promptlayer 1.0.50__tar.gz → 1.0.52__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of promptlayer might be problematic. Click here for more details.
- {promptlayer-1.0.50 → promptlayer-1.0.52}/PKG-INFO +1 -1
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/__init__.py +1 -1
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/promptlayer.py +23 -15
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/promptlayer_mixins.py +37 -22
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/utils.py +37 -37
- {promptlayer-1.0.50 → promptlayer-1.0.52}/pyproject.toml +1 -1
- {promptlayer-1.0.50 → promptlayer-1.0.52}/LICENSE +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/README.md +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/groups/__init__.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/groups/groups.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/promptlayer_base.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/span_exporter.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/templates.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/track/__init__.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/track/track.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/types/__init__.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/types/prompt_template.py +0 -0
- {promptlayer-1.0.50 → promptlayer-1.0.52}/promptlayer/types/request_log.py +0 -0
|
@@ -137,7 +137,7 @@ class PromptLayer(PromptLayerMixin):
|
|
|
137
137
|
prompt_blueprint_model = self._validate_and_extract_model_from_prompt_blueprint(
|
|
138
138
|
prompt_blueprint=prompt_blueprint, prompt_name=prompt_name
|
|
139
139
|
)
|
|
140
|
-
|
|
140
|
+
llm_data = self._prepare_llm_data(
|
|
141
141
|
prompt_blueprint=prompt_blueprint,
|
|
142
142
|
prompt_template=prompt_blueprint["prompt_template"],
|
|
143
143
|
prompt_blueprint_model=prompt_blueprint_model,
|
|
@@ -145,24 +145,30 @@ class PromptLayer(PromptLayerMixin):
|
|
|
145
145
|
stream=stream,
|
|
146
146
|
)
|
|
147
147
|
|
|
148
|
-
response
|
|
149
|
-
|
|
148
|
+
# response is just whatever the LLM call returns
|
|
149
|
+
# streaming=False > Pydantic model instance
|
|
150
|
+
# streaming=True > generator that yields ChatCompletionChunk pieces as they arrive
|
|
151
|
+
response = llm_data["request_function"](
|
|
152
|
+
prompt_blueprint=llm_data["prompt_blueprint"],
|
|
153
|
+
client_kwargs=llm_data["client_kwargs"],
|
|
154
|
+
function_kwargs=llm_data["function_kwargs"],
|
|
150
155
|
)
|
|
151
156
|
|
|
152
157
|
if stream:
|
|
153
158
|
return stream_response(
|
|
154
|
-
response,
|
|
155
|
-
self._create_track_request_callable(
|
|
156
|
-
request_params=
|
|
159
|
+
generator=response,
|
|
160
|
+
after_stream=self._create_track_request_callable(
|
|
161
|
+
request_params=llm_data,
|
|
157
162
|
tags=tags,
|
|
158
163
|
input_variables=input_variables,
|
|
159
164
|
group_id=group_id,
|
|
160
165
|
pl_run_span_id=pl_run_span_id,
|
|
161
166
|
),
|
|
162
|
-
|
|
167
|
+
map_results=llm_data["stream_function"],
|
|
163
168
|
)
|
|
169
|
+
|
|
164
170
|
request_log = self._track_request_log(
|
|
165
|
-
|
|
171
|
+
llm_data,
|
|
166
172
|
tags,
|
|
167
173
|
input_variables,
|
|
168
174
|
group_id,
|
|
@@ -387,7 +393,7 @@ class AsyncPromptLayer(PromptLayerMixin):
|
|
|
387
393
|
# Allows `workflow_name` to be passed both as keyword and positional argument
|
|
388
394
|
# (virtually identical to `workflow_id_or_name`)
|
|
389
395
|
workflow_name: Optional[str] = None,
|
|
390
|
-
) -> Dict[str, Any]:
|
|
396
|
+
) -> Union[Dict[str, Any], Any]:
|
|
391
397
|
try:
|
|
392
398
|
return await arun_workflow_request(
|
|
393
399
|
workflow_id_or_name=_get_workflow_workflow_id_or_name(workflow_id_or_name, workflow_name),
|
|
@@ -551,7 +557,7 @@ class AsyncPromptLayer(PromptLayerMixin):
|
|
|
551
557
|
prompt_blueprint_model = self._validate_and_extract_model_from_prompt_blueprint(
|
|
552
558
|
prompt_blueprint=prompt_blueprint, prompt_name=prompt_name
|
|
553
559
|
)
|
|
554
|
-
|
|
560
|
+
llm_data = self._prepare_llm_data(
|
|
555
561
|
prompt_blueprint=prompt_blueprint,
|
|
556
562
|
prompt_template=prompt_blueprint["prompt_template"],
|
|
557
563
|
prompt_blueprint_model=prompt_blueprint_model,
|
|
@@ -560,13 +566,15 @@ class AsyncPromptLayer(PromptLayerMixin):
|
|
|
560
566
|
is_async=True,
|
|
561
567
|
)
|
|
562
568
|
|
|
563
|
-
response = await
|
|
564
|
-
|
|
569
|
+
response = await llm_data["request_function"](
|
|
570
|
+
prompt_blueprint=llm_data["prompt_blueprint"],
|
|
571
|
+
client_kwargs=llm_data["client_kwargs"],
|
|
572
|
+
function_kwargs=llm_data["function_kwargs"],
|
|
565
573
|
)
|
|
566
574
|
|
|
567
575
|
if stream:
|
|
568
576
|
track_request_callable = await self._create_track_request_callable(
|
|
569
|
-
request_params=
|
|
577
|
+
request_params=llm_data,
|
|
570
578
|
tags=tags,
|
|
571
579
|
input_variables=input_variables,
|
|
572
580
|
group_id=group_id,
|
|
@@ -575,11 +583,11 @@ class AsyncPromptLayer(PromptLayerMixin):
|
|
|
575
583
|
return astream_response(
|
|
576
584
|
response,
|
|
577
585
|
track_request_callable,
|
|
578
|
-
|
|
586
|
+
llm_data["stream_function"],
|
|
579
587
|
)
|
|
580
588
|
|
|
581
589
|
request_log = await self._track_request_log(
|
|
582
|
-
|
|
590
|
+
llm_data,
|
|
583
591
|
tags,
|
|
584
592
|
input_variables,
|
|
585
593
|
group_id,
|
|
@@ -2,7 +2,7 @@ import asyncio
|
|
|
2
2
|
import datetime
|
|
3
3
|
from copy import deepcopy
|
|
4
4
|
from functools import wraps
|
|
5
|
-
from typing import Dict, Union
|
|
5
|
+
from typing import Any, Dict, Union
|
|
6
6
|
|
|
7
7
|
from opentelemetry.sdk.resources import Resource
|
|
8
8
|
from opentelemetry.sdk.trace import TracerProvider
|
|
@@ -92,11 +92,11 @@ MAP_PROVIDER_TO_FUNCTION_NAME = {
|
|
|
92
92
|
|
|
93
93
|
|
|
94
94
|
MAP_PROVIDER_TO_FUNCTION = {
|
|
95
|
-
"openai": openai_request,
|
|
96
95
|
"anthropic": anthropic_request,
|
|
97
|
-
"openai.azure": azure_openai_request,
|
|
98
|
-
"mistral": mistral_request,
|
|
99
96
|
"google": google_request,
|
|
97
|
+
"mistral": mistral_request,
|
|
98
|
+
"openai": openai_request,
|
|
99
|
+
"openai.azure": azure_openai_request,
|
|
100
100
|
}
|
|
101
101
|
|
|
102
102
|
AMAP_PROVIDER_TO_FUNCTION_NAME = {
|
|
@@ -154,11 +154,11 @@ AMAP_PROVIDER_TO_FUNCTION_NAME = {
|
|
|
154
154
|
|
|
155
155
|
|
|
156
156
|
AMAP_PROVIDER_TO_FUNCTION = {
|
|
157
|
-
"openai": aopenai_request,
|
|
158
157
|
"anthropic": aanthropic_request,
|
|
159
|
-
"openai.azure": aazure_openai_request,
|
|
160
|
-
"mistral": amistral_request,
|
|
161
158
|
"google": agoogle_request,
|
|
159
|
+
"mistral": amistral_request,
|
|
160
|
+
"openai": aopenai_request,
|
|
161
|
+
"openai.azure": aazure_openai_request,
|
|
162
162
|
}
|
|
163
163
|
|
|
164
164
|
|
|
@@ -177,7 +177,13 @@ class PromptLayerMixin:
|
|
|
177
177
|
return None, None
|
|
178
178
|
|
|
179
179
|
@staticmethod
|
|
180
|
-
def _prepare_get_prompt_template_params(
|
|
180
|
+
def _prepare_get_prompt_template_params(
|
|
181
|
+
*,
|
|
182
|
+
prompt_version: Union[int, None],
|
|
183
|
+
prompt_release_label: Union[str, None],
|
|
184
|
+
input_variables: Union[Dict[str, Any], None],
|
|
185
|
+
metadata: Union[Dict[str, str], None],
|
|
186
|
+
) -> Dict[str, Any]:
|
|
181
187
|
params = {}
|
|
182
188
|
|
|
183
189
|
if prompt_version:
|
|
@@ -192,7 +198,7 @@ class PromptLayerMixin:
|
|
|
192
198
|
return params
|
|
193
199
|
|
|
194
200
|
@staticmethod
|
|
195
|
-
def
|
|
201
|
+
def _prepare_llm_data(
|
|
196
202
|
*,
|
|
197
203
|
prompt_blueprint,
|
|
198
204
|
prompt_template,
|
|
@@ -201,8 +207,26 @@ class PromptLayerMixin:
|
|
|
201
207
|
stream,
|
|
202
208
|
is_async=False,
|
|
203
209
|
):
|
|
210
|
+
client_kwargs = {}
|
|
211
|
+
function_kwargs = deepcopy(prompt_blueprint["llm_kwargs"])
|
|
212
|
+
function_kwargs["stream"] = stream
|
|
204
213
|
provider = prompt_blueprint_model["provider"]
|
|
205
|
-
|
|
214
|
+
|
|
215
|
+
if custom_provider := prompt_blueprint.get("custom_provider"):
|
|
216
|
+
provider = custom_provider["client"]
|
|
217
|
+
client_kwargs = {
|
|
218
|
+
"api_key": custom_provider["api_key"],
|
|
219
|
+
"base_url": custom_provider["base_url"],
|
|
220
|
+
}
|
|
221
|
+
elif provider_base_url := prompt_blueprint.get("provider_base_url"):
|
|
222
|
+
client_kwargs["base_url"] = provider_base_url["url"]
|
|
223
|
+
|
|
224
|
+
if model_parameter_overrides:
|
|
225
|
+
function_kwargs.update(model_parameter_overrides)
|
|
226
|
+
|
|
227
|
+
if stream and provider in ["openai", "openai.azure"]:
|
|
228
|
+
function_kwargs["stream_options"] = {"include_usage": True}
|
|
229
|
+
|
|
206
230
|
if is_async:
|
|
207
231
|
config = AMAP_PROVIDER_TO_FUNCTION_NAME[provider][prompt_template["type"]]
|
|
208
232
|
request_function = AMAP_PROVIDER_TO_FUNCTION[provider]
|
|
@@ -210,22 +234,13 @@ class PromptLayerMixin:
|
|
|
210
234
|
config = MAP_PROVIDER_TO_FUNCTION_NAME[provider][prompt_template["type"]]
|
|
211
235
|
request_function = MAP_PROVIDER_TO_FUNCTION[provider]
|
|
212
236
|
|
|
213
|
-
if provider_base_url := prompt_blueprint.get("provider_base_url"):
|
|
214
|
-
kwargs["base_url"] = provider_base_url["url"]
|
|
215
|
-
|
|
216
|
-
if model_parameter_overrides:
|
|
217
|
-
kwargs.update(model_parameter_overrides)
|
|
218
|
-
|
|
219
|
-
kwargs["stream"] = stream
|
|
220
|
-
if stream and provider in ["openai", "openai.azure"]:
|
|
221
|
-
kwargs["stream_options"] = {"include_usage": True}
|
|
222
|
-
|
|
223
237
|
return {
|
|
224
238
|
"provider": provider,
|
|
225
239
|
"function_name": config["function_name"],
|
|
226
240
|
"stream_function": config["stream_function"],
|
|
227
241
|
"request_function": request_function,
|
|
228
|
-
"
|
|
242
|
+
"client_kwargs": client_kwargs,
|
|
243
|
+
"function_kwargs": function_kwargs,
|
|
229
244
|
"prompt_blueprint": prompt_blueprint,
|
|
230
245
|
}
|
|
231
246
|
|
|
@@ -263,7 +278,7 @@ class PromptLayerMixin:
|
|
|
263
278
|
"function_name": request_params["function_name"],
|
|
264
279
|
"provider_type": request_params["provider"],
|
|
265
280
|
"args": [],
|
|
266
|
-
"kwargs": request_params["
|
|
281
|
+
"kwargs": request_params["function_kwargs"],
|
|
267
282
|
"tags": tags,
|
|
268
283
|
"request_start_time": datetime.datetime.now(datetime.timezone.utc).timestamp(),
|
|
269
284
|
"request_end_time": datetime.datetime.now(datetime.timezone.utc).timestamp(),
|
|
@@ -1485,7 +1485,7 @@ async def aanthropic_stream_completion(generator: AsyncIterable[Any]) -> Any:
|
|
|
1485
1485
|
return response
|
|
1486
1486
|
|
|
1487
1487
|
|
|
1488
|
-
def stream_response(generator: Generator, after_stream: Callable, map_results: Callable):
|
|
1488
|
+
def stream_response(*, generator: Generator, after_stream: Callable, map_results: Callable):
|
|
1489
1489
|
data = {
|
|
1490
1490
|
"request_id": None,
|
|
1491
1491
|
"raw_response": None,
|
|
@@ -1544,12 +1544,12 @@ MAP_TYPE_TO_OPENAI_FUNCTION = {
|
|
|
1544
1544
|
}
|
|
1545
1545
|
|
|
1546
1546
|
|
|
1547
|
-
def openai_request(prompt_blueprint: GetPromptTemplateResponse,
|
|
1547
|
+
def openai_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1548
1548
|
from openai import OpenAI
|
|
1549
1549
|
|
|
1550
|
-
client = OpenAI(
|
|
1550
|
+
client = OpenAI(**client_kwargs)
|
|
1551
1551
|
request_to_make = MAP_TYPE_TO_OPENAI_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1552
|
-
return request_to_make(client, **
|
|
1552
|
+
return request_to_make(client, **function_kwargs)
|
|
1553
1553
|
|
|
1554
1554
|
|
|
1555
1555
|
async def aopenai_chat_request(client, **kwargs):
|
|
@@ -1566,28 +1566,30 @@ AMAP_TYPE_TO_OPENAI_FUNCTION = {
|
|
|
1566
1566
|
}
|
|
1567
1567
|
|
|
1568
1568
|
|
|
1569
|
-
async def aopenai_request(prompt_blueprint: GetPromptTemplateResponse,
|
|
1569
|
+
async def aopenai_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1570
1570
|
from openai import AsyncOpenAI
|
|
1571
1571
|
|
|
1572
|
-
client = AsyncOpenAI(
|
|
1572
|
+
client = AsyncOpenAI(**client_kwargs)
|
|
1573
1573
|
request_to_make = AMAP_TYPE_TO_OPENAI_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1574
|
-
return await request_to_make(client, **
|
|
1574
|
+
return await request_to_make(client, **function_kwargs)
|
|
1575
1575
|
|
|
1576
1576
|
|
|
1577
|
-
def azure_openai_request(prompt_blueprint: GetPromptTemplateResponse,
|
|
1577
|
+
def azure_openai_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1578
1578
|
from openai import AzureOpenAI
|
|
1579
1579
|
|
|
1580
|
-
client = AzureOpenAI(azure_endpoint=
|
|
1580
|
+
client = AzureOpenAI(azure_endpoint=client_kwargs.pop("base_url", None))
|
|
1581
1581
|
request_to_make = MAP_TYPE_TO_OPENAI_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1582
|
-
return request_to_make(client, **
|
|
1582
|
+
return request_to_make(client, **function_kwargs)
|
|
1583
1583
|
|
|
1584
1584
|
|
|
1585
|
-
async def aazure_openai_request(
|
|
1585
|
+
async def aazure_openai_request(
|
|
1586
|
+
prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict
|
|
1587
|
+
):
|
|
1586
1588
|
from openai import AsyncAzureOpenAI
|
|
1587
1589
|
|
|
1588
|
-
client = AsyncAzureOpenAI(azure_endpoint=
|
|
1590
|
+
client = AsyncAzureOpenAI(azure_endpoint=client_kwargs.pop("base_url", None))
|
|
1589
1591
|
request_to_make = AMAP_TYPE_TO_OPENAI_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1590
|
-
return await request_to_make(client, **
|
|
1592
|
+
return await request_to_make(client, **function_kwargs)
|
|
1591
1593
|
|
|
1592
1594
|
|
|
1593
1595
|
def anthropic_chat_request(client, **kwargs):
|
|
@@ -1604,12 +1606,12 @@ MAP_TYPE_TO_ANTHROPIC_FUNCTION = {
|
|
|
1604
1606
|
}
|
|
1605
1607
|
|
|
1606
1608
|
|
|
1607
|
-
def anthropic_request(prompt_blueprint: GetPromptTemplateResponse,
|
|
1609
|
+
def anthropic_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1608
1610
|
from anthropic import Anthropic
|
|
1609
1611
|
|
|
1610
|
-
client = Anthropic(
|
|
1612
|
+
client = Anthropic(**client_kwargs)
|
|
1611
1613
|
request_to_make = MAP_TYPE_TO_ANTHROPIC_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1612
|
-
return request_to_make(client, **
|
|
1614
|
+
return request_to_make(client, **function_kwargs)
|
|
1613
1615
|
|
|
1614
1616
|
|
|
1615
1617
|
async def aanthropic_chat_request(client, **kwargs):
|
|
@@ -1626,12 +1628,12 @@ AMAP_TYPE_TO_ANTHROPIC_FUNCTION = {
|
|
|
1626
1628
|
}
|
|
1627
1629
|
|
|
1628
1630
|
|
|
1629
|
-
async def aanthropic_request(prompt_blueprint: GetPromptTemplateResponse,
|
|
1631
|
+
async def aanthropic_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1630
1632
|
from anthropic import AsyncAnthropic
|
|
1631
1633
|
|
|
1632
|
-
client = AsyncAnthropic(
|
|
1634
|
+
client = AsyncAnthropic(**client_kwargs)
|
|
1633
1635
|
request_to_make = AMAP_TYPE_TO_ANTHROPIC_FUNCTION[prompt_blueprint["prompt_template"]["type"]]
|
|
1634
|
-
return await request_to_make(client, **
|
|
1636
|
+
return await request_to_make(client, **function_kwargs)
|
|
1635
1637
|
|
|
1636
1638
|
|
|
1637
1639
|
# do not remove! This is used in the langchain integration.
|
|
@@ -1690,31 +1692,29 @@ async def autil_log_request(api_key: str, **kwargs) -> Union[RequestLog, None]:
|
|
|
1690
1692
|
return None
|
|
1691
1693
|
|
|
1692
1694
|
|
|
1693
|
-
def mistral_request(
|
|
1694
|
-
prompt_blueprint: GetPromptTemplateResponse,
|
|
1695
|
-
**kwargs,
|
|
1696
|
-
):
|
|
1695
|
+
def mistral_request(prompt_blueprint: GetPromptTemplateResponse, client_kwargs: dict, function_kwargs: dict):
|
|
1697
1696
|
from mistralai import Mistral
|
|
1698
1697
|
|
|
1699
1698
|
client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"))
|
|
1700
|
-
if "stream" in
|
|
1701
|
-
|
|
1702
|
-
return client.chat.stream(**
|
|
1703
|
-
if "stream" in
|
|
1704
|
-
|
|
1705
|
-
return client.chat.complete(**
|
|
1699
|
+
if "stream" in function_kwargs and function_kwargs["stream"]:
|
|
1700
|
+
function_kwargs.pop("stream")
|
|
1701
|
+
return client.chat.stream(**function_kwargs)
|
|
1702
|
+
if "stream" in function_kwargs:
|
|
1703
|
+
function_kwargs.pop("stream")
|
|
1704
|
+
return client.chat.complete(**function_kwargs)
|
|
1706
1705
|
|
|
1707
1706
|
|
|
1708
1707
|
async def amistral_request(
|
|
1709
1708
|
prompt_blueprint: GetPromptTemplateResponse,
|
|
1710
|
-
|
|
1709
|
+
_: dict,
|
|
1710
|
+
function_kwargs: dict,
|
|
1711
1711
|
):
|
|
1712
1712
|
from mistralai import Mistral
|
|
1713
1713
|
|
|
1714
1714
|
client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY"))
|
|
1715
|
-
if "stream" in
|
|
1716
|
-
return await client.chat.stream_async(**
|
|
1717
|
-
return await client.chat.complete_async(**
|
|
1715
|
+
if "stream" in function_kwargs and function_kwargs["stream"]:
|
|
1716
|
+
return await client.chat.stream_async(**function_kwargs)
|
|
1717
|
+
return await client.chat.complete_async(**function_kwargs)
|
|
1718
1718
|
|
|
1719
1719
|
|
|
1720
1720
|
def mistral_stream_chat(results: list):
|
|
@@ -1898,12 +1898,12 @@ MAP_TYPE_TO_GOOGLE_FUNCTION = {
|
|
|
1898
1898
|
}
|
|
1899
1899
|
|
|
1900
1900
|
|
|
1901
|
-
def google_request(request: GetPromptTemplateResponse,
|
|
1901
|
+
def google_request(request: GetPromptTemplateResponse, _: dict, function_kwargs: dict):
|
|
1902
1902
|
from google import genai
|
|
1903
1903
|
|
|
1904
1904
|
client = genai.Client()
|
|
1905
1905
|
request_to_make = MAP_TYPE_TO_GOOGLE_FUNCTION[request["prompt_template"]["type"]]
|
|
1906
|
-
return request_to_make(client, **
|
|
1906
|
+
return request_to_make(client, **function_kwargs)
|
|
1907
1907
|
|
|
1908
1908
|
|
|
1909
1909
|
async def agoogle_chat_request(client, **kwargs):
|
|
@@ -1936,12 +1936,12 @@ AMAP_TYPE_TO_GOOGLE_FUNCTION = {
|
|
|
1936
1936
|
}
|
|
1937
1937
|
|
|
1938
1938
|
|
|
1939
|
-
async def agoogle_request(request: GetPromptTemplateResponse,
|
|
1939
|
+
async def agoogle_request(request: GetPromptTemplateResponse, _: dict, function_kwargs: dict):
|
|
1940
1940
|
from google import genai
|
|
1941
1941
|
|
|
1942
1942
|
client = genai.Client()
|
|
1943
1943
|
request_to_make = AMAP_TYPE_TO_GOOGLE_FUNCTION[request["prompt_template"]["type"]]
|
|
1944
|
-
return await request_to_make(client, **
|
|
1944
|
+
return await request_to_make(client, **function_kwargs)
|
|
1945
1945
|
|
|
1946
1946
|
|
|
1947
1947
|
async def amap_google_stream_response(generator: AsyncIterable[Any]):
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|