ def test_flow_calc_check_ctf(EWR_info,flows_data,expected_all_events):
|
|
|
3805
3805
|
'''
|
|
3806
3806
|
|
|
3807
3807
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
3808
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3809
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
3808
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3809
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
3810
3810
|
flows = pd.Series(flows_data, index=dates)
|
|
3811
3811
|
|
|
3812
3812
|
all_events, _ = evaluate_EWRs.flow_calc_check_ctf(EWR_info, flows, water_years, dates, masked_dates)
|
|
@@ -4083,7 +4083,7 @@ def test_cumulative_calc_bbr(EWR_info, flows, levels, expected_all_events, expec
|
|
|
4083
4083
|
"""
|
|
4084
4084
|
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4085
4085
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4086
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4086
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4087
4087
|
all_events, _ = evaluate_EWRs.cumulative_calc_bbr(EWR_info, flows, levels, water_years, dates, masked_dates)
|
|
4088
4088
|
|
|
4089
4089
|
assert all_events == expected_all_events
|
|
@@ -4117,7 +4117,7 @@ def test_achieved_min_volume(event, EWR_info, expected_result):
|
|
|
4117
4117
|
|
|
4118
4118
|
@pytest.mark.parametrize("flow_date, flows, iteration, EWR_info, expected_results", [
|
|
4119
4119
|
(
|
|
4120
|
-
pd.Period('2023-05-24', freq='D'),
|
|
4120
|
+
pd.to_datetime('2023-05-24', format='%Y-%m-%d'),#pd.Period('2023-05-24', freq='D'),
|
|
4121
4121
|
[1,1,3,4,5,6,7,1,1,1],
|
|
4122
4122
|
6,
|
|
4123
4123
|
{"larvae_days_spell":1,"eggs_days_spell":2},
|
|
@@ -4209,7 +4209,7 @@ def test_check_water_stability_flow(flows, iteration, EWR_info, expected_result)
|
|
|
4209
4209
|
])
|
|
4210
4210
|
def test_water_stability_check(EWR_info, iteration, flows, all_events, levels, expected_all_events):
|
|
4211
4211
|
|
|
4212
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4212
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4213
4213
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4214
4214
|
flow_date = dates[iteration]
|
|
4215
4215
|
|
|
@@ -4370,9 +4370,9 @@ def test_water_stability_calc(EWR_info, flows, levels, expected_all_events):
|
|
|
4370
4370
|
5. meeting 2 opportunity but second one the last day is outside window
|
|
4371
4371
|
"""
|
|
4372
4372
|
|
|
4373
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4373
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4374
4374
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4375
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4375
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4376
4376
|
|
|
4377
4377
|
all_events, _ = evaluate_EWRs.water_stability_calc(EWR_info, flows, levels,water_years, dates, masked_dates)
|
|
4378
4378
|
|
|
@@ -4508,7 +4508,7 @@ def test_check_water_stability_height(levels, iteration, EWR_info, expected_resu
|
|
|
4508
4508
|
])
|
|
4509
4509
|
def test_water_stability_level_check(EWR_info, iteration, all_events, levels, expected_all_events):
|
|
4510
4510
|
|
|
4511
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4511
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4512
4512
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4513
4513
|
flow_date = dates[iteration]
|
|
4514
4514
|
|
|
@@ -4573,9 +4573,9 @@ def test_water_stability_level_calc(EWR_info, levels, expected_all_events):
|
|
|
4573
4573
|
2. meeting 2 opportunity but second one the last day is outside window
|
|
4574
4574
|
"""
|
|
4575
4575
|
|
|
4576
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4576
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4577
4577
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4578
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4578
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4579
4579
|
|
|
4580
4580
|
all_events, _ = evaluate_EWRs.water_stability_level_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
4581
4581
|
|
|
@@ -4801,9 +4801,9 @@ def test_check_period_flow_change_stepped(flows, EWR_info, iteration, mode, expe
|
|
|
4801
4801
|
])
|
|
4802
4802
|
def test_rate_rise_flow_calc(EWR_info, flows, expected_all_events):
|
|
4803
4803
|
# non changing variable
|
|
4804
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4804
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4805
4805
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4806
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4806
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4807
4807
|
|
|
4808
4808
|
all_events, _ = evaluate_EWRs.rate_rise_flow_calc(EWR_info, flows, water_years, dates, masked_dates)
|
|
4809
4809
|
|
|
@@ -4960,9 +4960,9 @@ def test_rate_rise_flow_check(EWR_info, iteration, event, all_events, total_even
|
|
|
4960
4960
|
])
|
|
4961
4961
|
def test_rate_fall_flow_calc(EWR_info, flows, expected_all_events):
|
|
4962
4962
|
# non changing variable
|
|
4963
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4963
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4964
4964
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
4965
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
4965
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
4966
4966
|
|
|
4967
4967
|
all_events, _ = evaluate_EWRs.rate_fall_flow_calc(EWR_info, flows, water_years, dates, masked_dates)
|
|
4968
4968
|
|
|
@@ -5118,9 +5118,9 @@ def test_rate_fall_flow_check(EWR_info, iteration, event, all_events, total_even
|
|
|
5118
5118
|
def test_rate_rise_level_calc(EWR_info, levels, expected_all_events):
|
|
5119
5119
|
|
|
5120
5120
|
# non changing variable
|
|
5121
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5121
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5122
5122
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
5123
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5123
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5124
5124
|
|
|
5125
5125
|
all_events, _ = evaluate_EWRs.rate_rise_level_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
5126
5126
|
|
|
@@ -5279,9 +5279,9 @@ def test_rate_rise_level_check(EWR_info, iteration, event, all_events, total_eve
|
|
|
5279
5279
|
def test_rate_fall_level_calc(EWR_info, levels, expected_all_events):
|
|
5280
5280
|
|
|
5281
5281
|
# non changing variable
|
|
5282
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5282
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5283
5283
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
5284
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5284
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5285
5285
|
|
|
5286
5286
|
all_events, _ = evaluate_EWRs.rate_fall_level_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
5287
5287
|
|
|
@@ -5548,9 +5548,9 @@ def test_level_change_check(EWR_info, iteration, event, all_events, total_event,
|
|
|
5548
5548
|
def test_level_change_calc(EWR_info, levels, expected_all_events):
|
|
5549
5549
|
|
|
5550
5550
|
# non changing variable
|
|
5551
|
-
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5551
|
+
dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5552
5552
|
water_years = np.array([2012]*365 + [2013]*365 + [2014]*365 + [2015]*366)
|
|
5553
|
-
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
5553
|
+
masked_dates = pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))#.to_period()
|
|
5554
5554
|
|
|
5555
5555
|
all_events, _ = evaluate_EWRs.level_change_calc(EWR_info, levels, water_years, dates, masked_dates)
|
|
5556
5556
|
|
|
@@ -16,7 +16,7 @@ def test_ctf_handle():
|
|
|
16
16
|
gauge = '410007'
|
|
17
17
|
EWR = 'CF1'
|
|
18
18
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
19
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
19
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
20
20
|
gauge: [0]*1+[0]*350+[0]*9+[0]*5 + [0]*360+[0]*5 + [0]*10+[0]*345+[0]*1+[0]*9 + [0]*5+[0]*351+[0]*10}
|
|
21
21
|
df_F = pd.DataFrame(data = data_for_df_F)
|
|
22
22
|
df_F = df_F.set_index('Date')
|
|
@@ -55,7 +55,7 @@ def test_lowflow_handle():
|
|
|
55
55
|
gauge = '410007'
|
|
56
56
|
EWR = 'BF1_a'
|
|
57
57
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
58
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
58
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
59
59
|
gauge: [0]*1+[249]*350+[0]*9+[0]*5 + [0]*360+[0]*5 + [0]*2+[249]*345+[0]*1+[249]*17 + [0]*5+[249]*351+[249]*10}
|
|
60
60
|
df_F = pd.DataFrame(data = data_for_df_F)
|
|
61
61
|
df_F = df_F.set_index('Date')
|
|
@@ -95,7 +95,7 @@ def test_flow_handle():
|
|
|
95
95
|
gauge = '410007'
|
|
96
96
|
EWR = 'SF1_S'
|
|
97
97
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
98
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
98
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
99
99
|
gauge: [0]*1+[250]*350+[450]*10+[0]*4 +
|
|
100
100
|
[0]*360+[450]*5 +
|
|
101
101
|
[450]*5+[250]*345+[0]*1+[450]*14 +
|
|
@@ -212,7 +212,7 @@ def test_cumulative_handle_qld(qld_parameter_sheet,expected_events, expected_PU_
|
|
|
212
212
|
|
|
213
213
|
EWR_table = qld_parameter_sheet
|
|
214
214
|
|
|
215
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
215
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
216
216
|
'422016': ( [2500]*10+[0]*355 +
|
|
217
217
|
[0]*365 +
|
|
218
218
|
[0]*365 +
|
|
@@ -245,7 +245,7 @@ def test_level_handle():
|
|
|
245
245
|
gauge = '425022'
|
|
246
246
|
EWR = 'LLLF'
|
|
247
247
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
248
|
-
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
248
|
+
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
249
249
|
gauge: [0]*1+[0]*260+[56]*90+[0]*1+[0]*4+[0]*9 +
|
|
250
250
|
[56]*45+[55.9]*1+[56]*45+[0]*269+[0]*3+[19000]*1+[1000]*1 +
|
|
251
251
|
[0]*5+[0]*345+[0]*1+[0]*13+[56]*1 +
|
|
@@ -309,7 +309,7 @@ def test_nest_handle():
|
|
|
309
309
|
threshold_flows = threshold_flows + [5300]*50
|
|
310
310
|
# input data for df_F:
|
|
311
311
|
|
|
312
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
312
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
313
313
|
gauge: ([0]*76+acceptable_flows+[0]*229 +
|
|
314
314
|
[0]*76+unnacceptable_flows+[0]*229 +
|
|
315
315
|
[0]*76+threshold_flows+[0]*229 +
|
|
@@ -373,7 +373,7 @@ def test_flow_handle_multi():
|
|
|
373
373
|
gauge1_flows = ([0]*76+[1250]*5+[0]*229+[0]*55 + [0]*76+[0]*55+[0]*231+[1250]*3 + [1250]*3+[0]*76+[0]*50+[1250]*5+[0]*231 + [0]*77+[1250]*5+[0]*229+[0]*55)
|
|
374
374
|
gauge2_flows = ([0]*76+[1250]*5+[0]*229+[0]*55 + [0]*76+[0]*55+[0]*231+[1250]*3 + [1250]*3+[0]*76+[0]*50+[1250]*5+[0]*231 + [0]*76+[1250]*5+[0]*230+[0]*55)
|
|
375
375
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
376
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
376
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
377
377
|
gauge1: gauge1_flows,
|
|
378
378
|
gauge2: gauge2_flows
|
|
379
379
|
}
|
|
@@ -418,7 +418,7 @@ def test_lowflow_handle_multi():
|
|
|
418
418
|
gauge2 = '421088'
|
|
419
419
|
EWR = 'BF1_a'
|
|
420
420
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
421
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
421
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
422
422
|
gauge1: [40]*76+[1250]*5+[40]*229+[40]*15+[0]*40 + [40]*3+[0]*76+[0]*50+[0]*5+[0]*231 + [40]*75+[0]*50+[40]*230+[40]*10 + [0]*77+[40]*5+[0]*229+[40]*55,
|
|
423
423
|
gauge2: [40]*76+[1250]*5+[40]*229+[0]*40+[40]*15 + [40]*3+[0]*76+[0]*50+[0]*5+[0]*231 + [40]*75+[0]*50+[40]*230+[40]*10 + [0]*76+[40]*5+[0]*230+[40]*55
|
|
424
424
|
}
|
|
@@ -460,7 +460,7 @@ def test_ctf_handle_multi():
|
|
|
460
460
|
gauge2 = '421088'
|
|
461
461
|
EWR = 'CF'
|
|
462
462
|
EWR_table, bad_EWRs = data_inputs.get_EWR_table()
|
|
463
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
463
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
464
464
|
gauge1: [0]*1+[2]*350+[0]*9+[0]*5 + [2]*360+[0]*5 + [0]*10+[2]*345+[0]*1+[2]*9 + [0]*5+[0]*351+[0]*10,
|
|
465
465
|
gauge2: [0]*1+[2]*350+[0]*9+[0]*5 + [2]*360+[0]*5 + [0]*10+[2]*345+[0]*1+[2]*9 + [0]*5+[0]*351+[0]*10
|
|
466
466
|
}
|
|
@@ -836,7 +836,7 @@ def test_merge_weirpool_with_freshes(PU_df_wp, wp_freshes, freshes_eventYears, w
|
|
|
836
836
|
|
|
837
837
|
|
|
838
838
|
@pytest.mark.parametrize("data_for_df_F,EWR,main_gauge,expected_events,pu_df_data", [
|
|
839
|
-
({'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
839
|
+
({'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
840
840
|
'A4261002': (
|
|
841
841
|
[5000]*62 + [16500]*122 + [5000]*181 +
|
|
842
842
|
[5000]*62 + [16500]*122 + [5000]*181 +
|
|
@@ -858,7 +858,7 @@ def test_merge_weirpool_with_freshes(PU_df_wp, wp_freshes, freshes_eventYears, w
|
|
|
858
858
|
'CLLMM1a_P_maxRollingEvents': [1, 1, 1, 1], 'CLLMM1a_P_maxRollingAchievement': [1, 1, 1, 1],
|
|
859
859
|
'CLLMM1a_P_missingDays': [0,0,0,0], 'CLLMM1a_P_totalPossibleDays': [365,365,365,366]}
|
|
860
860
|
),
|
|
861
|
-
({'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
861
|
+
({'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
862
862
|
'A4261002': (
|
|
863
863
|
[5000]*62 + [16500]*122 + [5000]*181 +
|
|
864
864
|
[5000]*62 + [16500]*122 + [5000]*181 +
|
|
@@ -948,7 +948,7 @@ def test_barrage_level_handle(sa_parameter_sheet, expected_events, expected_PU_d
|
|
|
948
948
|
gauge_levels_data = { gauge:gauge_levels for gauge in barrage_gauges }
|
|
949
949
|
|
|
950
950
|
EWR_table = sa_parameter_sheet
|
|
951
|
-
DATE = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
951
|
+
DATE = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))}#.to_period()}
|
|
952
952
|
|
|
953
953
|
data_for_df_L = {**DATE, **gauge_levels_data}
|
|
954
954
|
df_L = pd.DataFrame(data = data_for_df_L)
|
|
@@ -1001,7 +1001,7 @@ def test_flow_handle_sa(sa_parameter_sheet, expected_events, expected_PU_df_data
|
|
|
1001
1001
|
|
|
1002
1002
|
EWR_table = sa_parameter_sheet
|
|
1003
1003
|
|
|
1004
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1004
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1005
1005
|
gauge: (
|
|
1006
1006
|
[0]*31+ [400 + i*400 for i in range(30)] + [12001]*61 + [10000] +
|
|
1007
1007
|
[9900 - i*200 for i in range(30)] + [0]*212 +
|
|
@@ -1098,7 +1098,7 @@ def test_flow_handle_check_ctf(qld_parameter_sheet, expected_events, expected_PU
|
|
|
1098
1098
|
|
|
1099
1099
|
EWR_table = qld_parameter_sheet
|
|
1100
1100
|
|
|
1101
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1101
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1102
1102
|
gauge: ( [0]*365 + # first dry spell
|
|
1103
1103
|
[19]*10 + # in between
|
|
1104
1104
|
[0]*365 + # second dry spell
|
|
@@ -1157,7 +1157,7 @@ def test_cumulative_handle_bbr(qld_parameter_sheet, expected_events, expected_PU
|
|
|
1157
1157
|
|
|
1158
1158
|
EWR_table = qld_parameter_sheet
|
|
1159
1159
|
|
|
1160
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1160
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1161
1161
|
gauge: (
|
|
1162
1162
|
[15400]*20+[0]*345 +
|
|
1163
1163
|
[0]*365 +
|
|
@@ -1168,7 +1168,7 @@ def test_cumulative_handle_bbr(qld_parameter_sheet, expected_events, expected_PU
|
|
|
1168
1168
|
|
|
1169
1169
|
df_F = df_F.set_index('Date')
|
|
1170
1170
|
|
|
1171
|
-
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1171
|
+
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1172
1172
|
"422034": (
|
|
1173
1173
|
[1.]*10 +[1.3]*3+[1.]*5+[0]*347 +
|
|
1174
1174
|
[0]*365 +
|
|
@@ -1401,7 +1401,7 @@ def test_water_stability_handle(qld_parameter_sheet, expected_events, expected_P
|
|
|
1401
1401
|
|
|
1402
1402
|
EWR_table = qld_parameter_sheet
|
|
1403
1403
|
|
|
1404
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1404
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1405
1405
|
gauge: ( [0]*31 + [71]*10 + [0]*324 +
|
|
1406
1406
|
[0]*365 +
|
|
1407
1407
|
[0]*365 +
|
|
@@ -1410,7 +1410,7 @@ def test_water_stability_handle(qld_parameter_sheet, expected_events, expected_P
|
|
|
1410
1410
|
|
|
1411
1411
|
df_F = df_F.set_index('Date')
|
|
1412
1412
|
|
|
1413
|
-
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1413
|
+
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1414
1414
|
"416011": ( [1]*365 +
|
|
1415
1415
|
[0]*365 +
|
|
1416
1416
|
[0]*365 +
|
|
@@ -1468,7 +1468,7 @@ def test_water_stability_level_handle(qld_parameter_sheet, expected_events, expe
|
|
|
1468
1468
|
|
|
1469
1469
|
EWR_table = qld_parameter_sheet
|
|
1470
1470
|
|
|
1471
|
-
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1471
|
+
data_for_df_L = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1472
1472
|
"422015": ( [2]*31 + [1]*10 + [2]*324 +
|
|
1473
1473
|
[2]*365 +
|
|
1474
1474
|
[2]*365 +
|
|
@@ -1525,7 +1525,7 @@ def test_flow_handle_anytime(qld_parameter_sheet, expected_events, expected_PU_d
|
|
|
1525
1525
|
|
|
1526
1526
|
EWR_table = qld_parameter_sheet
|
|
1527
1527
|
|
|
1528
|
-
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1528
|
+
data_for_df_F = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1529
1529
|
'416011': ( [0]*350+[5600]*15 +
|
|
1530
1530
|
[5600]*11+ [0]*354 +
|
|
1531
1531
|
[0]*365 +
|
|
@@ -1675,7 +1675,7 @@ def test_flow_handle_anytime(qld_parameter_sheet, expected_events, expected_PU_d
|
|
|
1675
1675
|
def test_rise_and_fall_handle(pu, gauge, ewr, gauge_data, expected_events, expected_PU_df_data, vic_parameter_sheet):
|
|
1676
1676
|
EWR_table = vic_parameter_sheet
|
|
1677
1677
|
|
|
1678
|
-
data_for_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1678
|
+
data_for_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1679
1679
|
gauge: gauge_data }
|
|
1680
1680
|
|
|
1681
1681
|
|
|
@@ -1737,7 +1737,7 @@ def test_level_change_handle(pu, gauge, ewr, gauge_data, expected_events, expect
|
|
|
1737
1737
|
|
|
1738
1738
|
EWR_table = vic_parameter_sheet
|
|
1739
1739
|
|
|
1740
|
-
data_for_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
1740
|
+
data_for_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
1741
1741
|
gauge: gauge_data }
|
|
1742
1742
|
|
|
1743
1743
|
|
|
@@ -24,7 +24,7 @@ def test_observed_cleaner():
|
|
|
24
24
|
output_df = 'unit_testing_files/observed_flows_test_output.csv'
|
|
25
25
|
expected_result = pd.read_csv(output_df, index_col = 'Date')
|
|
26
26
|
expected_result.index = pd.to_datetime(expected_result.index, format='%Y-%m-%d')
|
|
27
|
-
expected_result.index = expected_result.index
|
|
27
|
+
expected_result.index = expected_result.index#.to_period()
|
|
28
28
|
expected_result.columns = ['419039']
|
|
29
29
|
assert_frame_equal(result, expected_result)
|
|
30
30
|
|
|
@@ -220,7 +220,7 @@ def test_cleaner_MDBA():
|
|
|
220
220
|
|
|
221
221
|
df_clean = scenario_handling.cleaner_MDBA(df)
|
|
222
222
|
# Set up expected output data and test:
|
|
223
|
-
data_expected_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d'))
|
|
223
|
+
data_expected_df = {'Date': pd.date_range(start= datetime.strptime('2012-07-01', '%Y-%m-%d'), end = datetime.strptime('2016-06-30', '%Y-%m-%d')),#.to_period(),
|
|
224
224
|
'EUSTDS-1-8': [0]*1+[250]*350+[0]*9+[0]*5 + [0]*360+[0]*5 + [0]*2+[250]*345+[0]*1+[250]*17 + [0]*5+[250]*351+[250]*10,
|
|
225
225
|
'EUSTUS-35-8': [0]*1+[250]*350+[0]*9+[0]*5 + [0]*360+[0]*5 + [0]*2+[250]*345+[0]*1+[250]*17 + [0]*5+[250]*351+[250]*10
|
|
226
226
|
}
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|