prompture 0.0.38.dev2__tar.gz → 0.0.39__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {prompture-0.0.38.dev2/prompture.egg-info → prompture-0.0.39}/PKG-INFO +1 -1
- prompture-0.0.39/VERSION +1 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/__init__.py +9 -1
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/_version.py +2 -2
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/async_driver.py +39 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/cost_mixin.py +37 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/discovery.py +54 -39
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/driver.py +39 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_azure_driver.py +4 -4
- prompture-0.0.39/prompture/drivers/async_claude_driver.py +282 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_google_driver.py +10 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_grok_driver.py +4 -4
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_groq_driver.py +4 -4
- prompture-0.0.39/prompture/drivers/async_openai_driver.py +253 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_openrouter_driver.py +4 -4
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/azure_driver.py +3 -3
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/claude_driver.py +10 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/google_driver.py +10 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/grok_driver.py +4 -4
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/groq_driver.py +4 -4
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/openai_driver.py +19 -10
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/openrouter_driver.py +4 -4
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/model_rates.py +112 -2
- {prompture-0.0.38.dev2 → prompture-0.0.39/prompture.egg-info}/PKG-INFO +1 -1
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture.egg-info/SOURCES.txt +1 -0
- prompture-0.0.38.dev2/prompture/drivers/async_claude_driver.py +0 -113
- prompture-0.0.38.dev2/prompture/drivers/async_openai_driver.py +0 -102
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/add-driver/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/add-driver/references/driver-template.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/add-example/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/add-field/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/add-test/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/run-tests/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/scaffold-extraction/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.claude/skills/update-pricing/SKILL.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.env.copy +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/FUNDING.yml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/scripts/update_docs_version.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/scripts/update_wrapper_version.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/workflows/dev.yml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/workflows/documentation.yml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/.github/workflows/publish.yml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/CLAUDE.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/LICENSE +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/MANIFEST.in +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/README.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/ROADMAP.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/_static/custom.css +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/_templates/footer.html +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/core.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/drivers.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/field_definitions.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/index.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/runner.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/tools.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/api/validator.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/conf.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/contributing.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/examples.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/field_definitions_reference.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/index.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/installation.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/quickstart.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/docs/source/toon_input_guide.rst +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/README.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_json/README.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_json/llm_to_json/__init__.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_json/pyproject.toml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_json/test.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_toon/README.md +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_toon/llm_to_toon/__init__.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_toon/pyproject.toml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/packages/llm_to_toon/test.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/agent.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/agent_types.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/aio/__init__.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/async_agent.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/async_conversation.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/async_core.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/async_groups.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/cache.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/callbacks.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/cli.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/conversation.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/core.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/__init__.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/airllm_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_airllm_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_hugging_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_lmstudio_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_local_http_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_ollama_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/async_registry.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/hugging_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/lmstudio_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/local_http_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/ollama_driver.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/registry.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/drivers/vision_helpers.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/field_definitions.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/group_types.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/groups.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/image.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/logging.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/persistence.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/persona.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/runner.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/__init__.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/generator.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/Dockerfile.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/README.md.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/config.py.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/env.example.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/main.py.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/models.py.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/scaffold/templates/requirements.txt.j2 +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/serialization.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/server.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/session.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/settings.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/tools.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/tools_schema.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture/validator.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture.egg-info/dependency_links.txt +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture.egg-info/entry_points.txt +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture.egg-info/requires.txt +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/prompture.egg-info/top_level.txt +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/pyproject.toml +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/requirements.txt +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/setup.cfg +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/test.py +0 -0
- {prompture-0.0.38.dev2 → prompture-0.0.39}/test_version_diagnosis.py +0 -0
prompture-0.0.39/VERSION
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
0.0.39
|
|
@@ -111,7 +111,13 @@ from .image import (
|
|
|
111
111
|
make_image,
|
|
112
112
|
)
|
|
113
113
|
from .logging import JSONFormatter, configure_logging
|
|
114
|
-
from .model_rates import
|
|
114
|
+
from .model_rates import (
|
|
115
|
+
ModelCapabilities,
|
|
116
|
+
get_model_capabilities,
|
|
117
|
+
get_model_info,
|
|
118
|
+
get_model_rates,
|
|
119
|
+
refresh_rates_cache,
|
|
120
|
+
)
|
|
115
121
|
from .persistence import ConversationStore
|
|
116
122
|
from .persona import (
|
|
117
123
|
PERSONAS,
|
|
@@ -213,6 +219,7 @@ __all__ = [
|
|
|
213
219
|
"LocalHTTPDriver",
|
|
214
220
|
"LoopGroup",
|
|
215
221
|
"MemoryCacheBackend",
|
|
222
|
+
"ModelCapabilities",
|
|
216
223
|
"ModelRetry",
|
|
217
224
|
"OllamaDriver",
|
|
218
225
|
"OpenAIDriver",
|
|
@@ -255,6 +262,7 @@ __all__ = [
|
|
|
255
262
|
"get_driver_for_model",
|
|
256
263
|
"get_field_definition",
|
|
257
264
|
"get_field_names",
|
|
265
|
+
"get_model_capabilities",
|
|
258
266
|
"get_model_info",
|
|
259
267
|
"get_model_rates",
|
|
260
268
|
"get_persona",
|
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.0.
|
|
32
|
-
__version_tuple__ = version_tuple = (0, 0,
|
|
31
|
+
__version__ = version = '0.0.39'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 0, 39)
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|
|
@@ -166,6 +166,45 @@ class AsyncDriver:
|
|
|
166
166
|
except Exception:
|
|
167
167
|
logger.exception("Callback %s raised an exception", event)
|
|
168
168
|
|
|
169
|
+
def _validate_model_capabilities(
|
|
170
|
+
self,
|
|
171
|
+
provider: str,
|
|
172
|
+
model: str,
|
|
173
|
+
*,
|
|
174
|
+
using_tool_use: bool = False,
|
|
175
|
+
using_json_schema: bool = False,
|
|
176
|
+
using_vision: bool = False,
|
|
177
|
+
) -> None:
|
|
178
|
+
"""Log warnings when the model may not support a requested feature.
|
|
179
|
+
|
|
180
|
+
Uses models.dev metadata as a secondary signal. Warnings only — the
|
|
181
|
+
API is the final authority and models.dev data may be stale.
|
|
182
|
+
"""
|
|
183
|
+
from .model_rates import get_model_capabilities
|
|
184
|
+
|
|
185
|
+
caps = get_model_capabilities(provider, model)
|
|
186
|
+
if caps is None:
|
|
187
|
+
return
|
|
188
|
+
|
|
189
|
+
if using_tool_use and caps.supports_tool_use is False:
|
|
190
|
+
logger.warning(
|
|
191
|
+
"Model %s/%s may not support tool use according to models.dev metadata",
|
|
192
|
+
provider,
|
|
193
|
+
model,
|
|
194
|
+
)
|
|
195
|
+
if using_json_schema and caps.supports_structured_output is False:
|
|
196
|
+
logger.warning(
|
|
197
|
+
"Model %s/%s may not support structured output / JSON schema according to models.dev metadata",
|
|
198
|
+
provider,
|
|
199
|
+
model,
|
|
200
|
+
)
|
|
201
|
+
if using_vision and caps.supports_vision is False:
|
|
202
|
+
logger.warning(
|
|
203
|
+
"Model %s/%s may not support vision/image inputs according to models.dev metadata",
|
|
204
|
+
provider,
|
|
205
|
+
model,
|
|
206
|
+
)
|
|
207
|
+
|
|
169
208
|
def _check_vision_support(self, messages: list[dict[str, Any]]) -> None:
|
|
170
209
|
"""Raise if messages contain image blocks and the driver lacks vision support."""
|
|
171
210
|
if self.supports_vision:
|
|
@@ -49,3 +49,40 @@ class CostMixin:
|
|
|
49
49
|
completion_cost = (completion_tokens / unit) * model_pricing["completion"]
|
|
50
50
|
|
|
51
51
|
return round(prompt_cost + completion_cost, 6)
|
|
52
|
+
|
|
53
|
+
def _get_model_config(self, provider: str, model: str) -> dict[str, Any]:
|
|
54
|
+
"""Merge live models.dev capabilities with hardcoded ``MODEL_PRICING``.
|
|
55
|
+
|
|
56
|
+
Returns a dict with:
|
|
57
|
+
- ``tokens_param`` — always from hardcoded ``MODEL_PRICING`` (API-specific)
|
|
58
|
+
- ``supports_temperature`` — prefers live data, falls back to hardcoded, default ``True``
|
|
59
|
+
- ``context_window`` — from live data only (``None`` if unavailable)
|
|
60
|
+
- ``max_output_tokens`` — from live data only (``None`` if unavailable)
|
|
61
|
+
"""
|
|
62
|
+
from .model_rates import get_model_capabilities
|
|
63
|
+
|
|
64
|
+
hardcoded = self.MODEL_PRICING.get(model, {})
|
|
65
|
+
|
|
66
|
+
# tokens_param is always from hardcoded config (API-specific, not in models.dev)
|
|
67
|
+
tokens_param = hardcoded.get("tokens_param", "max_tokens")
|
|
68
|
+
|
|
69
|
+
# Start with hardcoded supports_temperature, default True
|
|
70
|
+
supports_temperature = hardcoded.get("supports_temperature", True)
|
|
71
|
+
|
|
72
|
+
context_window: int | None = None
|
|
73
|
+
max_output_tokens: int | None = None
|
|
74
|
+
|
|
75
|
+
# Override with live data when available
|
|
76
|
+
caps = get_model_capabilities(provider, model)
|
|
77
|
+
if caps is not None:
|
|
78
|
+
if caps.supports_temperature is not None:
|
|
79
|
+
supports_temperature = caps.supports_temperature
|
|
80
|
+
context_window = caps.context_window
|
|
81
|
+
max_output_tokens = caps.max_output_tokens
|
|
82
|
+
|
|
83
|
+
return {
|
|
84
|
+
"tokens_param": tokens_param,
|
|
85
|
+
"supports_temperature": supports_temperature,
|
|
86
|
+
"context_window": context_window,
|
|
87
|
+
"max_output_tokens": max_output_tokens,
|
|
88
|
+
}
|
|
@@ -1,7 +1,11 @@
|
|
|
1
1
|
"""Discovery module for auto-detecting available models."""
|
|
2
2
|
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import dataclasses
|
|
3
6
|
import logging
|
|
4
7
|
import os
|
|
8
|
+
from typing import Any, overload
|
|
5
9
|
|
|
6
10
|
import requests
|
|
7
11
|
|
|
@@ -22,23 +26,34 @@ from .settings import settings
|
|
|
22
26
|
logger = logging.getLogger(__name__)
|
|
23
27
|
|
|
24
28
|
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
29
|
+
@overload
|
|
30
|
+
def get_available_models(*, include_capabilities: bool = False) -> list[str]: ...
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@overload
|
|
34
|
+
def get_available_models(*, include_capabilities: bool = True) -> list[dict[str, Any]]: ...
|
|
28
35
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
36
|
+
|
|
37
|
+
def get_available_models(*, include_capabilities: bool = False) -> list[str] | list[dict[str, Any]]:
|
|
38
|
+
"""Auto-detect available models based on configured drivers and environment variables.
|
|
39
|
+
|
|
40
|
+
Iterates through supported providers and checks if they are configured
|
|
41
|
+
(e.g. API key present). For static drivers, returns models from their
|
|
42
|
+
``MODEL_PRICING`` keys. For dynamic drivers (like Ollama), attempts to
|
|
43
|
+
fetch available models from the endpoint.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
include_capabilities: When ``True``, return enriched dicts with
|
|
47
|
+
``model``, ``provider``, ``model_id``, and ``capabilities``
|
|
48
|
+
fields instead of plain ``"provider/model_id"`` strings.
|
|
32
49
|
|
|
33
50
|
Returns:
|
|
34
|
-
A list of unique model strings
|
|
51
|
+
A sorted list of unique model strings (default) or enriched dicts.
|
|
35
52
|
"""
|
|
36
53
|
available_models: set[str] = set()
|
|
37
54
|
configured_providers: set[str] = set()
|
|
38
55
|
|
|
39
56
|
# Map of provider name to driver class
|
|
40
|
-
# We need to map the registry keys to the actual classes to check MODEL_PRICING
|
|
41
|
-
# and instantiate for dynamic checks if needed.
|
|
42
57
|
provider_classes = {
|
|
43
58
|
"openai": OpenAIDriver,
|
|
44
59
|
"azure": AzureDriver,
|
|
@@ -54,11 +69,6 @@ def get_available_models() -> list[str]:
|
|
|
54
69
|
|
|
55
70
|
for provider, driver_cls in provider_classes.items():
|
|
56
71
|
try:
|
|
57
|
-
# 1. Check if the provider is configured (has API key or endpoint)
|
|
58
|
-
# We can check this by looking at the settings or env vars that the driver uses.
|
|
59
|
-
# A simple way is to try to instantiate it with defaults, but that might fail if keys are missing.
|
|
60
|
-
# Instead, let's check the specific requirements for each known provider.
|
|
61
|
-
|
|
62
72
|
is_configured = False
|
|
63
73
|
|
|
64
74
|
if provider == "openai":
|
|
@@ -87,13 +97,10 @@ def get_available_models() -> list[str]:
|
|
|
87
97
|
if settings.grok_api_key or os.getenv("GROK_API_KEY"):
|
|
88
98
|
is_configured = True
|
|
89
99
|
elif provider == "ollama":
|
|
90
|
-
# Ollama is always considered "configured" as it defaults to localhost
|
|
91
|
-
# We will check connectivity later
|
|
92
100
|
is_configured = True
|
|
93
101
|
elif provider == "lmstudio":
|
|
94
|
-
# LM Studio is similar to Ollama, defaults to localhost
|
|
95
102
|
is_configured = True
|
|
96
|
-
elif provider == "local_http" and
|
|
103
|
+
elif provider == "local_http" and os.getenv("LOCAL_HTTP_ENDPOINT"):
|
|
97
104
|
is_configured = True
|
|
98
105
|
|
|
99
106
|
if not is_configured:
|
|
@@ -101,36 +108,20 @@ def get_available_models() -> list[str]:
|
|
|
101
108
|
|
|
102
109
|
configured_providers.add(provider)
|
|
103
110
|
|
|
104
|
-
#
|
|
111
|
+
# Static Detection: Get models from MODEL_PRICING
|
|
105
112
|
if hasattr(driver_cls, "MODEL_PRICING"):
|
|
106
113
|
pricing = driver_cls.MODEL_PRICING
|
|
107
114
|
for model_id in pricing:
|
|
108
|
-
# Skip "default" or generic keys if they exist
|
|
109
115
|
if model_id == "default":
|
|
110
116
|
continue
|
|
111
|
-
|
|
112
|
-
# For Azure, the model_id in pricing is usually the base model name,
|
|
113
|
-
# but the user needs to use the deployment ID.
|
|
114
|
-
# However, our Azure driver implementation uses the deployment_id from init
|
|
115
|
-
# as the "model" for the request, but expects the user to pass a model name
|
|
116
|
-
# that maps to pricing?
|
|
117
|
-
# Looking at AzureDriver:
|
|
118
|
-
# kwargs = {"model": self.deployment_id, ...}
|
|
119
|
-
# model = options.get("model", self.model) -> used for pricing lookup
|
|
120
|
-
# So we should list the keys in MODEL_PRICING as available "models"
|
|
121
|
-
# even though for Azure specifically it's a bit weird because of deployment IDs.
|
|
122
|
-
# But for general discovery, listing supported models is correct.
|
|
123
|
-
|
|
124
117
|
available_models.add(f"{provider}/{model_id}")
|
|
125
118
|
|
|
126
|
-
#
|
|
119
|
+
# Dynamic Detection: Specific logic for Ollama
|
|
127
120
|
if provider == "ollama":
|
|
128
121
|
try:
|
|
129
122
|
endpoint = settings.ollama_endpoint or os.getenv(
|
|
130
123
|
"OLLAMA_ENDPOINT", "http://localhost:11434/api/generate"
|
|
131
124
|
)
|
|
132
|
-
# We need the base URL for tags, usually http://localhost:11434/api/tags
|
|
133
|
-
# The configured endpoint might be .../api/generate or .../api/chat
|
|
134
125
|
base_url = endpoint.split("/api/")[0]
|
|
135
126
|
tags_url = f"{base_url}/api/tags"
|
|
136
127
|
|
|
@@ -141,8 +132,6 @@ def get_available_models() -> list[str]:
|
|
|
141
132
|
for model in models:
|
|
142
133
|
name = model.get("name")
|
|
143
134
|
if name:
|
|
144
|
-
# Ollama model names often include tags like "llama3:latest"
|
|
145
|
-
# We can keep them as is.
|
|
146
135
|
available_models.add(f"ollama/{name}")
|
|
147
136
|
except Exception as e:
|
|
148
137
|
logger.debug(f"Failed to fetch Ollama models: {e}")
|
|
@@ -184,4 +173,30 @@ def get_available_models() -> list[str]:
|
|
|
184
173
|
for model_id in get_all_provider_models(api_name):
|
|
185
174
|
available_models.add(f"{prompture_name}/{model_id}")
|
|
186
175
|
|
|
187
|
-
|
|
176
|
+
sorted_models = sorted(available_models)
|
|
177
|
+
|
|
178
|
+
if not include_capabilities:
|
|
179
|
+
return sorted_models
|
|
180
|
+
|
|
181
|
+
# Build enriched dicts with capabilities from models.dev
|
|
182
|
+
from .model_rates import get_model_capabilities
|
|
183
|
+
|
|
184
|
+
enriched: list[dict[str, Any]] = []
|
|
185
|
+
for model_str in sorted_models:
|
|
186
|
+
parts = model_str.split("/", 1)
|
|
187
|
+
provider = parts[0]
|
|
188
|
+
model_id = parts[1] if len(parts) > 1 else parts[0]
|
|
189
|
+
|
|
190
|
+
caps = get_model_capabilities(provider, model_id)
|
|
191
|
+
caps_dict = dataclasses.asdict(caps) if caps is not None else None
|
|
192
|
+
|
|
193
|
+
enriched.append(
|
|
194
|
+
{
|
|
195
|
+
"model": model_str,
|
|
196
|
+
"provider": provider,
|
|
197
|
+
"model_id": model_id,
|
|
198
|
+
"capabilities": caps_dict,
|
|
199
|
+
}
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
return enriched
|
|
@@ -173,6 +173,45 @@ class Driver:
|
|
|
173
173
|
except Exception:
|
|
174
174
|
logger.exception("Callback %s raised an exception", event)
|
|
175
175
|
|
|
176
|
+
def _validate_model_capabilities(
|
|
177
|
+
self,
|
|
178
|
+
provider: str,
|
|
179
|
+
model: str,
|
|
180
|
+
*,
|
|
181
|
+
using_tool_use: bool = False,
|
|
182
|
+
using_json_schema: bool = False,
|
|
183
|
+
using_vision: bool = False,
|
|
184
|
+
) -> None:
|
|
185
|
+
"""Log warnings when the model may not support a requested feature.
|
|
186
|
+
|
|
187
|
+
Uses models.dev metadata as a secondary signal. Warnings only — the
|
|
188
|
+
API is the final authority and models.dev data may be stale.
|
|
189
|
+
"""
|
|
190
|
+
from .model_rates import get_model_capabilities
|
|
191
|
+
|
|
192
|
+
caps = get_model_capabilities(provider, model)
|
|
193
|
+
if caps is None:
|
|
194
|
+
return
|
|
195
|
+
|
|
196
|
+
if using_tool_use and caps.supports_tool_use is False:
|
|
197
|
+
logger.warning(
|
|
198
|
+
"Model %s/%s may not support tool use according to models.dev metadata",
|
|
199
|
+
provider,
|
|
200
|
+
model,
|
|
201
|
+
)
|
|
202
|
+
if using_json_schema and caps.supports_structured_output is False:
|
|
203
|
+
logger.warning(
|
|
204
|
+
"Model %s/%s may not support structured output / JSON schema according to models.dev metadata",
|
|
205
|
+
provider,
|
|
206
|
+
model,
|
|
207
|
+
)
|
|
208
|
+
if using_vision and caps.supports_vision is False:
|
|
209
|
+
logger.warning(
|
|
210
|
+
"Model %s/%s may not support vision/image inputs according to models.dev metadata",
|
|
211
|
+
provider,
|
|
212
|
+
model,
|
|
213
|
+
)
|
|
214
|
+
|
|
176
215
|
def _check_vision_support(self, messages: list[dict[str, Any]]) -> None:
|
|
177
216
|
"""Raise if messages contain image blocks and the driver lacks vision support."""
|
|
178
217
|
if self.supports_vision:
|
|
@@ -70,9 +70,9 @@ class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
|
70
70
|
raise RuntimeError("openai package (>=1.0.0) with AsyncAzureOpenAI not installed")
|
|
71
71
|
|
|
72
72
|
model = options.get("model", self.model)
|
|
73
|
-
|
|
74
|
-
tokens_param =
|
|
75
|
-
supports_temperature =
|
|
73
|
+
model_config = self._get_model_config("azure", model)
|
|
74
|
+
tokens_param = model_config["tokens_param"]
|
|
75
|
+
supports_temperature = model_config["supports_temperature"]
|
|
76
76
|
|
|
77
77
|
opts = {"temperature": 1.0, "max_tokens": 512, **options}
|
|
78
78
|
|
|
@@ -113,7 +113,7 @@ class AsyncAzureDriver(CostMixin, AsyncDriver):
|
|
|
113
113
|
"prompt_tokens": prompt_tokens,
|
|
114
114
|
"completion_tokens": completion_tokens,
|
|
115
115
|
"total_tokens": total_tokens,
|
|
116
|
-
"cost": total_cost,
|
|
116
|
+
"cost": round(total_cost, 6),
|
|
117
117
|
"raw_response": resp.model_dump(),
|
|
118
118
|
"model_name": model,
|
|
119
119
|
"deployment_id": self.deployment_id,
|
|
@@ -0,0 +1,282 @@
|
|
|
1
|
+
"""Async Anthropic Claude driver. Requires the ``anthropic`` package."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
import os
|
|
7
|
+
from collections.abc import AsyncIterator
|
|
8
|
+
from typing import Any
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
import anthropic
|
|
12
|
+
except Exception:
|
|
13
|
+
anthropic = None
|
|
14
|
+
|
|
15
|
+
from ..async_driver import AsyncDriver
|
|
16
|
+
from ..cost_mixin import CostMixin
|
|
17
|
+
from .claude_driver import ClaudeDriver
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class AsyncClaudeDriver(CostMixin, AsyncDriver):
|
|
21
|
+
supports_json_mode = True
|
|
22
|
+
supports_json_schema = True
|
|
23
|
+
supports_tool_use = True
|
|
24
|
+
supports_streaming = True
|
|
25
|
+
supports_vision = True
|
|
26
|
+
|
|
27
|
+
MODEL_PRICING = ClaudeDriver.MODEL_PRICING
|
|
28
|
+
|
|
29
|
+
def __init__(self, api_key: str | None = None, model: str = "claude-3-5-haiku-20241022"):
|
|
30
|
+
self.api_key = api_key or os.getenv("CLAUDE_API_KEY")
|
|
31
|
+
self.model = model or os.getenv("CLAUDE_MODEL_NAME", "claude-3-5-haiku-20241022")
|
|
32
|
+
|
|
33
|
+
supports_messages = True
|
|
34
|
+
|
|
35
|
+
def _prepare_messages(self, messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
|
36
|
+
from .vision_helpers import _prepare_claude_vision_messages
|
|
37
|
+
|
|
38
|
+
return _prepare_claude_vision_messages(messages)
|
|
39
|
+
|
|
40
|
+
async def generate(self, prompt: str, options: dict[str, Any]) -> dict[str, Any]:
|
|
41
|
+
messages = [{"role": "user", "content": prompt}]
|
|
42
|
+
return await self._do_generate(messages, options)
|
|
43
|
+
|
|
44
|
+
async def generate_messages(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
45
|
+
return await self._do_generate(self._prepare_messages(messages), options)
|
|
46
|
+
|
|
47
|
+
async def _do_generate(self, messages: list[dict[str, str]], options: dict[str, Any]) -> dict[str, Any]:
|
|
48
|
+
if anthropic is None:
|
|
49
|
+
raise RuntimeError("anthropic package not installed")
|
|
50
|
+
|
|
51
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
52
|
+
model = options.get("model", self.model)
|
|
53
|
+
|
|
54
|
+
# Validate capabilities against models.dev metadata
|
|
55
|
+
self._validate_model_capabilities(
|
|
56
|
+
"claude",
|
|
57
|
+
model,
|
|
58
|
+
using_json_schema=bool(options.get("json_schema")),
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
62
|
+
|
|
63
|
+
# Anthropic requires system messages as a top-level parameter
|
|
64
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
65
|
+
|
|
66
|
+
# Build common kwargs
|
|
67
|
+
common_kwargs: dict[str, Any] = {
|
|
68
|
+
"model": model,
|
|
69
|
+
"messages": api_messages,
|
|
70
|
+
"temperature": opts["temperature"],
|
|
71
|
+
"max_tokens": opts["max_tokens"],
|
|
72
|
+
}
|
|
73
|
+
if system_content:
|
|
74
|
+
common_kwargs["system"] = system_content
|
|
75
|
+
|
|
76
|
+
# Native JSON mode: use tool-use for schema enforcement
|
|
77
|
+
if options.get("json_mode"):
|
|
78
|
+
json_schema = options.get("json_schema")
|
|
79
|
+
if json_schema:
|
|
80
|
+
tool_def = {
|
|
81
|
+
"name": "extract_json",
|
|
82
|
+
"description": "Extract structured data matching the schema",
|
|
83
|
+
"input_schema": json_schema,
|
|
84
|
+
}
|
|
85
|
+
resp = await client.messages.create(
|
|
86
|
+
**common_kwargs,
|
|
87
|
+
tools=[tool_def],
|
|
88
|
+
tool_choice={"type": "tool", "name": "extract_json"},
|
|
89
|
+
)
|
|
90
|
+
text = ""
|
|
91
|
+
for block in resp.content:
|
|
92
|
+
if block.type == "tool_use":
|
|
93
|
+
text = json.dumps(block.input)
|
|
94
|
+
break
|
|
95
|
+
else:
|
|
96
|
+
resp = await client.messages.create(**common_kwargs)
|
|
97
|
+
text = resp.content[0].text
|
|
98
|
+
else:
|
|
99
|
+
resp = await client.messages.create(**common_kwargs)
|
|
100
|
+
text = resp.content[0].text
|
|
101
|
+
|
|
102
|
+
prompt_tokens = resp.usage.input_tokens
|
|
103
|
+
completion_tokens = resp.usage.output_tokens
|
|
104
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
105
|
+
|
|
106
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
107
|
+
|
|
108
|
+
meta = {
|
|
109
|
+
"prompt_tokens": prompt_tokens,
|
|
110
|
+
"completion_tokens": completion_tokens,
|
|
111
|
+
"total_tokens": total_tokens,
|
|
112
|
+
"cost": round(total_cost, 6),
|
|
113
|
+
"raw_response": dict(resp),
|
|
114
|
+
"model_name": model,
|
|
115
|
+
}
|
|
116
|
+
|
|
117
|
+
return {"text": text, "meta": meta}
|
|
118
|
+
|
|
119
|
+
# ------------------------------------------------------------------
|
|
120
|
+
# Helpers
|
|
121
|
+
# ------------------------------------------------------------------
|
|
122
|
+
|
|
123
|
+
def _extract_system_and_messages(
|
|
124
|
+
self, messages: list[dict[str, Any]]
|
|
125
|
+
) -> tuple[str | None, list[dict[str, Any]]]:
|
|
126
|
+
"""Separate system message from conversation messages for Anthropic API."""
|
|
127
|
+
system_content = None
|
|
128
|
+
api_messages: list[dict[str, Any]] = []
|
|
129
|
+
for msg in messages:
|
|
130
|
+
if msg.get("role") == "system":
|
|
131
|
+
system_content = msg.get("content", "")
|
|
132
|
+
else:
|
|
133
|
+
api_messages.append(msg)
|
|
134
|
+
return system_content, api_messages
|
|
135
|
+
|
|
136
|
+
# ------------------------------------------------------------------
|
|
137
|
+
# Tool use
|
|
138
|
+
# ------------------------------------------------------------------
|
|
139
|
+
|
|
140
|
+
async def generate_messages_with_tools(
|
|
141
|
+
self,
|
|
142
|
+
messages: list[dict[str, Any]],
|
|
143
|
+
tools: list[dict[str, Any]],
|
|
144
|
+
options: dict[str, Any],
|
|
145
|
+
) -> dict[str, Any]:
|
|
146
|
+
"""Generate a response that may include tool calls (Anthropic)."""
|
|
147
|
+
if anthropic is None:
|
|
148
|
+
raise RuntimeError("anthropic package not installed")
|
|
149
|
+
|
|
150
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
151
|
+
model = options.get("model", self.model)
|
|
152
|
+
|
|
153
|
+
self._validate_model_capabilities("claude", model, using_tool_use=True)
|
|
154
|
+
|
|
155
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
156
|
+
|
|
157
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
158
|
+
|
|
159
|
+
# Convert tools from OpenAI format to Anthropic format if needed
|
|
160
|
+
anthropic_tools = []
|
|
161
|
+
for t in tools:
|
|
162
|
+
if "type" in t and t["type"] == "function":
|
|
163
|
+
# OpenAI format -> Anthropic format
|
|
164
|
+
fn = t["function"]
|
|
165
|
+
anthropic_tools.append({
|
|
166
|
+
"name": fn["name"],
|
|
167
|
+
"description": fn.get("description", ""),
|
|
168
|
+
"input_schema": fn.get("parameters", {"type": "object", "properties": {}}),
|
|
169
|
+
})
|
|
170
|
+
elif "input_schema" in t:
|
|
171
|
+
# Already Anthropic format
|
|
172
|
+
anthropic_tools.append(t)
|
|
173
|
+
else:
|
|
174
|
+
anthropic_tools.append(t)
|
|
175
|
+
|
|
176
|
+
kwargs: dict[str, Any] = {
|
|
177
|
+
"model": model,
|
|
178
|
+
"messages": api_messages,
|
|
179
|
+
"temperature": opts["temperature"],
|
|
180
|
+
"max_tokens": opts["max_tokens"],
|
|
181
|
+
"tools": anthropic_tools,
|
|
182
|
+
}
|
|
183
|
+
if system_content:
|
|
184
|
+
kwargs["system"] = system_content
|
|
185
|
+
|
|
186
|
+
resp = await client.messages.create(**kwargs)
|
|
187
|
+
|
|
188
|
+
prompt_tokens = resp.usage.input_tokens
|
|
189
|
+
completion_tokens = resp.usage.output_tokens
|
|
190
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
191
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
192
|
+
|
|
193
|
+
meta = {
|
|
194
|
+
"prompt_tokens": prompt_tokens,
|
|
195
|
+
"completion_tokens": completion_tokens,
|
|
196
|
+
"total_tokens": total_tokens,
|
|
197
|
+
"cost": round(total_cost, 6),
|
|
198
|
+
"raw_response": dict(resp),
|
|
199
|
+
"model_name": model,
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
text = ""
|
|
203
|
+
tool_calls_out: list[dict[str, Any]] = []
|
|
204
|
+
for block in resp.content:
|
|
205
|
+
if block.type == "text":
|
|
206
|
+
text += block.text
|
|
207
|
+
elif block.type == "tool_use":
|
|
208
|
+
tool_calls_out.append({
|
|
209
|
+
"id": block.id,
|
|
210
|
+
"name": block.name,
|
|
211
|
+
"arguments": block.input,
|
|
212
|
+
})
|
|
213
|
+
|
|
214
|
+
return {
|
|
215
|
+
"text": text,
|
|
216
|
+
"meta": meta,
|
|
217
|
+
"tool_calls": tool_calls_out,
|
|
218
|
+
"stop_reason": resp.stop_reason,
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
# ------------------------------------------------------------------
|
|
222
|
+
# Streaming
|
|
223
|
+
# ------------------------------------------------------------------
|
|
224
|
+
|
|
225
|
+
async def generate_messages_stream(
|
|
226
|
+
self,
|
|
227
|
+
messages: list[dict[str, Any]],
|
|
228
|
+
options: dict[str, Any],
|
|
229
|
+
) -> AsyncIterator[dict[str, Any]]:
|
|
230
|
+
"""Yield response chunks via Anthropic streaming API."""
|
|
231
|
+
if anthropic is None:
|
|
232
|
+
raise RuntimeError("anthropic package not installed")
|
|
233
|
+
|
|
234
|
+
opts = {**{"temperature": 0.0, "max_tokens": 512}, **options}
|
|
235
|
+
model = options.get("model", self.model)
|
|
236
|
+
client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
|
237
|
+
|
|
238
|
+
system_content, api_messages = self._extract_system_and_messages(messages)
|
|
239
|
+
|
|
240
|
+
kwargs: dict[str, Any] = {
|
|
241
|
+
"model": model,
|
|
242
|
+
"messages": api_messages,
|
|
243
|
+
"temperature": opts["temperature"],
|
|
244
|
+
"max_tokens": opts["max_tokens"],
|
|
245
|
+
}
|
|
246
|
+
if system_content:
|
|
247
|
+
kwargs["system"] = system_content
|
|
248
|
+
|
|
249
|
+
full_text = ""
|
|
250
|
+
prompt_tokens = 0
|
|
251
|
+
completion_tokens = 0
|
|
252
|
+
|
|
253
|
+
async with client.messages.stream(**kwargs) as stream:
|
|
254
|
+
async for event in stream:
|
|
255
|
+
if hasattr(event, "type"):
|
|
256
|
+
if event.type == "content_block_delta" and hasattr(event, "delta"):
|
|
257
|
+
delta_text = getattr(event.delta, "text", "")
|
|
258
|
+
if delta_text:
|
|
259
|
+
full_text += delta_text
|
|
260
|
+
yield {"type": "delta", "text": delta_text}
|
|
261
|
+
elif event.type == "message_delta" and hasattr(event, "usage"):
|
|
262
|
+
completion_tokens = getattr(event.usage, "output_tokens", 0)
|
|
263
|
+
elif event.type == "message_start" and hasattr(event, "message"):
|
|
264
|
+
usage = getattr(event.message, "usage", None)
|
|
265
|
+
if usage:
|
|
266
|
+
prompt_tokens = getattr(usage, "input_tokens", 0)
|
|
267
|
+
|
|
268
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
269
|
+
total_cost = self._calculate_cost("claude", model, prompt_tokens, completion_tokens)
|
|
270
|
+
|
|
271
|
+
yield {
|
|
272
|
+
"type": "done",
|
|
273
|
+
"text": full_text,
|
|
274
|
+
"meta": {
|
|
275
|
+
"prompt_tokens": prompt_tokens,
|
|
276
|
+
"completion_tokens": completion_tokens,
|
|
277
|
+
"total_tokens": total_tokens,
|
|
278
|
+
"cost": round(total_cost, 6),
|
|
279
|
+
"raw_response": {},
|
|
280
|
+
"model_name": model,
|
|
281
|
+
},
|
|
282
|
+
}
|
|
@@ -169,6 +169,13 @@ class AsyncGoogleDriver(CostMixin, AsyncDriver):
|
|
|
169
169
|
) -> dict[str, Any]:
|
|
170
170
|
gen_input, gen_kwargs, model_kwargs = self._build_generation_args(messages, options)
|
|
171
171
|
|
|
172
|
+
# Validate capabilities against models.dev metadata
|
|
173
|
+
self._validate_model_capabilities(
|
|
174
|
+
"google",
|
|
175
|
+
self.model,
|
|
176
|
+
using_json_schema=bool((options or {}).get("json_schema")),
|
|
177
|
+
)
|
|
178
|
+
|
|
172
179
|
try:
|
|
173
180
|
model = genai.GenerativeModel(self.model, **model_kwargs)
|
|
174
181
|
response = await model.generate_content_async(gen_input, **gen_kwargs)
|
|
@@ -201,6 +208,9 @@ class AsyncGoogleDriver(CostMixin, AsyncDriver):
|
|
|
201
208
|
options: dict[str, Any],
|
|
202
209
|
) -> dict[str, Any]:
|
|
203
210
|
"""Generate a response that may include tool/function calls (async)."""
|
|
211
|
+
model = options.get("model", self.model)
|
|
212
|
+
self._validate_model_capabilities("google", model, using_tool_use=True)
|
|
213
|
+
|
|
204
214
|
gen_input, gen_kwargs, model_kwargs = self._build_generation_args(
|
|
205
215
|
self._prepare_messages(messages), options
|
|
206
216
|
)
|