promptlayer 1.0.61__tar.gz → 1.0.62__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of promptlayer might be problematic. Click here for more details.

Files changed (23) hide show
  1. {promptlayer-1.0.61 → promptlayer-1.0.62}/PKG-INFO +1 -1
  2. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/__init__.py +1 -1
  3. promptlayer-1.0.62/promptlayer/streaming/stream_processor.py +77 -0
  4. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/utils.py +6 -2
  5. {promptlayer-1.0.61 → promptlayer-1.0.62}/pyproject.toml +1 -1
  6. promptlayer-1.0.61/promptlayer/streaming/stream_processor.py +0 -100
  7. {promptlayer-1.0.61 → promptlayer-1.0.62}/LICENSE +0 -0
  8. {promptlayer-1.0.61 → promptlayer-1.0.62}/README.md +0 -0
  9. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/groups/__init__.py +0 -0
  10. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/groups/groups.py +0 -0
  11. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/promptlayer.py +0 -0
  12. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/promptlayer_base.py +0 -0
  13. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/promptlayer_mixins.py +0 -0
  14. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/span_exporter.py +0 -0
  15. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/streaming/__init__.py +0 -0
  16. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/streaming/blueprint_builder.py +0 -0
  17. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/streaming/response_handlers.py +0 -0
  18. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/templates.py +0 -0
  19. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/track/__init__.py +0 -0
  20. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/track/track.py +0 -0
  21. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/types/__init__.py +0 -0
  22. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/types/prompt_template.py +0 -0
  23. {promptlayer-1.0.61 → promptlayer-1.0.62}/promptlayer/types/request_log.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: promptlayer
3
- Version: 1.0.61
3
+ Version: 1.0.62
4
4
  Summary: PromptLayer is a platform for prompt engineering and tracks your LLM requests.
5
5
  License: Apache-2.0
6
6
  Author: Magniv
@@ -1,4 +1,4 @@
1
1
  from .promptlayer import AsyncPromptLayer, PromptLayer
2
2
 
3
- __version__ = "1.0.61"
3
+ __version__ = "1.0.62"
4
4
  __all__ = ["PromptLayer", "AsyncPromptLayer", "__version__"]
@@ -0,0 +1,77 @@
1
+ from typing import Any, AsyncGenerator, AsyncIterable, Callable, Dict, Generator
2
+
3
+ from .blueprint_builder import (
4
+ build_prompt_blueprint_from_anthropic_event,
5
+ build_prompt_blueprint_from_google_event,
6
+ build_prompt_blueprint_from_openai_chunk,
7
+ )
8
+
9
+
10
+ def _build_stream_blueprint(result: Any, metadata: Dict) -> Any:
11
+ model_info = metadata.get("model", {}) if metadata else {}
12
+ provider = model_info.get("provider", "")
13
+ model_name = model_info.get("name", "")
14
+
15
+ if provider == "openai" or provider == "openai.azure":
16
+ return build_prompt_blueprint_from_openai_chunk(result, metadata)
17
+
18
+ elif provider == "google" or (provider == "vertexai" and model_name.startswith("gemini")):
19
+ return build_prompt_blueprint_from_google_event(result, metadata)
20
+
21
+ elif provider == "anthropic" or (provider == "vertexai" and model_name.startswith("claude")):
22
+ return build_prompt_blueprint_from_anthropic_event(result, metadata)
23
+
24
+ elif provider == "mistral":
25
+ return build_prompt_blueprint_from_openai_chunk(result.data, metadata)
26
+
27
+ return None
28
+
29
+
30
+ def _build_stream_data(result: Any, stream_blueprint: Any, request_id: Any = None) -> Dict[str, Any]:
31
+ return {
32
+ "request_id": request_id,
33
+ "raw_response": result,
34
+ "prompt_blueprint": stream_blueprint,
35
+ }
36
+
37
+
38
+ def stream_response(*, generator: Generator, after_stream: Callable, map_results: Callable, metadata: Dict):
39
+ results = []
40
+ for result in generator:
41
+ results.append(result)
42
+
43
+ stream_blueprint = _build_stream_blueprint(result, metadata)
44
+ data = _build_stream_data(result, stream_blueprint)
45
+ yield data
46
+
47
+ request_response = map_results(results)
48
+ response = after_stream(request_response=request_response.model_dump(mode="json"))
49
+ data["request_id"] = response.get("request_id")
50
+ data["prompt_blueprint"] = response.get("prompt_blueprint")
51
+ yield data
52
+
53
+
54
+ async def astream_response(
55
+ generator: AsyncIterable[Any],
56
+ after_stream: Callable[..., Any],
57
+ map_results: Callable[[Any], Any],
58
+ metadata: Dict[str, Any] = None,
59
+ ) -> AsyncGenerator[Dict[str, Any], None]:
60
+ results = []
61
+
62
+ async for result in generator:
63
+ results.append(result)
64
+
65
+ stream_blueprint = _build_stream_blueprint(result, metadata)
66
+ data = _build_stream_data(result, stream_blueprint)
67
+ yield data
68
+
69
+ async def async_generator_from_list(lst):
70
+ for item in lst:
71
+ yield item
72
+
73
+ request_response = await map_results(async_generator_from_list(results))
74
+ after_stream_response = await after_stream(request_response=request_response.model_dump(mode="json"))
75
+ data["request_id"] = after_stream_response.get("request_id")
76
+ data["prompt_blueprint"] = after_stream_response.get("prompt_blueprint")
77
+ yield data
@@ -59,6 +59,10 @@ def _make_httpx_client():
59
59
  return httpx.AsyncClient(timeout=_get_http_timeout())
60
60
 
61
61
 
62
+ def _make_simple_httpx_client():
63
+ return httpx.Client(timeout=_get_http_timeout())
64
+
65
+
62
66
  def _get_workflow_workflow_id_or_name(workflow_id_or_name, workflow_name):
63
67
  # This is backward compatibility code
64
68
  if (workflow_id_or_name := workflow_name if workflow_id_or_name is None else workflow_id_or_name) is None:
@@ -1396,7 +1400,7 @@ async def autil_log_request(api_key: str, **kwargs) -> Union[RequestLog, None]:
1396
1400
  def mistral_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
1397
1401
  from mistralai import Mistral
1398
1402
 
1399
- client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"))
1403
+ client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"), client=_make_simple_httpx_client())
1400
1404
  if "stream" in function_kwargs and function_kwargs["stream"]:
1401
1405
  function_kwargs.pop("stream")
1402
1406
  return client.chat.stream(**function_kwargs)
@@ -1412,7 +1416,7 @@ async def amistral_request(
1412
1416
  ):
1413
1417
  from mistralai import Mistral
1414
1418
 
1415
- client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"))
1419
+ client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"), async_client=_make_httpx_client())
1416
1420
  if "stream" in function_kwargs and function_kwargs["stream"]:
1417
1421
  return await client.chat.stream_async(**function_kwargs)
1418
1422
  return await client.chat.complete_async(**function_kwargs)
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "promptlayer"
3
- version = "1.0.61"
3
+ version = "1.0.62"
4
4
  description = "PromptLayer is a platform for prompt engineering and tracks your LLM requests."
5
5
  authors = ["Magniv <hello@magniv.io>"]
6
6
  license = "Apache-2.0"
@@ -1,100 +0,0 @@
1
- """
2
- Stream processors for handling streaming responses
3
-
4
- This module contains the main streaming logic that processes streaming responses
5
- from various LLM providers and builds progressive prompt blueprints.
6
- """
7
-
8
- from typing import Any, AsyncGenerator, AsyncIterable, Callable, Dict, Generator
9
-
10
- from .blueprint_builder import (
11
- build_prompt_blueprint_from_anthropic_event,
12
- build_prompt_blueprint_from_google_event,
13
- build_prompt_blueprint_from_openai_chunk,
14
- )
15
-
16
-
17
- def stream_response(*, generator: Generator, after_stream: Callable, map_results: Callable, metadata: Dict):
18
- """
19
- Process streaming responses and build progressive prompt blueprints
20
-
21
- Supports OpenAI, Anthropic, and Google (Gemini) streaming formats, building blueprints
22
- progressively as the stream progresses.
23
- """
24
- results = []
25
- stream_blueprint = None
26
- for result in generator:
27
- results.append(result)
28
-
29
- # Handle OpenAI streaming format - process each chunk individually
30
- if hasattr(result, "choices"):
31
- stream_blueprint = build_prompt_blueprint_from_openai_chunk(result, metadata)
32
-
33
- # Handle Google streaming format (Gemini) - GenerateContentResponse objects
34
- elif hasattr(result, "candidates"):
35
- stream_blueprint = build_prompt_blueprint_from_google_event(result, metadata)
36
-
37
- # Handle Anthropic streaming format - process each event individually
38
- elif hasattr(result, "type"):
39
- stream_blueprint = build_prompt_blueprint_from_anthropic_event(result, metadata)
40
-
41
- data = {
42
- "request_id": None,
43
- "raw_response": result,
44
- "prompt_blueprint": stream_blueprint,
45
- }
46
- yield data
47
-
48
- request_response = map_results(results)
49
- response = after_stream(request_response=request_response.model_dump(mode="json"))
50
- data["request_id"] = response.get("request_id")
51
- data["prompt_blueprint"] = response.get("prompt_blueprint")
52
- yield data
53
-
54
-
55
- async def astream_response(
56
- generator: AsyncIterable[Any],
57
- after_stream: Callable[..., Any],
58
- map_results: Callable[[Any], Any],
59
- metadata: Dict[str, Any] = None,
60
- ) -> AsyncGenerator[Dict[str, Any], None]:
61
- """
62
- Async version of stream_response
63
-
64
- Process streaming responses asynchronously and build progressive prompt blueprints
65
- Supports OpenAI, Anthropic, and Google (Gemini) streaming formats.
66
- """
67
- results = []
68
- stream_blueprint = None
69
-
70
- async for result in generator:
71
- results.append(result)
72
-
73
- # Handle OpenAI streaming format - process each chunk individually
74
- if hasattr(result, "choices"):
75
- stream_blueprint = build_prompt_blueprint_from_openai_chunk(result, metadata)
76
-
77
- # Handle Google streaming format (Gemini) - GenerateContentResponse objects
78
- elif hasattr(result, "candidates"):
79
- stream_blueprint = build_prompt_blueprint_from_google_event(result, metadata)
80
-
81
- # Handle Anthropic streaming format - process each event individually
82
- elif hasattr(result, "type"):
83
- stream_blueprint = build_prompt_blueprint_from_anthropic_event(result, metadata)
84
-
85
- data = {
86
- "request_id": None,
87
- "raw_response": result,
88
- "prompt_blueprint": stream_blueprint,
89
- }
90
- yield data
91
-
92
- async def async_generator_from_list(lst):
93
- for item in lst:
94
- yield item
95
-
96
- request_response = await map_results(async_generator_from_list(results))
97
- after_stream_response = await after_stream(request_response=request_response.model_dump(mode="json"))
98
- data["request_id"] = after_stream_response.get("request_id")
99
- data["prompt_blueprint"] = after_stream_response.get("prompt_blueprint")
100
- yield data
File without changes
File without changes