psyke 1.0.4.dev1__tar.gz → 1.0.4.dev2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of psyke might be problematic. Click here for more details.

Files changed (83) hide show
  1. {psyke-1.0.4.dev1/psyke.egg-info → psyke-1.0.4.dev2}/PKG-INFO +10 -12
  2. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/README.md +9 -11
  3. psyke-1.0.4.dev2/VERSION +1 -0
  4. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2/psyke.egg-info}/PKG-INFO +10 -12
  5. psyke-1.0.4.dev1/VERSION +0 -1
  6. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/LICENSE +0 -0
  7. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/MANIFEST.in +0 -0
  8. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/__init__.py +0 -0
  9. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/clustering/__init__.py +0 -0
  10. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/clustering/cream/__init__.py +0 -0
  11. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/clustering/exact/__init__.py +0 -0
  12. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/clustering/utils.py +0 -0
  13. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/__init__.py +0 -0
  14. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/cart/CartPredictor.py +0 -0
  15. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/cart/FairTree.py +0 -0
  16. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/cart/FairTreePredictor.py +0 -0
  17. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/cart/__init__.py +0 -0
  18. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/__init__.py +0 -0
  19. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/cosmik/__init__.py +0 -0
  20. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/creepy/__init__.py +0 -0
  21. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/divine/__init__.py +0 -0
  22. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/ginger/__init__.py +0 -0
  23. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/gridex/__init__.py +0 -0
  24. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/gridrex/__init__.py +0 -0
  25. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/hex/__init__.py +0 -0
  26. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/hypercube.py +0 -0
  27. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/iter/__init__.py +0 -0
  28. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/strategy.py +0 -0
  29. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/hypercubic/utils.py +0 -0
  30. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/real/__init__.py +0 -0
  31. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/real/utils.py +0 -0
  32. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/trepan/__init__.py +0 -0
  33. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/extraction/trepan/utils.py +0 -0
  34. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/genetic/__init__.py +0 -0
  35. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/genetic/fgin/__init__.py +0 -0
  36. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/genetic/gin/__init__.py +0 -0
  37. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/hypercubepredictor.py +0 -0
  38. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/schema/__init__.py +0 -0
  39. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/tuning/__init__.py +0 -0
  40. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/tuning/crash/__init__.py +0 -0
  41. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/tuning/orchid/__init__.py +0 -0
  42. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/tuning/pedro/__init__.py +0 -0
  43. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/__init__.py +0 -0
  44. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/dataframe.py +0 -0
  45. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/logic.py +0 -0
  46. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/metrics.py +0 -0
  47. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/plot.py +0 -0
  48. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke/utils/sorted.py +0 -0
  49. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke.egg-info/SOURCES.txt +0 -0
  50. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke.egg-info/dependency_links.txt +0 -0
  51. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke.egg-info/not-zip-safe +0 -0
  52. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke.egg-info/requires.txt +0 -0
  53. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/psyke.egg-info/top_level.txt +0 -0
  54. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/pyproject.toml +0 -0
  55. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/setup.cfg +0 -0
  56. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/setup.py +0 -0
  57. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/resources/__init__.py +0 -0
  58. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/resources/datasets/__init__.py +0 -0
  59. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/resources/predictors/__init__.py +0 -0
  60. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/resources/tests/__init__.py +0 -0
  61. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/__init__.py +0 -0
  62. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/clustering/__init__.py +0 -0
  63. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/__init__.py +0 -0
  64. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/cart/__init__.py +0 -0
  65. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/cart/test_cart.py +0 -0
  66. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/cart/test_simplified_cart.py +0 -0
  67. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/__init__.py +0 -0
  68. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/gridex/__init__.py +0 -0
  69. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/gridex/test_gridex.py +0 -0
  70. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/iter/__init__.py +0 -0
  71. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/iter/test_iter.py +0 -0
  72. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/hypercubic/test_hypercube.py +0 -0
  73. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/real/__init__.py +0 -0
  74. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/real/test_real.py +0 -0
  75. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/real/test_rule.py +0 -0
  76. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/trepan/__init__.py +0 -0
  77. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/trepan/test_node.py +0 -0
  78. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/trepan/test_split.py +0 -0
  79. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/extraction/trepan/test_trepan.py +0 -0
  80. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/utils/__init__.py +0 -0
  81. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/utils/test_prune.py +0 -0
  82. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/utils/test_simplify.py +0 -0
  83. {psyke-1.0.4.dev1 → psyke-1.0.4.dev2}/test/unit/utils/test_simplify_formatter.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: psyke
3
- Version: 1.0.4.dev1
3
+ Version: 1.0.4.dev2
4
4
  Summary: Python-based implementation of PSyKE, i.e. a Platform for Symbolic Knowledge Extraction
5
5
  Home-page: https://github.com/psykei/psyke-python
6
6
  Author: Matteo Magnini
@@ -47,7 +47,7 @@ Dynamic: summary
47
47
 
48
48
  ![PSyKE Logo](.img/logo-wide.png)
49
49
 
50
- Some quick links:
50
+ Quick links:
51
51
  * [Home Page](https://apice.unibo.it/xwiki/bin/view/PSyKE/)
52
52
  * [GitHub Repository](https://github.com/psykei/psyke-python)
53
53
  * [PyPi Repository](https://pypi.org/project/psyke/)
@@ -56,7 +56,7 @@ Some quick links:
56
56
  ## Intro
57
57
 
58
58
  [PSyKE](https://apice.unibo.it/xwiki/bin/view/PSyKE/) (Platform for Symbolic Knowledge Extraction)
59
- is intended as a library for extracting symbolic knowledge (in the form of logic rules) out of sub-symbolic predictors.
59
+ is intended as a library for extracting symbolic knowledge (in the form of logic rule lists) out of sub-symbolic predictors.
60
60
 
61
61
  More precisely, PSyKE offers a general purpose API for knowledge extraction, and a number of different algorithms implementing it,
62
62
  supporting both classification and regression problems.
@@ -105,16 +105,14 @@ We are working on PSyKE to extend its features to encompass explainable clusteri
105
105
 
106
106
  ### End users
107
107
 
108
- PSyKE is deployed as a library on Pypi, and it can therefore be installed as Python package by running:
108
+ PSyKE is deployed as a library on Pypi. It can be installed as Python package by running:
109
109
  ```bash
110
110
  pip install psyke
111
111
  ```
112
112
 
113
113
  #### Requirements
114
- * `numpy`
115
- * `pandas`
116
- * `scikit-learn`
117
- * `2ppy`
114
+
115
+ Please refer to the [requirements file](https://github.com/psykei/psyke-python/blob/master/requirements.txt)
118
116
 
119
117
  ##### Test requirements
120
118
  * `skl2onnx`
@@ -122,15 +120,15 @@ pip install psyke
122
120
  * `parameterized`
123
121
 
124
122
  Once installed, it is possible to create an extractor from a predictor
125
- (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbor, Random Forest, etc.)
126
- and from the dataset used to train the predictor.
123
+ (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbours, Random Forest, etc.)
124
+ and from the data set used to train the predictor.
127
125
 
128
126
  > **Note:** the predictor must expose a method named `predict` to be properly used as an oracle.
129
127
 
130
128
  #### End users
131
129
 
132
130
  A brief example is presented in `demo.py` script in the `demo/` folder.
133
- Using `sklearn`'s Iris dataset we train a K-Nearest Neighbor to predict the correct output class.
131
+ Using `sklearn`'s Iris data set we train a K-Nearest Neighbours to predict the correct output class.
134
132
  Before training, we make the dataset discrete.
135
133
  After that we create two different extractors: REAL and Trepan.
136
134
  We output the extracted theory for both extractors.
@@ -157,7 +155,7 @@ iris(PetalLength8, PetalWidth8, SepalLength8, SepalWidth8, setosa) :- true.
157
155
 
158
156
  Working with PSyKE codebase requires a number of tools to be installed:
159
157
  * Python 3.11
160
- + Python version greater than `3.11.x` are currently __not__ supported
158
+ + Python version >= `3.12.x` are currently __not__ supported
161
159
 
162
160
  * JDK 11+ (please ensure the `JAVA_HOME` environment variable is properly configured)
163
161
  * Git 2.20+
@@ -2,7 +2,7 @@
2
2
 
3
3
  ![PSyKE Logo](.img/logo-wide.png)
4
4
 
5
- Some quick links:
5
+ Quick links:
6
6
  * [Home Page](https://apice.unibo.it/xwiki/bin/view/PSyKE/)
7
7
  * [GitHub Repository](https://github.com/psykei/psyke-python)
8
8
  * [PyPi Repository](https://pypi.org/project/psyke/)
@@ -11,7 +11,7 @@ Some quick links:
11
11
  ## Intro
12
12
 
13
13
  [PSyKE](https://apice.unibo.it/xwiki/bin/view/PSyKE/) (Platform for Symbolic Knowledge Extraction)
14
- is intended as a library for extracting symbolic knowledge (in the form of logic rules) out of sub-symbolic predictors.
14
+ is intended as a library for extracting symbolic knowledge (in the form of logic rule lists) out of sub-symbolic predictors.
15
15
 
16
16
  More precisely, PSyKE offers a general purpose API for knowledge extraction, and a number of different algorithms implementing it,
17
17
  supporting both classification and regression problems.
@@ -60,16 +60,14 @@ We are working on PSyKE to extend its features to encompass explainable clusteri
60
60
 
61
61
  ### End users
62
62
 
63
- PSyKE is deployed as a library on Pypi, and it can therefore be installed as Python package by running:
63
+ PSyKE is deployed as a library on Pypi. It can be installed as Python package by running:
64
64
  ```bash
65
65
  pip install psyke
66
66
  ```
67
67
 
68
68
  #### Requirements
69
- * `numpy`
70
- * `pandas`
71
- * `scikit-learn`
72
- * `2ppy`
69
+
70
+ Please refer to the [requirements file](https://github.com/psykei/psyke-python/blob/master/requirements.txt)
73
71
 
74
72
  ##### Test requirements
75
73
  * `skl2onnx`
@@ -77,15 +75,15 @@ pip install psyke
77
75
  * `parameterized`
78
76
 
79
77
  Once installed, it is possible to create an extractor from a predictor
80
- (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbor, Random Forest, etc.)
81
- and from the dataset used to train the predictor.
78
+ (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbours, Random Forest, etc.)
79
+ and from the data set used to train the predictor.
82
80
 
83
81
  > **Note:** the predictor must expose a method named `predict` to be properly used as an oracle.
84
82
 
85
83
  #### End users
86
84
 
87
85
  A brief example is presented in `demo.py` script in the `demo/` folder.
88
- Using `sklearn`'s Iris dataset we train a K-Nearest Neighbor to predict the correct output class.
86
+ Using `sklearn`'s Iris data set we train a K-Nearest Neighbours to predict the correct output class.
89
87
  Before training, we make the dataset discrete.
90
88
  After that we create two different extractors: REAL and Trepan.
91
89
  We output the extracted theory for both extractors.
@@ -112,7 +110,7 @@ iris(PetalLength8, PetalWidth8, SepalLength8, SepalWidth8, setosa) :- true.
112
110
 
113
111
  Working with PSyKE codebase requires a number of tools to be installed:
114
112
  * Python 3.11
115
- + Python version greater than `3.11.x` are currently __not__ supported
113
+ + Python version >= `3.12.x` are currently __not__ supported
116
114
 
117
115
  * JDK 11+ (please ensure the `JAVA_HOME` environment variable is properly configured)
118
116
  * Git 2.20+
@@ -0,0 +1 @@
1
+ 1.0.4.dev2
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: psyke
3
- Version: 1.0.4.dev1
3
+ Version: 1.0.4.dev2
4
4
  Summary: Python-based implementation of PSyKE, i.e. a Platform for Symbolic Knowledge Extraction
5
5
  Home-page: https://github.com/psykei/psyke-python
6
6
  Author: Matteo Magnini
@@ -47,7 +47,7 @@ Dynamic: summary
47
47
 
48
48
  ![PSyKE Logo](.img/logo-wide.png)
49
49
 
50
- Some quick links:
50
+ Quick links:
51
51
  * [Home Page](https://apice.unibo.it/xwiki/bin/view/PSyKE/)
52
52
  * [GitHub Repository](https://github.com/psykei/psyke-python)
53
53
  * [PyPi Repository](https://pypi.org/project/psyke/)
@@ -56,7 +56,7 @@ Some quick links:
56
56
  ## Intro
57
57
 
58
58
  [PSyKE](https://apice.unibo.it/xwiki/bin/view/PSyKE/) (Platform for Symbolic Knowledge Extraction)
59
- is intended as a library for extracting symbolic knowledge (in the form of logic rules) out of sub-symbolic predictors.
59
+ is intended as a library for extracting symbolic knowledge (in the form of logic rule lists) out of sub-symbolic predictors.
60
60
 
61
61
  More precisely, PSyKE offers a general purpose API for knowledge extraction, and a number of different algorithms implementing it,
62
62
  supporting both classification and regression problems.
@@ -105,16 +105,14 @@ We are working on PSyKE to extend its features to encompass explainable clusteri
105
105
 
106
106
  ### End users
107
107
 
108
- PSyKE is deployed as a library on Pypi, and it can therefore be installed as Python package by running:
108
+ PSyKE is deployed as a library on Pypi. It can be installed as Python package by running:
109
109
  ```bash
110
110
  pip install psyke
111
111
  ```
112
112
 
113
113
  #### Requirements
114
- * `numpy`
115
- * `pandas`
116
- * `scikit-learn`
117
- * `2ppy`
114
+
115
+ Please refer to the [requirements file](https://github.com/psykei/psyke-python/blob/master/requirements.txt)
118
116
 
119
117
  ##### Test requirements
120
118
  * `skl2onnx`
@@ -122,15 +120,15 @@ pip install psyke
122
120
  * `parameterized`
123
121
 
124
122
  Once installed, it is possible to create an extractor from a predictor
125
- (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbor, Random Forest, etc.)
126
- and from the dataset used to train the predictor.
123
+ (e.g. Neural Network, Support Vector Machine, K-Nearest Neighbours, Random Forest, etc.)
124
+ and from the data set used to train the predictor.
127
125
 
128
126
  > **Note:** the predictor must expose a method named `predict` to be properly used as an oracle.
129
127
 
130
128
  #### End users
131
129
 
132
130
  A brief example is presented in `demo.py` script in the `demo/` folder.
133
- Using `sklearn`'s Iris dataset we train a K-Nearest Neighbor to predict the correct output class.
131
+ Using `sklearn`'s Iris data set we train a K-Nearest Neighbours to predict the correct output class.
134
132
  Before training, we make the dataset discrete.
135
133
  After that we create two different extractors: REAL and Trepan.
136
134
  We output the extracted theory for both extractors.
@@ -157,7 +155,7 @@ iris(PetalLength8, PetalWidth8, SepalLength8, SepalWidth8, setosa) :- true.
157
155
 
158
156
  Working with PSyKE codebase requires a number of tools to be installed:
159
157
  * Python 3.11
160
- + Python version greater than `3.11.x` are currently __not__ supported
158
+ + Python version >= `3.12.x` are currently __not__ supported
161
159
 
162
160
  * JDK 11+ (please ensure the `JAVA_HOME` environment variable is properly configured)
163
161
  * Git 2.20+
psyke-1.0.4.dev1/VERSION DELETED
@@ -1 +0,0 @@
1
- 1.0.4.dev1
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes